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Abstract

We present a method for mesoscopic, dynamic Monte Carlo simulations of pattern formation in excitable reaction–diffusion
systems. Using a two-level parallelization approach, our simulations cover the whole range of the parameter space, from the
noise-dominated low-particle number regime to the quasi-deterministic high-particle number limit. Three qualitatively
different case studies are performed that stand exemplary for the wide variety of excitable systems. We present mesoscopic
stochastic simulations of the Gray-Scott model, of a simplified model for intracellular Ca2z oscillations and, for the first time,
of the Oregonator model. We achieve simulations with up to 1010 particles. The software and the model files are freely
available and researchers can use the models to reproduce our results or adapt and refine them for further exploration.
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Introduction

Excitability is a common trait found in numerous complex

systems arising in areas as diverse as physical chemistry [1,2],

neuroscience [3], and cell physiology [4,5]. Excitable media are

typically governed by nonlinear dynamics and characteristically

exhibit a rest state, an excited state and a refractory period [6].

Diffusive excitable systems can display a wide variety of intricate

patterns with a high degree of spatial organization, such as target

patterns, spiral waves, and three-dimensional scroll rings [5,6]. In

most applications, the systems in question are subject to a

considerable amount of noise such as experimental (external) noise

or internal fluctuations due to the low numbers of particles

involved. The presence of noise can qualitatively change the

system characteristics and can lead to new and previously

unobserved effects [7,8]. For these reasons, a comprehensive

picture can only be obtained if noise is included in the model and

can be correctly simulated.

Realistic systems are, owing to their complexity, typically not

accessible to an analytic approach and researchers must resort to

computationally expensive stochastic simulations. The limitations

posed by the available resources force users to carry out

simulations in either of the two limiting regimes: the low-noise

approximation, where an essentially deterministic, macroscopic

description is amended by a suitable noise term [7–9], and the

noise-dominated microscopic regime which involves dynamic

Monte-Carlo simulations to track the time evolution of individual

particles on a microscopic level [10–15]. The (internal) noise-

dominated regime occurs when the particle density is low while the

deterministic low-noise approximation corresponds to a high

particle density.

The chief contribution of the research presented here is to

demonstrate how large-scale Monte-Carlo simulations of active

media are now at a point where they can capture emergent

macroscopic behavior which is traditionally modeled using

macroscopic reaction-diffusion equations. Due to the high number

of particles involved, the macroscopic limit was previously

unaccessible to particle-based stochastic algorithms. Recently,

the authors developed new high-performance solvers [16,17] that

allow us to venture into this regime. This is significant for two

reasons. Firstly, emergent effects such as pattern formation

typically only occur when a sufficient amount of individual entities

are present. For example, two of our models, the Gray-Scott

system and the Oregonator model, require a macroscopic number

of particles to exhibit spiral waves. On the other hand, coherent

intracellular Calcium waves can already form at small particle

numbers. Hence, if one is interested in exploring the conditions for

emergent behavior, it is mandatory to use a unified approach that

covers the low and high particle number regime on equal grounds

instead of switching between different approximations. Secondly,

many problems, for example stochastic models of the intracellular

Calcium distribution, involve particle counts on vastly different

scales. The standard approach to simulate these systems is to

couple stochastic models for receptor dynamics with a quasi-

deterministic description of the Calcium ions [5]. In this article, we

will demonstrate how it is now possible to use a unified approach

based on dynamic Monte-Carlo simulations to capture the

dynamics of intracellular Calcium waves.

Pattern Formation under the Influence of Noise
In this subsection, we briefly summarize previous work that is

dedicated to study pattern formation under the influence of noise.

This concise summary will serve to motivate our case studies.

Namely, we present three example systems in this article. First, we

implement the Gray-Scott model [1], which, despite its attractive

simplicity, produces a wealth of distinct patterns [18]. Moreover, it

has been recently modeled using a stochastic approach [12] and it

can hence serve as a test model for our implementation. Second,
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we simulate the Oregonator model for the chemical Belousov-

Zhabotinsky (BZ) reaction [2]. The BZ reaction is easily accessible

in a laboratory setting and provides an important model system to

experimentally study pattern formation in chemical systems.

