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ABSTRACT 
Aim: This study was designed to perform network analysis of Alzheimers̓ disease and diabetes and to find their correlation with each 

other and other diseases/pathways. 

Background: Alzheimer’s disease (AD) as a neurodegenerative disease and diabetes as a metabolic disease are two major health 

problems in the recent years. The recent studies have reported their correlation and same spreading pathways of these two diseases 

together, but details of this relation are not well known yet at molecular level.. 

Methods: In thermal proteome profiling (TPP) technique, after treatment of the extracted proteins by heat and drug concentration, the 

resulting proteins were analyzed by mass spectrometry. Enrichment analysis of these proteins led to development of AD and diabetes. 

First, corresponding genes for each disease were extracted from DisGeNET database and then, protein-protein interaction network 

was constructed for each of them using the search tool for retrieval of interacting genes and proteins (STRING). After analyzing these 

networks, hub-bottleneck nodes of networks were evaluated. Also, common nodes between two networks were extracted and used for 

further analysis.  

Results: High correlation was found between AD and diabetes based on the existence of 40 common genes. Results of analyses 

revealed 14 genes in AD and 12 genes in diabetes as hub-bottleneck 7 of which were common including caspase 3 (CASP3), insulin-

like growth factor 1 (IGF1), catalase (CAT), tumor necrosis factor (TNF), leptin (LEP), vascular endothelial growth factor A 

(VEGFA), and interleukin 6 ( IL-6).  

Conclusion: Our results revealed a direct correlation between AD and diabetes and also a correlation between these two diseases and 

non-alcoholic fatty liver disease (NAFLD), suggesting that a small change in each of these three diseases can lead to development of 

any other diseases in the patients. Also, the enrichments exhibited the existence of common pathways between AD, diabetes, NAFLD, 

and male infertility. 
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Introduction  

  1 Recently, the correlation between different diseases 

and the risk factors that may cause various diseases 

have become a controversial issue. Thus, development 
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of a reliable technique for detecting protein-protein 

interaction can be a big revolution in this field. 

Alzheimer’s disease (AD) as a neurodegenerative 

disease has been one of the major health problems in 

the recent years. The Alzheimer’s disease International 

(ADI) federation has reported that at least 46.8 million 

people have been affected by dementia and this figure 

has been anticipated to increase by 74.7 million by 

2030 and 131.5 million by 2050, respectively (1). AD 
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is thought to develop 20 years or more before 

manifestation of the symptoms (2-4), along with small 

changes in the brain that are unnoticeable to the 

affected person. The first symptoms of this disease are 

memory loss and language problems, occurring as a 

result of destroying or damaging nerve cells (neurons) 

in parts of the brain involved in thinking, learning ,and 

memory (cognitive function) (5). It has been shown that 

besides age and heredity, lifestyle is an important 

effector in progression of AD (6). 

On the other hand, lifestyle has major effects on 

development of some other diseases, i.e., obesity, fatty 

liver, and diabetes (7). Diabetes mellitus is a 

heterogeneous metabolic disorder characterized by the 

presence of hyperglycemia due to deterioration of 

insulin secretion, defective insulin action, or both. 

Majority of diabetes cases are divided into two 

categories, type 1 and type 2. There are some cases 

,which are difficult to be classified ,such as gestational 

diabetes mellitus (GDM), genetic mutations, diseases 

of the exocrine pancreas (such as cystic fibrosis) ,and 

other diseases or drug exposure (such as 

glucocorticoids, medications for treatment of human 

immunodeficiency virus(HIV)/ acquired 

immunodeficiency syndrome(AIDS), and atypical 

antipsychotics) (8).  

Many studies have been conducted on insulin signaling 

in the brain during normal adulthood and aging and in 

the individuals with AD. But, there is limited 

information on molecular correlation between AD and 

diabetes. However, several studies have established the 

direct effect of diabetes on AD (9-11). Much 

information is available regarding biology of each of 

these diseases separately, and there is an increasing 

interest for recognizing their pathophysiological 

intersection (12). In our previous study, both of these 

diseases were enriched by identifying the targets of 

Celecoxib using thermal proteome profiling (TPP). As 

a recently introduced proteomics technology, TPP 

demonstrates the potential for proteome profiling for 

large-scale analysis of proteome-ligand interactions 

including endogenous ligands, such as cofactors or 

metabolites, and other protein modifications. TPP 

facilitates identification of markers for drug efficacy 

and toxicity and provides an unbiased measure of drug-

target engagement. As a mass spectrometry-based 

technique, TPP provides a rationale for adverse clinical 

observations and suggests repurposing of the drug for 

treatment of other diseases (13, 14). 

