
����������
�������

Citation: Kim, J. Locating an

Underwater Target Using Angle-Only

Measurements of Heterogeneous

Sonobuoys Sensors with Low

Accuracy. Sensors 2022, 22, 3914.

https://doi.org/10.3390/s22103914

Academic Editors: Jacopo Aguzzi

and Enrico Meli

Received: 19 April 2022

Accepted: 20 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Locating an Underwater Target Using Angle-Only
Measurements of Heterogeneous Sonobuoys Sensors with
Low Accuracy
Jonghoek Kim

Electronic and Electrical Department, Sungkyunkwan University, Suwon 16419, Korea; jonghoek@skku.edu

Abstract: This paper considers locating an underwater target, where many sonobuoys are positioned
to measure the bearing of the target’s sound. A sonobuoy has very low bearing accuracy, such as
10 degrees. In practice, we can use multiple heterogeneous sonobuoys, such that the variance of
a sensor noise may be different from that of another sensor. In addition, the maximum sensing
range of a sensor may be different from that of another sensor. The true target must exist within
the sensing range of a sensor if the sensor detects the bearing of the target. In order to estimate the
target position based on bearings-only measurements with low accuracy, this paper introduces a
novel target localization approach based on multiple Virtual Measurement Sets (VMS). Here, each
VMS is derived considering the bearing measurement noise of each sonar sensor. As far as we know,
this paper is novel in locating a target’s 2D position based on heterogeneous sonobuoy sensors with
low accuracy, considering the maximum sensing range of a sensor. The superiority (considering both
time efficiency and location accuracy) of the proposed localization is verified by comparing it with
other state-of-the-art localization methods using computer simulations.

Keywords: underwater target localization; bearing-only measurements; heterogeneous sensors; sonar
sensing constraints; sonobuoys; bearing sensor

1. Introduction

In underwater environments, electromagnetic signal is easily dissipated; thus, sound
is mainly used for underwater target localization. As a fundamental function for sonar
systems, underwater target localization has gained significant attention [1–6]. Target
localization by measuring the bearing of target’s sound is an important issue in passive
target tracking.

This paper handles localizing a non-cooperative target, such that many sonobuoys
are located to measure the bearing of the target’s sound. In other words, we consider
the case where multiple sonobuoys are located to measure the bearing of an underwater
target’s sound. We consider a Directional Frequency Analysis and Recording (DIFAR)
sonobuoy, which consists of an omni-directional hydrophone and two dipole sensors
oriented orthogonally [7]. The directional information provided by the dipoles makes it
possible to estimate the bearing to an underwater acoustic source [7]. A sonobuoy has
very low bearing accuracy, such as 10 degrees [8,9]. The details of a sonobuoy system is
addressed in [8,10].

The detection of the target’s sound is associated to the estimation of the target’s
bearing using multiple hydrophones. How to estimate the bearing of the target sound
using multiple hydrophones is discussed in [7,10–13]. However, this bearing estimation
(target detection phase) is not within the scope of our paper.

Each sonobuoy can measure the bearing (azimuth) of the target sound. However,
a sonobuoy cannot measure the elevation angle of the target sound. Thus, the depth of a
target cannot be estimated using sonobuoy measurements. This implies that 3D position of
the target cannot be estimated using sonobuoy measurements only.
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We assume that by processing the target sound, each sonobuoy can measure the
bearing of the target sound in real time. The bearing measurements of each sonobuoy are
transmitted to a base station, where the target’s 2D location, except for the target’s depth, is
calculated in real time. By processing the bearing measurements of every sonobuoy, the
base station estimates the underwater target’s 2D position, except for the target’s depth, in
real time. This paper handles how to estimate the target’s 2D position using the bearing
measurements of multiple sonobuoys.

In practice, we can use multiple heterogeneous bearing sensors. Thus, the variance
of a sensor noise may be different from that of another sensor. In addition, the maximum
sensing range of a sensor may be different from that of another sensor. For instance,
the performance of a cylindrical array sonar may be different from that of another sonar,
depending on the geometry of array segments [14].