Finally, we implement a model for intracellular Ca2z waves.

Calcium waves are, without doubt, of immense biological

relevance [5] and it is widely accepted that a stochastic approach

is required to capture the full dynamics [19].

It is now widely recognized that noise plays an important part in

the formation of patterns in excitable media [7]. While an

extensive body of literature is dedicated to the deterministic

properties of active media [5,6,20], the literature concerned with

the influence of noise is extensive and fragmented. We refer the

reader to the comprehensive reviews that exist in that area [7,8].

The greater part of the research focuses on the constructive effect

of externally applied noise and a variety of rather counterintuitive

results emerged in that context. Most notably, random fluctuations

can push a system from sub-excitable into the excitable regime

[21–24] or from excitable to oscillatory [25] or back [26]. Noise

can also induce pattern-formation [27] and complex spiral

dynamics in excitable and sub-excitable media [28–31]. Of

particular biological relevancy is the observation that noise alone

can induce intercellular Calcium waves in diffusively coupled cells

[32,33]. These phenomena are collectively known as (spatiotem-

poral) stochastic coherence and are not restricted to external noise

but can also be observed in models when only internal fluctuations

are considered [13]. Moreover, noise can enable the formation of

new patterns that are unobservable in a purely deterministic

description [34]. For example, novel and previously unobserved

patterns could be found in the Gray-Scott model with internal

noise [9,12,35,36]. Internal noise can extract characteristic

frequencies in the FitzHugh-Nagumo model [13].

Recent research systematically explores the influence of internal

fluctuations on Turing patterns. Stochastic simulations of the

Brusselator model demonstrate that these patterns are generally

robust against internal fluctuations [14]. An analytic treatment of

the chemical master equation in the system-size expansion reveals

that internal stochastic seed fluctuations give rise to spatially

ordered macroscopic Turing patterns [37]. This analysis can be

extended to growing domains and it was shown that stochastic

systems support Turing patterns beyond the deterministic Turing

parameter range [38]. More recently, the effect of time-delayed

reactions on the formation of stochastic Turing patterns was

investigated [39].

The most natural pattern that arises in a two-dimensional

excitable system is the spiral wave since any wavefront with

fragmented ends will eventually curl up [10,40]. The deterministic

theory of spiral waves in systems with an N-shaped nullcline

[5,6,40] or a L-shaped nullcline [41] is well understood. Noise can

support the propagation of spiral waves [28] and externally

applied random perturbations can trigger complex behavior in the

motion of the spiral [31,42]. An interesting question that is

relevant to medical research concerning ventricular fibrillation is

the question of the stability of spiral waves [5] and spiral wave

breakup [7,43–46]. Spiral waves under the influence of noise were

simulated using lattice gas automata [10,47].

Typically, the analysis of pattern formation in excitable systems

is carried out using the Langevin approach, where a deterministic

equation is amended by a rapidly fluctuating random noise term

[7–9]. The target quantity, for example a de-dimensionalized

function for the copy count of a particular species, i.e. the number

of particles contained in an (infinitesimal) subvolume, is assumed

to be continuous over time and can be described by a stochastic

differential equation or the equivalent Fokker-Planck equation.

While this approach is valid in the macroscopic (many particle)

limit, it fails when the number of particles is low. In this case, the

discrete nature of the process must be taken into account and the

chemical reaction is better defined as a discontinuous jump

process, which is described by the chemical master equation

(CME) [48,49]. Unfortunately, directly solving the CME is

computationally expensive [50–54]. Adding spatial effects, i.e.

allowing the particles to perform (possibly biased) random walks

through the domain, aggravates the problem. A mesoscopic

approach compromises between computational speed and accu-

racy in this situation. Instead of computing spatial trajectories for

each particle individually, the computational domain is divided

into subvolumes and only the total number count of each particle

class inside each subvolume is stored. Reactions between particles

are described stochastically by the CME. Diffusion is implemented

as a stochastic transition between neighboring subvolumes and can

be integrated directly into the master equation [49,55–60]. Recent

advancements in computer hardware made it possible to

numerically study the formation and evolution of structures in

this fashion but these simulations are generally restricted to low

particle numbers [10–15].