Considering accuracy of TPP technique and detecting 

AD and diabetes in our previous study, herein it was 

attempted to analyze the correlation between these two 

widespread diseases.   

 

Methods 

The hippocampi of 5 male Rattus norvegicus, 

weighing 200 +/-10 g were separated and homogenized 

in radioimmunoprecipitation assay (RIPA) buffer and 

finally, were centrifuged in 20,000 g for 20 min at 4°C. 

The supernatant containing proteins was carefully 

separated from precipitates and concentration of protein 

solution was determined by Bradford assay. Then, the 

TPP procedure was done using Celecoxib 

concentrations of 20, 10, 5, 1, and 0.1µM, based on the 

protocols of TPP (13-16). Finally, the solarized proteins 

were extracted and fractionated by NanoDrop device. 

The proteins were identified by mass spectrometry-

based laboratory protocol (17, 18). Following 

identification of proteins using the existing databases, 

enrichment analysis was used to determine the role of 

the protein set in different diseases using the Enrichr 

web tool (https://amp.pharm.mssm.edu/Enrichr/). This 

online database contains many different libraries, and 

the effect of genes on pathways, disease, and 

phenotypes is determined by entering the list of genes 

(ref Enrichr). The effects of the identified proteins on 

different processes were determined using this 

database. Considering high P-value of AD and diabetes, 

the correlation between these two diseases was 

investigated in the DisGeNET database. DisGeNET is a 

comprehensive discovery database providing 

information on the association of genes and variants 

with human diseases (19). The related genes of AD and 

diabetes were extracted from the DisGeNET platform 

and were used for further analysis. PPI network of each 

disease was constructed by the search tool for retrieval 

of interacting genes/proteins (STRING). STRING is a 

discovery platform, predicting protein-protein 

interactions (20). The resulting networks were imported 

in Cytoscape software, and the ClusterONE algorithm 

identified their topology properties as a plugin of this 

software (21). The relation between common genes and 

pathway enrichment was accomplished using ClueGO 
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and CluePedia plugins of Cytoscape software (22, 23).  

An R package named as CINNA was used to find the 

best centrality method for selecting the most critical 

nodes (24, 25). 

Every network contains nodes (such as genes or 

proteins) and edges/links (e.g., co-expression 

relationships or physical interactions) as their 

connections. Degree and betweenness are important 

centrality parameters in network biology that are useful 

for analyzing network topology. The term degree 

indicates edges/links of a node. Nodes with high degree 

values are called as hubs, and nodes achieving top-ten 

or top-five % of betweenness centrality are called as 

bottlenecks. So, hub-bottlenecks are nodes that are 

simultaneously hubs and bottlenecks. Average degree 

(A.D) and standard deviation (SD) of degrees were 

calculated, and nodes with a degree value above 2SD + 

A.D were selected as hub proteins. Also, the top 5% 

betweenness centrality measures were chosen as 

bottleneck proteins. Shared genes, hubs, and bottleneck 

proteins of these two networks were extracted and used 

for further analysis. In this study, Cytoscape software 

was used to analyze networks and extract hubs, hub-

bottlenecks, and their first neighbors (26).  

 

Results 

After enrichment of the identified proteins from MS 

by Enrichr web tool, AD (Adj p-value: 0.00089) and 

diabetes (Adj p-value:  0.022) were identified 

interestingly. For detecting the correlation between AD 

and diabetes, the gene sets of these diseases were 

extracted from DisGeNET database. Based on this 

database, 386 and 523 related genes were extracted for 

AD and diabetes, respectively. Constructing PPI 

networks was done for each disease using STRING.  

AD network contained 347 nodes 14 of which were 

identified as hub-bottleneck (Figure 1 and Table 1).  On 

the other hand, diabetes network included 211 nodes 12 

of which were detected as hub-bottleneck in this 

network (Figure 2 and Table 1). Interestingly, 7 of 

these hub-bottlenecks were common between two 

networks including caspase 3(CASP3), insulin-like 

growth factor 1(IGF1), catalase (CAT), tumor necrosis 

factor (TNF), leptin (LEP), vascular endothelial growth 

factor A(VEGFA) ,and interleukin 6(IL-6). Also, 40 

proteins were shared proteins between networks; their 

roles were analyzed via the ClueGO plugin (Table 2, 

Figure 3). Enrichment analysis showed 34 pathways in 

overall 15 of which were from the Kyoto encyclopedia 

of genes and genomes (KEGG) database, 5 of which 

were enriched via Reactome database and 14 pathways 

were identified by the WikiPathways database. 