In the considered bearings-only tracking problem, a sonar sensor measures the bearing
of the target, but not the elevation of the target. Bearings-only measurements have been
widely used for target localization [15–18]. Bearings-only measurements can be further
utilized for tracking a moving target [19–23]. Multiple turn models, such as the Interacting
Multiple Model (IMM), were utilized to track a maneuvering target based on bearings-only
measurements [19,24].

Bearing measurements can be utilized for tracking a moving target [17,25], such
as a target with a constant velocity [26]. The Range-Parameterized Extended Kalman
Filter (RPEKF) [16,27] is a Gaussian-sum filter with multiple EKFs, each initialized at an
estimated target range. In this way, we can reduce the initial range estimation error. The
target position estimate is then calculated by merging all EKF outputs. The RPEKF assumes
that the maximum sensing range of the observer is known in advance. Inspired by the
RPEKF, we also assume that the maximum sensing range of a sonobuoy is known in
advance. The RPEKF considers tracking a target using measurements of a single bearing
sensor. In our paper, we handle the case where multiple bearing sensors are used for
locating a target.

Considering bearings-only tracking using a single bearing sensor, Ref. [28] addressed
the observability analysis. The authors of [28] showed that sensor maneuver is required to
get the observability on the target state. In our paper, we utilize multiple bearing sensors to
locate a target. Thus, sensor maneuver is not required to observe the target state.

The authors of [29] presented a formation control of multiple bearing sensors for
tracking a target based on bearings-only measurements. The authors of [29] assumed that
each bearing sensor can measure the noisy target bearing in real time. Ref. [29] showed that
uniform angular distribution centered at the target is the optimal formation configuration.
However, in practice, the target position is not known a priori. Thus, the bearing sensors
cannot form uniform angular distribution centered at the target. Optimal configuration of
bearing sensors is not within the scope of our paper.

Consider the case where multiple bearing sensors are used to localize a target. Least
Square (LS) estimation with a closed-form solution, was designed in [30–32] for target
localization using bearings-only measurements. The bearings-only LS suffers from severe
bias problems. In [33], an improved LS with bias compensation strategy was developed for
bearings-only passive target tracking. Moreover, Ref. [33] assumed that the bearing noise is
sufficiently small, such that the first order Taylor series on the bearing noise can be applied.
Our paper considers the case where bearing accuracy of sonobuoy sensor is very low; thus,
the first order Taylor series on the bearing noise cannot be applied.

The LS was extended to the Weighted Least Square (WLS) estimation in [34]. In the
WLS, measurement noise variance was used to enhance the estimation result, assuming
that the bearing measurement noises are sufficiently small. The authors of [31,35] extended
the LS to the Total Least Square (TLS) estimation algorithm. The TLS was developed based
on orthogonal vectors with the advantage of simplicity and reduced bias in the presence
of bearing noise and observer position errors. Refs. [31,35] argued that the TLS has better
performance than the LS. However, LS [30–32], WLS [34], and TLS [31,35] did not consider
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the maximum sensing range of a sonar sensor. Using MATLAB simulations, we verify
the outperformance (considering both location accuracy and computational load) of the
proposed localization method by comparing it with LS, WLS, and TLS localization methods.

Several papers [36,37] addressed bearings-only localization using multiple passive
sensors, which requires an initial guess for target position. Reference [36] introduced
the Gauss Newton (GN) algorithm applied to bearings-only target estimation. The GN
method is an iterative method to derive the target estimation. The convergence of the GN
estimator is sensitive to the initial guess and the step size [38]. Assuming that bearing
measurements and inter sensor bearing measurements are available, Ref. [37] addressed a
subspace algorithm which requires an initial guess for target position. In our paper, we
do not compare the proposed localization approach with [36,37], since [36,37] require an
initial guess for target location. Note that the localization approach proposed in our paper
can be used as an initial guess required in [36,37].

We consider a scenario where only a few sonobuoy sensors exist and each sensor has
very low bearing accuracy, such as 10 degrees [8]. In order to cope with poor accuracy
of sonobuoy sensors, this paper introduces a novel target localization approach based
on multiple Virtual Measurement Sets (VMS). Here, each VMS is derived considering
the bearing measurement noise of each sonar sensor. Among all feasible target estimates
derived from each VMS, we select an estimate which has the minimum residual (the
difference between the actual and predicted measurements), such that the estimate satisfies
the sonar sensing range constraints. The selected estimation is then utilized as the final
target estimation.