An alternative method that is particularly well-suited for an

implementation on data-parallel hardware, such as graphics-

processing units (GPUs), is to treat diffusion separately from

chemical reactions with a stochastic-stochastic hybrid algorithm

[16,17,61,62]. Runtime gains of up to two orders of magnitudes

are achievable with this approach [16]. In addition to parallelizing

over the computational domain, one can run multiple experiments

on separate GPU nodes in a cluster and hence introduce a second

level of parallelization. This two-layer technique allows to perform

computation-intensive tasks, such as parameter sweeps. In

particular, it allows a mesoscopic approach to simulate particle

numbers that can normally only be treated in a macroscopic

framework.

The focus of this article is on using the mesoscopic approach

described above to stochastically model the whole spectrum

between the low particle number regime and the deterministic

limit (high number of particles) for spatially extended excitable

systems with a single algorithm. As motivated above, we

concentrate on three example systems, namely the Gray-Scott

model, the Oregonator reaction system and a model for

intracellular Calcium dynamics in the stochastic limit. Notably,

to the best of our knowledge pattern formation in the BZ reaction

has not been treated from first principles in a mesoscopic fashion

before. The research presented here does not seek to shed new

light on the conditions and properties of excitability in these

systems. Rather, the purpose of this article is to demonstrate that

state-of-the-art numerical modeling makes mesoscopic simulations

of complex chemical reaction systems comparably effortless and

easily allows previously unattainable applications such as explo-

ration of the parameter space. We present the first such

simulations of pattern formation in excitable media in the very

high density regime. As a side effect, we show how the particle

density influences the formation of distinct patterns.

Article Structure
The article is structured as follows. In the Methods section, we

briefly describe our implementation of a hybrid stochastic

simulation algorithm. The experiments presented here were made

possible by our large-scale parallelization approach which we

introduce in this section as well. We also briefly touch upon the

deterministic limit of a stochastic description. The results of our

numerical experiments are discussed in the Results section. We

perform experiments for three different excitable systems, namely

Stochastic Simulations of Pattern Formation
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the Gray-Scott model, the Oregonator model and a simplified

model for Calcium oscillations. All three models are described

here. The article finishes with a discussion of the results and an

outlook on further research opportunities.

Methods

Stochastic-stochastic Hybrid Simulation Algorithm
The algorithm underlying our implementation has been

elaborated elsewhere [16,17]. Here, we briefly recap the main

points for the convenience of the reader.

As in any mesoscopic algorithm, we divide the computational

domain into cubic subvolumes with equal side length l. Each

subvolume is assumed to be perfectly stirred such that the particle

concentration of each species is homogeneous inside the subvolume

but can vary between subvolumes. In this discretization, diffusion is

modeled as a jump process between neighboring cells with a jump

probability that depends on the local diffusivity and drift. In the

same manner, chemical reactions are discrete transitions between

states.

Both processes, reaction and diffusion, can be combined in a

coupled chemical and diffusion master equation [49]. Solving this

combined master equation by standard stochastic algorithms is

possible and several popular software packages choose this

approach [55–59]. However, it is clear that a fine granularity of

the computational grid and a large number of particles greatly

increase the frequency of transitions and hence the computational

cost. This inherent difficulty is compounded by the fact that most

standard algorithms cannot be easily parallelized [55,63] and,

consequently, a large part of the portion of the relevant parameter

space is inaccessible to this approach.

A potential remedy to this problem can be found by treating

reactions inside subvolumes separately from diffusion between

subvolumes in a so-called stochastic-stochastic hybrid algorithm

[61,62]. As we will demonstrate in the next section, this technique,

which is also known as operator splitting, is well suited for a data-

parallel implementation [16,17]. One example for the stochastic-

stochastic hybrid algorithm is the Gillespie Multiparticle (GMP)

method [61,64], which employs a common time step over the

whole domain. The global time step allows us to advance all

subvolumes synchronously in time during one simulation step

without the need for asynchronous communication between

subvolumes. The simulation step first performs reactions between

species individually in each cell with the standard Gillespie

algorithm [63]. The particles are then propagated between cells

according to transition probabilities that are chosen to reflect the

local diffusivity and drift field [17,64]. We finish the loop by

computing the new global time step.