 
Table 1. Enriched hub-bottlenecks in AD and diabetes. 
Similar hub-bottlenecks are shown by asterisk. 

Disease Name Degree Betweenness centrality 
AD CASP3* 84 0.017712 
AD BDNF 84 0.022581 
AD GAPDH 129 0.074805 
AD APP 140 0.085575 
AD IGF1* 76 0.009626 
AD INS 153 0.099242 
AD CAT* 72 0.016219 
AD LEP* 73 0.01045 
AD TNF* 104 0.025062 
AD IL-6* 121 0.032354 
AD APOE 135 0.074739 
AD VEGFA* 90 0.020626 
AD TLR4 74 0.016169 
AD CLU 76 0.022463 
Diabetes TNF* 103 0.050838 
Diabetes TP53 102 0.094941 
Diabetes CASP3* 84 0.027162 
Diabetes PPARG 75 0.029648 
Diabetes CAT* 73 0.027995 
Diabetes LEP* 75 0.025842 
Diabetes IGF1* 75 0.014226 
Diabetes NOS3 71 0.018537 
Diabetes VEGFA* 87 0.036401 
Diabetes MAPK1 85 0.03988 
Diabetes MAPK3 101 0.049828 
Diabetes IL-6* 101 0.052281 

 

Discussion 

PPI network analysis and pathway enrichment as 

systems biology methods have been used to discover 

main proteins and pathways underlying complex 

diseases (27). During this blind study of systems 

biology, interestingly, AD and diabetes were found in 

the enriched diseases simultaneously, while the studied 

tissue was hippocampus. Some important common 

genes were found by extracting the genes related to 

these diseases, which were also effective in NAFLD, 

indicating high correlation between these three 

diseases.  

Many different signaling pathways were detected in 

this research (Table 1, Figures 1&2). In various studies, 

FOXO3 has been reported as a susceptible gene for 

human longevity; by aging or its expression is 

decreased in AD (28).  
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Activation of FOXO3 initially acts as a neuroprotective 

agent; however, later on it plays a role in promoting 

cell death by upregulating Bim and FasL. Decreasing 

expression of FOXO3 might be an effective way to 

prevent or delay irreversible process of 

neurodegeneration (28). IGF1 as another common 

known pathway has a similar function to insulin and 

stimulates glucose transport into the cell (29). It has 

been reported that IGF1 can influence pathogenesis of 

AD through regulation of α-/β-secretase activity (30).  

Table 2. Enriched pathways by the shared proteins between AD and diabetes. The results were extracted from 3 databases: 
KEGG, WikiPathways, and Reactome databases. 
Ontology 
source 

GOTerm Adjusted P-value Associated genes 

KEGG Adipocytokine signaling pathway 1.13778E-11 ADIPOQ, LEP, LEPR, NPY, PCK1, PPARA, 
PPARGC1A, SLC2A4, TNF 

Advanced glycation end products(AGE)-receptor of 
AGE(RAGE) signaling pathway in diabetes 

complications 

7.53638E-12 BAX, BCL2, CASP3, IL-1B, IL-6, NOS3, PIK3R1, 
TGFB1, TNF, VEGFA 

AMP-activated protein kinase (AMPK) signaling 
pathway 

1.11028E-12 ADIPOQ, IGF1, INSR, LEP, LEPR, PCK1, PIK3R1, 
PPARG, PPARGC1A, SIRT1, SLC2A4 

Amyotrophic lateral sclerosis (ALS) 5.99784E-06 BAX, BCL2, CASP3, CAT, TNF 
Apoptosis 1.78131E-06 BAX, BCL2, CASP3, FAS, NGF, PIK3R1, TNF 

Fluid shear stress and atherosclerosis 1.94221E-10 BCL2, CAV1, CYBA, HMOX1, IL-1B, NOS3, 
NQO1, PIK3R1, TNF, VEGFA 

FoxO signaling pathway 1.09653E-10 CAT, IGF1, IL-6, INSR, PCK1, PIK3R1, SIRT1, 
SLC2A4, SOD2, TGFB1 

Hypoxia-inducible factor 1(HIF-1) signaling pathway 2.35735E-08 BCL2, HMOX1, IGF1, IL-6, INSR, NOS3, PIK3R1, 
VEGFA 

Hypertrophic cardiomyopathy (HCM) 2.93532E-05 ACE, IGF1, IL-6, TGFB1, TNF 
Insulin resistance 6.54836E-10 IL-6, INSR, NOS3, PCK1, PIK3R1, PPARA, 