Inspired by the RPEKF, we assume that the maximum sensing range (e.g., 15 km
which appeared in [9]) of a sonobuoy is known in advance. As far as we know, our
paper is novel in localization of a target using heterogeneous sonobuoy sensors with low
accuracy, considering the sensing range constraints of a sonar sensor. Our paper is distinct
from LS [30–32], WLS [34], and TLS [31,35], since our location approach considers the
maximum sensing range of a sonar sensor. Using MATLAB simulations, we demonstrate
the superiority (considering both time efficiency and location accuracy) of the proposed
localization, by comparing it with LS, WLS, and TLS localization methods.

This paper is organized as follows. Section 2 presents the bearings-only target localiza-
tion. Using MATLAB simulations in Section 3, we verify the performance of the proposed
estimation method based on VMS. Section 4 provides the conclusions.

2. Bearings-Only Target Localization

Suppose that there are K heterogeneous sonobuoy sensors which measure the bearing
of the target. We assume that by processing the target’s sound, each sonobuoy can measure
the bearing of the target’s sound in real time. How to calculate the target’s bearing using a
sonobuoy is discussed in [7,10–13].

The bearing measurements of each sonobuoy are transmitted to a base station, where
the target’s 2D location is calculated in real time. By processing the bearing measurements
of every sonobuoy, the base station estimates the underwater target’s 2D position in real
time. This paper handles how to estimate the target’s 2D position using the bearing
measurements of multiple sonobuoys.

Let E = (xt, yt)T denote the true target position. Let Ê denote the estimated target
position. Let (xk, yk)

T denote the k-th sonobuoy sensor position (k ∈ {1, 2, . . . , K}). We
assume that each sonobuoy sensor is localized using Global Positioning Systems (GPS). Let
φk present the bearing angle of the target with respect to the k-th sonar sensor.

φk = φtrue + nk. (1)

Here, φtrue = atan2(yt − yk, xt − xk) represents the true bearing associated to true
relative position. In (1), atan2(y, x) is used to represent the phase (angle) of a complex
number x + iy. nk in (1) has Gaussian distribution with zero mean and variance σ2

k . Here,
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σk 6= σk′ (k 6= k′) is feasible, since we handle heterogeneous sensors. We assume that σk is
known a-priori using experiments with the k-th sensor.

The empirical rule states that 99.7 percents of data observed following a normal
distribution exists within 3 standard deviations of the mean. Thus, nk in (1) is within the
following interval:

I(σk) = [−3× σk, 3× σk] (2)

with 99.7 percents probability. In (1), ‖nk‖ can be considered as Unknown-But-Upperbounded
(UBU) by 3× σk.

Many papers on bearing-only localization [33,39,40] assumed that the bearing noise is
sufficiently small, such that the first order Taylor series on the bearing noise can be applied.
This implies that [33,39,40] used

cos(φk) = cos(φtrue + nk) ≈ cos(φtrue)− nk × sin(φtrue),
sin(φk) = sin(φtrue + nk) ≈ sin(φtrue) + nk × cos(φtrue), (3)

where φtrue = atan2(yt − yk, xt − xk) in (1). Our article considers the case where bearing
accuracy is very low; thus, the first order Taylor series on the bearing noise cannot be
applied. Therefore, (nk)

2 cannot be ignored, as in (3).
Let rk denote the maximum sensing range of the k-th sensor. Here, rk 6= rk′ (k 6= k′)

is feasible, since we consider heterogeneous sensors. Inspired by the RPEKF [16,27], we
assume that rk is known in advance. Distinct from the RPEKF, we consider the case where
there are more than one sensor.

In MATLAB simulations, the maximum sensing range rk is set as 15 km for all
k ∈ {1, 2, . . . , K}. This sensing range information appeared in [9].