Graphics-card Acceleration
In order to maximize both, accessibility to a broad audience and

simulation performance, we implement a parallel version of GMP

on graphics-processing units (GPUs). Most common workstations

have built-in GPUs. In addition, designated high-end GPU arrays

can be used to optimize performance. This strategy provides

additional benefits by making high-performance computing

accessible to researchers without access to designated computing

clusters. On the flip side, the specialized hardware design and the

corresponding programming model strongly limits the field of

application. GPUs perform best when a multitude of threads

execute the same set of instructions on different data, a

programming model commonly termed data-parallel. If, however,

divergence between threads is high, i.e. different threads perform

different instructions due to differently evaluated conditionals in

the code, the speed benefit is quickly lost and the overall

performance drops.

We can easily achieve a data-parallel implementation of GMP

by assigning each subvolume of the computational domain to an

individual thread on the device. The Gillespie algorithm treating

the reactions can then be performed independently by each thread

for the duration of the time step. Diffusion is then completed at the

end of the time step and the host is responsible for global

synchronization between time steps. Details about our GPU

implementation are provided elsewhere [16,17].

Large-scale Parallelization
Two requirements pose significant difficulties in the context of

stochastic simulations. Firstly, many applications require a large

number of experiments to achieve statistical validity. Secondly, a

systematic exploration of the parameter space, including more

sophisticated applications like parameter optimization, demand a

sufficient amount of sample points. We demonstrate how these

obstacles can be overcome by introducing a second level of

parallelization over different experiments.

Table 1. Simulation runtimes of the Gray-Scott model.

V Runtime in seconds

(deterministic) 2814

2.5 58

25 85

250 301

25000 21673

Simulation runtime for the Gray-Scott model Eqs. (1)–(4).
doi:10.1371/journal.pone.0042508.t001

Table 2. Simulation runtimes for the Oregonator model.

V Runtime in seconds

(deterministic) 638

1:6|10{14 67

1:3|10{13 241

8|10{12 11511

6:4|10{11 90874

Simulation runtimes for the Oregonator model of the BZ reaction Eqs. (7)–(14).
doi:10.1371/journal.pone.0042508.t002

Table 3. Simulation runtimes for the Ca2z model.

V Runtime in seconds

(deterministic) 454

10{3 15

0.125 71

1 595

125 71299

Simulation runtimes for the Ca2z model Eqs. (18)–(26).
doi:10.1371/journal.pone.0042508.t003
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The key strategy here is to bundle several GPU-enabled

computing nodes into a GPU cluster. We run our simulations on

the Monash Sun Grid (http://www.monash.edu.au/eresearch/

services/mcg/msg.html) which currently comprises five nVidia

Tesla S1070 quad-GPU arrays. The burden of managing the

resources and, in particular, evenly balancing the computing load

between nodes is carried by the middle-ware Nimrod (http://

www.messagelab.monash.edu.au/Nimrod). Our web-based front

end, Inchman (http://www.csse.monash.edu.au/,berndm/

inchman/), allows researchers to define their reaction-diffusion

model and the required simulation task on the web interface and

submit the project to our GPU cluster for processing. All models

used in this article can be found in the public repository on the

web site.

From Micro to Macro: the Deterministic Limit
We are mainly interested to model the whole spectrum from the

low-particle, i.e. fluctuation-dominated, to the high-particle, quasi-

deterministic, end. Mathematically, it is possible to expand the

multivariate reaction-diffusion master equation in terms of a

parameter V such that the deterministic equations are recovered

in the limit V?? [49,65]. We will perform simulations of all

models over a broad range of V. As a main result, we will

demonstrate below how systems can undergo qualitative changes

for different values of V. Our technique enables us to model this

transition with a unified approach. The expansion, called system

size expansion, allows considerable freedom in choosing which

system property is used as the expansion parameter V. Here, we

decide to scale the concentrations of the chemical compounds, i.e.

xV
~VV, while leaving the subvolume size constant [12]. Reaction

dynamics is preserved as long as, at the same time, we scale the

rate constants kA for a particular reaction A according to

kA*V{
P

a
NA

a z1
, where NA

a denotes the number of particles of

species a which take part in the reaction A [49]. Naturally, the

initial concentrations need to be scaled correctly with V as well.