PPARGC1A, SLC2A4, TNF 
Longevity regulating pathway 2.31646E-12 ADIPOQ, BAX, CAT, IGF1, INSR, PIK3R1, 

PPARG, PPARGC1A, SIRT1, SOD2 
Non-alcoholic fatty liver disease (NAFLD) 7.09E-15 ADIPOQ, BAX, CASP3, FAS, IL1B, IL-6, INSR, 

LEP, LEPR, PIK3R1, PPARA, TGFB1, TNF 
p53 signaling pathway 1.3591E-05 BAX, BCL2, CASP3, FAS, IGF1 
TNF signaling pathway 6.98289E-06 CASP3, FAS, IL-1B, IL-6, PIK3R1, TNF 

Type II diabetes mellitus 2.81374E-06 ADIPOQ, INSR, PIK3R1, SLC2A4, TNF 
Reactome FOXO-mediated transcription 2.09583E-08 CAT, CAV1, NPY, PCK1, PPARGC1A, SIRT1, 

SOD2 
FOXO-mediated transcription of oxidative stress, 

metabolic and neuronal genes 
4.15153E-07 CAT, NPY, PCK1, PPARGC1A, SOD2 

Interleukin 4(IL-4) and interleukin 13(IL-13) 
signaling 

2.25725E-08 BCL2, HMOX1, IL-1B, IL-6, PIK3R1, TGFB1, TNF, 
VEGFA 

Transcriptional regulation of white adipocyte 
differentiation 

6.99501E-11 ADIPOQ, LEP, PCK1, PPARA, PPARG, 
PPARGC1A, SLC2A4, TGFB1, TNF 

VEGFA-VEGF receptor 2(VEGFR2) pathway 9.37356E-06 CAV1, CYBA, NOS3, PIK3R1, VEGFA 
WikiPathw
ays 

Adipogenesis 6.4079E-14 ADIPOQ, FAS, IGF1, IL-6, LEP, PCK1, PPARA, 
PPARG, PPARGC1A, SLC2A4, TGFB1, TNF 

AMPK signaling 8.09075E-07 ADIPOQ, INSR, LEP, LEPR, PIK3R1, SLC2A4 
ALS 1.34735E-06 BAX, BCL2, CASP3, CAT, TNF 

Apoptosis 1.32024E-07 BAX, BCL2, CASP3, FAS, IGF1, PIK3R1, TNF 
Folate metabolism 4.39784E-08 CAT, IL-1B, IL-6, INSR, MPO, SOD2, TNF 

Genes involved in male infertility 1.61695E-08 ABCB1, BCL2, CAT, FAS, INSR, NOS3, NQO1, 
SOD2, TNF 

Hepatitis B infection 2.8804E-07 BAX, BCL2, CASP3, FAS, IL-6, PIK3R1, TGFB1, 
TNF 

Leptin signaling pathway 1.30077E-06 BAX, IL-1B, LEP, LEPR, NOS3, PIK3R1 
NAFLD 1.7843E-14 ADIPOQ, BAX, CASP3, FAS, IL-1B, IL-6, INSR, 

LEP, LEPR, PIK3R1, PPARA, TGFB1, TNF 
Photodynamic therapy-induced activator protein 

1(AP-1) survival signaling 
4.08953E-06 BAX, BCL2, FAS, IL-6, TNF 

T-Cell antigen receptor (TCR)  signaling pathway 2.47953E-05 FAS, IL-1B, IL-6, PIK3R1, TGFB1 
TNF alpha signaling pathway 1.45408E-05 BAX, CASP3, CYBA, IL-6, TNF 

Transcription factor regulation in adipogenesis 3.4134E-14 ADIPOQ, IL-6, INSR, LEP, PPARG, PPARGC1A, 
SLC2A4, TNF 

Vitamin B12 metabolism 2.19331E-07 IL-1B, IL-6, INSR, MPO, SOD2, TNF 
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Figure 1. PPI network for AD. This network includes 14 hub-bottlenecks (highlighted with green color) 7 of which are common 
with the identified hub-bottlenecks of diabetes, indicated with triangle.  