2.1. Least Square (LS), Weighted Least Square (WLS), and Total Least Square (TLS) Methods

Ignoring the noise term in (1), we have

cos(φk)yt − cos(φk)yk = sin(φk)xt − sin(φk)xk. (4)

(4) leads to

V = B× E, (5)

where

V =


−y0 × cos(φ0) + x0 × sin(φ0)
−y1 × cos(φ1) + x1 × sin(φ1)

...
−yK × cos(φK) + xK × sin(φK)

, and (6)

B =


sin(φ0), − cos(φ0)
sin(φ1), − cos(φ1)

...
...

sin(φK), − cos(φK)

. (7)

We calculate the Least Square (LS) solution [31,32] as

ÊLS = (BTB)−1BTV. (8)
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The LS was extended to the Weighted Least Square (WLS) estimation in [34]. In the WLS,
measurement noise variance was used to enhance the estimation result, assuming that the
bearing measurement noises are sufficiently small. We calculate the WLS solution [34] as

ÊWLS = (BTWB)−1BTWV (9)

where the weight matrix is

W = B1ΣBT
1 . (10)

Here, Σ is a diagonal matrix whose diagonal terms are given by [σ2
1 , σ2

2 , . . . , σ2
K] in this

order. In addition, B1 is a diagonal matrix whose diagonal terms are given by [d1, d2, . . . , dK]
in this order. Here, dk is

dk =
√
(xt − xk)2 + (yt − yk)2. (11)

Since dk is not available in practice, we use ÊLS for estimation of [xt, yt].
The TLS in [31,35] is an extension of (8). The TLS is given as

ÊTLS = (BTB− σ2
s I)−1BTV. (12)

Here, σs is the smallest singular value of matrix [B, V]. Refs. [31,35] showed that the
TLS has better performance than the LS. From a numerical analyst’s point of view, (12)
indicates that the TLS solution is more ill-conditioned than the LS solution, since it has a
higher condition number [31]. The implication is that errors in the data are more likely
to affect the TLS solution than the LS solution. This is particularly true for the worst
case perturbations [31]. However, from a statistician’s point of view, (12) implies that the
TLS method asymptotically removes the bias by subtracting the error covariance matrix
(estimated by σ2

s I) from the data covariance matrix BTB [31].

2.2. Bearings-Only Target Localization by Simulating Multiple VMSs
VMS-Based Localization Method

In order to improve the location accuracy compared to the LS-based solutions (Section 2.1),
we develop a novel localization approach of using Virtual Measurement Sets (VMS). Suppose
that we use Q VMSs in total. Each VMS has K virtual measurements in total. The q-th
VMS (q ∈ {1, . . . , Q}) has K virtual measurements, say (φ

q
1, φ

q
2, . . . , φ

q
K). Here, the k-th

virtual measurement in the q-th VMS is generated by adding a random value in the interval
I(σk) (2) to the bearing measurement of the k-th sensor (∀k ≤ K). Recall we assume that σk
is known a-priori using experiments with the k-th sensor (k ∈ {1, 2, . . . , K}).

In the q-th VMS, φ
q
k (k-th virtual measurement) is used to derive the true bearing

φtrue = atan2(yt − yk, xt − xk) , which is φk − nk in (1). By processing the virtual measure-
ments associated to the q-th VMS (q ∈ {1, . . . , Q}), we generate a feasible target estimate,
say Ẑq.

Among all feasible target estimates Ẑq (q ∈ {1, . . . , Q}), we select an estimate which
has the minimum residual (the difference between the actual and predicted measurements),
such that the estimate satisfies the sonar sensing constraints. The selected estimation, say
Ẑq∗ , is used as the final target estimation.