We compare our stochastic simulations with a direct solution of

the corresponding deterministic partial differential equation. The

deterministic solver we use is, similarly to the stochastic solver,

based on an operator splitting approach where reactions are

decoupled from the diffusion operator. The reaction network is

solved for the diffusion time-step with a semi-implicit solver based

on a steady-state approximation (a-QSS), which is optimized for

solving stiff differential equations [66]. The Laplace-operator for

diffusion is discretized with a second-order accurate, centered

difference scheme. For optimal performance, we implement a

GPU-accelerated, data-parallel version of the solver and integrate

it into the Inchman framework. Details of the implementation will

be provided elsewhere.

Simulation Setup
All simulations were performed on the GPU cluster of the

Monash e-Research Centre (http://www.monash.edu.au/

eresearch/). The cluster consists of currently ten nodes equipped

with NVIDIA Tesla S1070 quad-GPU arrays, allowing us to

benefit from the large-scale parallelization approach. We empha-

size that all individual runs were also tested on a standard work

station (INTEL E6550 dual core CPU at 2.33 GHz with 2GB

RAM and an NVIDIA Quadro 2000 GPU card) which was found

to perform equally well with a comparable runtime.

The overall runtime for individual simulations varies from a

couple of seconds to about 25 hours. Tables 1, 2, and 3 give the

runtimes for the Gray-Scott model, the Oregonator scheme, and

the Calcium-wave simulations, respectively.

We prescribe ‘‘reflecting’’ boundary conditions for all stochastic

simulations, i.e. no particles are allowed to leave the domain. This

is implemented by rejection sampling: if a particle tries to leave the

integration domain through this boundary, it ‘‘bounces’’ back and

stays in its subvolume [16,17].

Results

In this section we discuss our three case studies. The example

systems in these case studies display qualitatively different behavior

and, as a whole, cover a broad spectrum of commonly observed

effects in excitable media. The structure of the according

subsections is similar for each system. We start by briefly

introducing the system in question and discuss details of the

excitability properties in the deterministic limit. We then set up

our stochastic implementation of the model and present the results

of the simulation focusing on if and how spiral waves form when

the particle number, which scales with the expansion factor V, is

changed. We start our discussion with the Gray-Scott model in the

next subsection. We then turn to the Oregonator system and

conclude with a simplified model of intracellular Ca2z oscillations.

We stress again that the main intention of this article is to

demonstrate how our approach is capable of simulating a wide

range of particle numbers and cover the whole regime from

fluctuation-dominated (small particle count) to quasi-deterministic

(large number of particles). The models are presented in order of

increasing complexity. To the best of our knowledge, only the

Gray-Scott system has been treated with a stochastic simulation

approach before [12].

Gray-Scott Model
The Gray-Scott model was devised in an attempt to systemat-

ically investigate complex isothermal autocatalytic reactions and

provides a simple prototype for these systems [1]. Using this

comparably simple system, we demonstrate how macroscopic

features emerge from a microscopic description when V is

increased. In particular, we will see that a macroscopic amount

of particles is required to permit the formation of coherent spiral

waves. The Gray-Scott system has been previously modelled in

this regime using stochastic simulations [12].

The model studied here is comprised of a species U , the

inhibitor, that reacts in a cubic autocatalytic step with a second

species V , the activator. We assume a finite life time of both

species and, in addition, allow constant inflow of species U into the

system. The chemical reaction scheme can then be written as

Table 4. Simulation parameters for the Gray-Scott model.