 
Figure 2. PPI network for diabetes. This network includes 12 hub-bottlenecks (highlighted with red color) 7 of which are 
common with the identified hub-bottlenecks of diabetes, indicated with triangle.  
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IGF1 can influence Aβ clearance from the brain by 

promoting Aβ transport over the blood-brain barrier, 

unbalanced β-amyloid, occurring in diabetes is 

associated with neurite degeneration and neuronal loss 

(30), highlighting the correlation between AD and 

diabetes. The other important pathways are TNF and 

CASP3; both causing cell death. TNF expression is 

increased in acute and chronic systemic inflammation 

and there is a direct relation between TNF and CASP3; 

on the other hand, an increase in TNF expression 

causes an increase in CASP3 expression (31). An 

increase in TNF expression causes subsequent 

cognitive decline and long-term cognitive impairment 

(32) also causes insulin resistance and diabetes (33). As 

a key regulator of energy balance, leptin, the other 

important enriched pathway has been reported to be a 

helpful gene in AD and diabetes. Pathways activated by 

leptin in the brain have neuroprotective roles (34) also, 

leptin may be a potentially useful adjunct to insulin 

treatment in management of diabetes (35). IL-6 

regulates acute-phase responses of cytokines and 

lymphocyte stimulatory factors. IL-6 has been reported 

to have two differential roles in modulating insulin 

sensitivity, an enhancer and an inhibitor of insulin 

action (36). Increased level of IL-6 is a sign of 

pathological events including neuroinflammation and 

neurodegeneration (37). In conclusion, inhibition of IL-

6 causes a rationale strategy for targeting onset or 

further progression of AD (38). Vascular endothelial 

growth factors (VEGF) are a subfamily of growth 

factors also enriched in this research and acting as 

signaling proteins for vasculogenesis and angiogenesis 

(39). The recent studies have proved that in diabetes, 

angiogenesis is decreased by inhibition of VEGF 

through corticosteroids, so the use of anti-VEGF agents 

is proposed for management of diabetes complications 

(40). Vascular and AD pathologies are related and the 

patients with AD carry more functional promoter genes 

for VEGF, resulting in the elevated levels of VEGF 

(41). Considering these studies, VEGF have major role 

in AD as well as diabetes. All these mentioned 

common genes have a huge effect on both AD and 

diabetes and small changes in them can influence 

situation of the patients. 

The results of pathway enrichment analysis on common 

genes between AD and diabetes showed a strong 

correlation between AD, diabetes, and NAFLD (Fig.2). 

A close association between AD and NAFLD and 

diabetes and NAFLD has been proven in the recent 

studies (42, 43). It is well known that liver has 

fundamental importance in regulation of metabolism 

and insulin sensitivity, as well as diabetes (44, 45). 

Liver dysfunction causes diabetes, on the other hand, 

there is a direct correlation between diabetes and 

NAFLD, and as a result, NAFLD is an important risk 

factor for diabetes (46). Recently, studies have 

suggested that diabetes could be related to an increased 

risk for AD (47, 48) still, there is no clear evidence 

about causative relationship between diabetes and 

cognitive decline in the patients with AD. (11). Thus, it 

can be proposed that NAFLD is a key connector 

disease between AD and diabetes.  

 
Figure 3. Pathways enriched by the common genes between AD and diabetes. AD and diabetes have the highest effect on 
NAFLD. It can be concluded that NAFLD is a key connector disease between these two diseases. 
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The other important pathway is related to the genes 

involved in male infertility by involvement of 8 

common genes between them. Since, glucose 

metabolism is important for supplying basic cell 

activity, as well as specific functions, such as motility 

and fertilization ability in mature sperm, it is also 

considered as an important event in spermatogenesis 

(49, 50). Based on the recent evidence, diabetes has a 

destructive effect on male fertility through influencing 

sperm motility, sperms̓ DNA integrity, and ingredients 

of seminal plasma (51, 52). The correlation between 

AD and male fertility has been proved by the effect of 

amyloid precursor protein in both diseases, although 

function of this protein in male fertility is a novel 

subject and needs more investigations (53). NAFLD is 

strongly associated with severity of germinal epithelial 

damage. Additionally, the testis has been identified as a 

probable target organ for damage caused by NAFLD, 

suggesting that NAFLD can influence fertility in males 

through damaging testis (54). According to the 

previous studies, there is a correlation between AD, 

NAFLD, and diabetes; also in this study, these diseases 

were enriched with high possibility. 

Altogether, in this research, firstly, a direct correlation 

was found between AD and diabetes. Following further 

analysis, connecting function of NAFLD on these two 

diseases was revealed, which based on the current 

epidemiologic studies, there was a causative relation 

between these diseases. Also, the enrichments exhibited 

the genes involved in male infertility, suggesting the 

existence of common pathways between AD, diabetes, 

NAFLD, and male infertility. Clearly, more extensive 

experimental and clinical studies are needed, in order to 

clarify molecular correlations between these diseases 
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