We present the VMS approach in detail. Each VMS has K virtual measurements in
total. Let

(φ
q
1, φ

q
2, . . . , φ

q
K) (13)

denote the virtual measurements of the q-th VMS (q ∈ {1, . . . , Q}). Using (1), we generate
the virtual measurements of the q-th VMS (q ∈ {1, . . . , Q}) as follows. In the case where q
is one, we use
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φ1
k = φk (14)

for all k ∈ {1, 2, . . . , K}.
Note that the 1-st VMS uses φk, true bearing measurement, for target estimation. In

the case where q is not one (i.e., q ∈ {2, 3, . . . , Q}), we use

φ
q
k = φk + gq

k (15)

for all k ∈ {1, 2, . . . , K}. Here, gq
k is a virtual noise, generated as a random value in the

interval I(σk) in (2). (15) implies that φ
q
k is generated by adding a random value in the

interval I(σk) to the bearing measurement of the k-th sensor (∀k ∈ {1, 2, . . . , K}).
Using (1), (15) leads to

φ
q
k = φtrue + nk + gq

k . (16)

Here, φtrue = atan2(yt − yk, xt − xk) is the true bearing associated to true relative
position.

As Q increases, it is more probable that we have a VMS φ
q
k (q ∈ {2, 3, . . . , Q}) satisfying

‖nk + gq
k‖ ≤ ‖nk‖ (17)

for all k ∈ {1, 2, . . . , K}. (17) implies that by adding a virtual noise gq
k , we can have a VMS

φ
q
k , which is disturbed with smaller noise compared to true noise nk.

By applying the LS solution (8) to the virtual measurements (13) of the q-th VMS
(q ∈ {1, . . . , Q}), we generate a feasible target estimate, say Ẑq. Using (14), Ẑ1 is the LS
solution (8) associated to true bearing measurements.

Among all feasible target estimates Ẑq (q ∈ {1, . . . , Q}), we select an estimate which
has the minimum residual, such that the estimate satisfies the sonar sensing constraints.
The selected estimation, say Ẑq∗ , is used as the final target estimation.

Let Ẑq[n] denote the n-th element in Ẑq. The bearing angle associate to Ẑq is

φ̂
q
k = atan2(Ẑq[2]− yk, Ẑq1− xk). (18)

Recall that φk is the true bearing measurement of the k-th sensor. We define the angle
deviation εk as

εk = atan2(sin(φ̂q
k − φk), cos(φ̂q

k − φk)). (19)

Here, atan2(α, β) returns the phase angle of a complex number α + jβ. εk exists
between −π and π. In the case where φ̂

q
k − φk exists between −π and π, εk is identical to

φ̂
q
k − φk. Using (19), εk = 0 when φ̂

q
k = φk.

Using εk in (19), the residual associated to the q-th (q ∈ {1, 2, . . . , Q}) VMS is set as

Resq =
K

∑
k=1

(
ε2

k
σ2

k
+ ηk). (20)

Here, σk is used for normalizing the angle deviation term εk. In addition, ηk is set as a
constant P > 0 in the case where

‖Ẑq − (xk, yk)‖ > rk, (21)

or the straight line segment connecting Ẑq and (xk, yk) crosses an obstacle. Here, we use
the fact that underwater sound cannot penetrate an obstacle, such as coastline. This fact
can be considered as the obstacle constraint.
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In (20), we set ηk = 0 if

‖Ẑq − (xk, yk)‖ ≤ rk (22)

and the straight line segment connecting Ẑq and (xk, yk) does not cross an obstacle. ηk = 0
implies that Ẑq satisfies the range constraint as well as the obstacle constraint.

In (20), P > 0 is a tuning parameter, presenting the penalty for sonar sensing con-
straints. In the case where Ẑq does not satisfy the constraints, ηk in (20) is set as P > 0.

We define q∗ as

q∗ = argminqResq. (23)

Since Ẑq∗ provides the minimum residual among all Resq (q ∈ {1, 2, . . . , Q}), Ẑq∗ is
utilized as the target estimate.

However, there is an exception case. If Ẑq∗ does not satisfy

‖((xk, yk)− Ẑq∗)‖ ≤ rk (24)

for any k ∈ {1, 2, . . . , K}, then Ẑq∗ is not a viable solution. Thus, Ẑ1 is utilized as the
final target estimate. Recall that Ẑ1 is the LS-based solution associated to true bearing
measurements. If Ẑq∗ satisfies (24) for every k ∈ {1, 2, . . . , K}, then Ẑq∗ is utilized as the
final target estimate.

We next analyze the computational complexity of the VMS method. Since one derives
Ẑq for all q ∈ {1, 2, . . . , Q}, the VMS method has complexity O(Q).

3. MATLAB Simulations

Using MATLAB simulations, we demonstrate the superiority of the VMS-based local-
ization method in Section 2.2. We consider the marine scenario where multiple sonobuoys
are located to measure the bearing of an underwater target’s sound. All sonobuoys are
deployed to measure the bearing of the target sound in real time. By processing the bearing
measurements of each sonobuoy, our goal is to estimate the target’s 2D position.

We compare among the following methods:

1. TLS method (12).
2. LS method (8).
3. WLS method (9).
4. VMS-LS method (VMS using LS solution (8)).

For generating a virtual noise in (15), we use 3 = 3. We use the penalty constant as
P = 103 in (20). The maximum sensing range rk is 15 km for all k ∈ {1, 2, . . . , K}. This
sensing range information appeared in [9].

The performance of a cylindrical array sonar may be different from that of another
sonar, depending on the geometry of array segments [14]. Recall that (xk, yk)

T denotes the
k-th sonar sensor position (k ∈ {1, 2, . . . , K}). We consider heterogeneous sonobuoy sensors
as follows. In the case where k mod 2 is zero, the bearing noise is set as σk = 5 degrees. In
the case where k mod 2 is not zero, the bearing noise is set as σk = 10 degrees. This noise
statistic is typical for sonobuoy systems [8].

We use 1000 Monte Carlo (MC) simulations of the scenario. The error in the target
estimation at the i-th MC simulation is

erri = ‖Ẑi − E‖. (25)

Here, Ẑi is the target estimation at the i-th MC simulation. In addition, E is the true
position of the target. Since E is not accessible by sonar sensors, erri is not accessible
in practice.
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Let M(err) (in meters) denote the mean of erri for all i ∈ {1, 2, . . . , 1000}. In other
words, we use

M(err) =
1

1000

1000

∑
i=1

erri. (26)

Let RunTime (in seconds) represent the computation time of running MATLAB for
each method in one MC simulation. Large RunTime implies that the computational burden
of the associated method is large.

3.1. Scenario 1

One MC simulation of Scenario 1 is depicted in Figure 1. At each MC simulation, we
randomly deploy 5 sonobuoy sensors inside the circle with radius 2000 m, whose center is
at the origin. This random deployment simulates the case where sonobuoys are deployed
by airplanes.

Recall that (xk, yk)
T denotes the k-th sonar sensor position (k ∈ {1, 2, . . . , K}). For

random sensor deployment, we use the following equation.

xk = R× cos(A)
yk = R× sin(A) (27)

Here, R is a random number selected in the interval [0, 2000]. In addition, A is a
random number selected in the interval [0, 2× π].

In Figure 1, each sensor with bearing noise σk = 5 degrees is marked with a blue
asterisk. Furthermore, each sensor with bearing noise σk = 10 degrees is marked with a
green asterisk. In addition, the true target located at (−100, 500) is depicted as a black circle.
See that sensors are deployed close to the target, since sensors are deployed inside the circle
with radius 2000 m, whose center is at the origin.

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

x(m)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

y
(m

)

sensorH1

sensorH2

target

Figure 1. One MC simulation of Scenario 1. At each MC simulation, we randomly deploy 5 sonobuoy
sensors inside the circle with radius 2000 m, whose center is at the origin. Each sensor with bearing
noise σk = 5 degrees is marked with a blue asterisk. Every sensor with bearing noise σk = 10 degrees
is marked with a green asterisk. In addition, the true target at (−100, 500) is depicted as a black circle.

Considering Scenario 1, Figure 2 presents the simulation results of various algorithms,
mentioned at the beginning of Section 3. This figure shows the variation of M(err) with
respect to Q. TLS and WLS are plotted at Q = 1. In Figure 2, VMS− LS[Q] implies that Q
VMSs are used in the VMS− LS method. Note that using (14), LS solution in (8) is identical
to VMS− LS[1].
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Figure 2. Scenario 1. The variation of M(err) with respect to Q. TLS and WLS are plotted at Q = 1.
The algorithm with the lowest M(err) is VMS − LS[26]. This demonstrates the effectiveness of
utilizing VMS− LS proposed in our article.

Figure 2 shows that increasing Q improves the estimation accuracy of VMS − LS
algorithm. The algorithm with the lowest M(err) is VMS − LS[26]. This verifies the
performance of using VMS− LS proposed in our paper. Figure 3 shows that as Q increases,
computational burden increases in general.

0 5 10 15 20 25 30

Q

1.5

2
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3.5
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4.5

R
u

n
T

im
e

(s
)

10
-3

VMS-LS[Q]

WLS

TLS

Figure 3. Scenario 1. The variation of RunTime with respect to Q. As Q increases, computational
burden increases in general.

3.2. Scenario 2

One MC simulation of Scenario 2 is depicted in Figure 4. In this scenario, the target
exists far from the sensors. At each MC simulation, we randomly deploy 5 sonobuoy
sensors inside the circle with radius 2000 m, whose center is at the origin. For random
sensor deployment, we use (27). Each sensor with bearing noise σk = 5 degrees is marked
with a blue asterisk. Furthermore, each sensor with bearing noise σk = 10 degrees is marked
with a green asterisk. In addition, the true target position is depicted as a black circle.
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Figure 4. One MC simulation of Scenario 2. At each MC simulation, we randomly deploy 5 sonobuoy
sensors inside the circle with radius 2000 m, whose center is at the origin. Each sensor with bearing
noise σk = 5 degrees is marked with a blue asterisk. Moreover, each sensor with bearing noise
σk = 10 degrees is marked with a green asterisk. In addition, the true target position is depicted as a
black circle.

Considering Scenario 2, Figure 5 presents the simulation results of various algorithms,
mentioned at the beginning of Section 3. This figure shows the variation of M(err) with
respect to Q. TLS and WLS are plotted at Q = 1. Note that using (14), LS solution in (8)
is identical to VMS− LS[1]. The estimation error of VMS− LS increased, compared to
Figure 2. This shows that as the distance between the sensors and the target increases, the
estimation error increases.
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Figure 5. Scenario 2. The variation of M(err) with respect to Q. TLS and WLS are plotted at Q = 1.
Increasing Q improves the estimation accuracy of VMS− LS. The algorithm with the lowest M(err) is
VMS− LS[26]. This demonstrates the effectiveness of VMS− LS. The estimation error of VMS− LS
increased, compared to Figure 2. This shows that as the distance between the sensors and the target
increases, the estimation error increases.

Figure 5 shows that increasing Q enhances the estimation accuracy of VMS − LS.
The algorithm with the lowest M(err) is VMS − LS[26]. This verifies the performance
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of VMS− LS proposed in this paper. Figure 6 shows that as Q increases, computational
burden increases in general.
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Figure 6. Scenario 2. The variation of RunTime with respect to Q. As Q increases, computational
burden increases in general.

3.3. Scenario 3

One MC simulation of Scenario 3 is depicted in Figure 7. In this scenario, we deploy
many sonobuoy sensors. At each MC simulation, we randomly deploy 10 sonobuoy sensors
inside the circle with radius 2000 m, whose center is at the origin. For sensor deployment,
we use (27). Each sensor with bearing noise σk = 5 degrees is marked with a blue asterisk.
Furthermore, each sensor with bearing noise σk = 15 degrees is marked with a green
asterisk. Moreover, the true target position is depicted as a black circle.
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Figure 7. One MC simulation of Scenario 3. At each MC simulation, we randomly deploy 10 sonobuoy
sensors inside the circle with radius 2000 m, whose center is at the origin. Each sensor with bearing
noise σk = 5 degrees is marked with a blue asterisk. Furthermore, each sensor with bearing noise
σk = 15 degrees is marked with a green asterisk. In addition, the true target position is depicted as a
black circle.
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Considering Scenario 3, Figure 8 presents the simulation results of various algorithms,
stated at the beginning of Section 3. This figure indicates the variation of M(err) with
respect to Q. The estimation error of VMS− LS decreased, compared to Figure 5. This
shows that as the number of sensors increases, the estimation error decreases.
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Figure 8. Scenario 3. The variation of M(err) with respect to Q. Increasing Q improves the estimation
accuracy of VMS− LS. The algorithm with the lowest M(err) is VMS− LS[26]. This demonstrates
the effectiveness of VMS− LS. The estimation error of VMS− LS decreased, compared to Figure 5.
This shows that as the number of sensors increases, the estimation error decreases.

Figure 8 indicates that increasing Q improves the estimation accuracy of VMS− LS.
The algorithm with the lowest M(err) is VMS− LS[26]. This verifies the performance of
using VMS− LS proposed in our paper. Figure 9 shows that as Q increases, computational
burden increases in general.
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Figure 9. Scenario 3. The variation of RunTime with respect to Q. As Q increases, computational
burden increases in general.

3.4. Scenario 4

One MC simulation of Scenario 4 is depicted in Figure 10. At each MC simulation,
we randomly deploy 10 sensors inside the circle with radius 2000 m, whose center is at
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the origin. For sensor deployment, we use (27). Each sensor with bearing noise σk = 3
degrees is marked with a blue asterisk. Each sensor with bearing noise σk = 9 degrees is
marked with a blue asterisk. See that we use sensors with small bearing noise, compared to
Scenario 3. Moreover, the true target position is depicted as a black circle.
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Figure 10. One MC simulation of Scenario 4. At each MC simulation, we randomly deploy 10 sensors
inside the circle with radius 2000 m, whose center is at the origin. Each sensor with bearing noise
σk = 3 degrees is marked with a blue asterisk. Each sensor with bearing noise σk = 9 degrees is
marked with a blue asterisk. In addition, the true target position is depicted as a black circle.

Figure 11 presents the simulation results of various algorithms, stated at the beginning
of Section 3. This figure indicates the variation of M(err) with respect to Q. The estimation
error of VMS− LS decreased, compared to Figure 8. This shows that as we use sensors
with small bearing noise, the estimation error decreases.
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Figure 11. Scenario 4. The variation of M(err) with respect to Q. The estimation error of VMS− LS
decreased, compared to Figure 8. This shows that as we use sensors with small bearing noise, the
estimation error decreases.

Figure 11 indicates that increasing Q improves the estimation accuracy of VMS− LS.
The algorithm with the lowest M(err) is VMS− LS[26]. This verifies the performance of
using VMS− LS in our paper. Figure 12 shows that as Q increases, computational burden
increases in general.
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Figure 12. Scenario 4. The variation of RunTime with respect to Q. As Q increases, computational
burden increases in general.

4. Conclusions

This paper addresses localization of an underwater target based on bearings-only
measurements of heterogeneous sonobuoys. Sonobuoys have very low bearing accuracy,
such as 10 degrees [8]. We tackle bearings-only localization using heterogeneous sonobuoy
sensors, considering the sensing constraints of a sonar sensor. Using MATLAB simula-
tions, we demonstrate the outperformance (considering both location accuracy and time
efficiency) of the proposed VMS− LS, by comparing it with other localization methods.

Using MATLAB simulations, VMS− LS[Q] with large Q shows the best performance
among all algorithms, considering both time efficiency and localization accuracy. Increasing
Q in VMS− LS enhances the localization accuracy, while increasing the computational
load. In the future, we will do experiments using real sonar sensors, in order to verify the
performance of the proposed localization more rigorously.

The authors of [36] presented the Gauss Newton (GN) algorithm applied to bearings-
only target estimation. The GN method is an iterative method to derive the target estimation.
The convergence of the GN estimator is sensitive to the initial guess and the step size [38].
To further decrease the localization error, we can run the GN method which is initialized
with the VMS-based solution. In the case where the distance between a sensor and the
target estimation from the GN method is bigger than the maximum sensing range, we can
get out of the iteration of the GN method. In this way, we avoid a target solution which is
too far from a sensor.

This paper addresses a VMS localization method, considers 2D bearings-only local-
ization. In the future, the proposed VMS approach will be applied in various localization
schemes, such as 3D angle-of-arrival localization [41], time-of-arrival localization [42–44],
time-difference-of-arrival localization [45–48], or doppler-bearings localization [49,50].
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