Parameter

kf ~0:0025 s{1

k2~0:025 s{1

~kk1~1 s{1

~uu0~1 s{1

L~89:4 mm

Nx~Ny~512

DV ~0:005 mm2s{1

Simulation parameters for the Gray-Scott model Eqs. (1)–(4).
doi:10.1371/journal.pone.0042508.t004

Stochastic Simulations of Pattern Formation
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Figure 1. Nullclines in the Gray-Scott model. We display the nullclines of the activator species v (blue curve) and the inhibitor u (brown curve)
for the Gray-Scott model (without diffusion) in the deterministic limit for the parameter set given in Table 4. The blue (brown) arrow illustrates the
direction of the gradient in phase space of the activator (inhibitor) on either side of the nullcline and the unstable fix point is marked with Su . We
demonstrate that the system is in the excitable regime by plotting an example trajectory (dashed curve) for a larger perturbation, starting at point A,
from the stable homogeneous state (marked by Ss in the figure). The system relaxes towards Ss via a long excursion.
doi:10.1371/journal.pone.0042508.g001

Figure 2. Formation of a spike spiral wave in the Gray-Scott model. Shown are snap-shots of a spike spiral wave in the Gray-Scott model Eqs.
(1)–(4), initialized as shown in the top left panel, at t~1000 s in the deterministic simulation (bottom left) and in stochastic simulations for different
scale factors V (rightmost columns).
doi:10.1371/journal.pone.0042508.g002

Stochastic Simulations of Pattern Formation
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Uz2V �?
k1(V)

3V ð1Þ

U �?
kf

1 ð2Þ

V �?
k2 1 ð3Þ

1 �?
kf u0(V)

U , ð4Þ

where we remind the reader that V scales the reaction rates as

k1(V)~~kk1V
{2 and u0(V)~~uu0V. Remember that first-order

reactions need not be scaled. We furthermore introduce the

control parameters F~kf and k~k2{F such that the properties

of our system are fully determined by its position in the F{k
plane [1,12,18]. Following standard modeling procedures for

Gray-Scott systems [12], we allow the activator species v to diffuse

freely, with diffusivity DV , while the inhibitor species is assumed to

be spatially pinned. The system then exhibits a wealth of different

patterns [9,18].

In the deterministic limit (V??), we can write down the

evolution of the averaged copy counts per subvolume of each

species as a set of partial differential equations,

Lu(x,t)

Lt
~F V~uu0{u(x,t)½ �{V{2~kk1u(x,t)v(x,t)2 ð5Þ

and

Lv(x,t)

Lt
~{(Fzk)v(x,t)zV{2~kk1u(x,t)v(x,t)2zDV +2v(x,t): ð6Þ

Note that, in Eqs. (5) and (6), u and v denote the actual mean copy

count of species U and V , viz. the number of particles in each

infinitesimal subvolume averaged over many experiments. Con-

sequently, u, u0 and v are dimensionless while the reaction rates

k1, k2 and kf , and hence F and k, have dimension s{1. Naturally,

V is dimensionless as well and DV has the usual dimensions of a

diffusivity, mm2s{1. We choose this representation to allow easy

comparison with the simulation results, which are given as number

of particles per subvolume. Converting Eqs. (5)–(6) into concen-

trations is straight forward.

We plot the nullclines of Eqs. (5)–(6) for the parameter set given

in Table 4 (Fig. 1). Shown are the nullclines for the activator

(brown curve) and inhibitor (blue curve). The nullcline of the

activator evolution equation is L-shaped and, depending on the

value of the dimensionless bifurcation parameter

A~F1=2=(Fzk), allows either one (0vAv2), two (A~2) or

three (Aw2) homogeneous stationary states [67]. It is possible to

excite ultrafast traveling spike auto-solitons that allow the

formation of two-dimensional spike spiral waves [41]. For our

simulations, we choose a parameter set such that the system is

located on the saddle-node bifurcation curve (A~2) [67]. For this

parameter set, we have two homogeneous fix points, fu~V,v~0g
(labeled Ss in the figure) and fu~V=2,v~V=20g (labeled Su),

which are linearly stable and unstable, respectively. The system is

clearly excitable as the trajectory of a typical large perturbation in

phase space (dashed curve in Fig. 1 ) demonstrates. Starting at

point A, the system is forced to relax via a long excursion. As soon

as it passes the brown curve, the system is in the refractory regime

where further perturbations have no effect.

We set up our simulations with the parameters given in Table 4.

The integration domain is a square, with side length L~89:4 mm,

that is divided into a grid of (Nx,Ny)~(512,512) subvolumes.

Only species V is allowed to diffuse with DV~0:005 mm2s{1. At

t~0, the integration domain is set to the (stable) homogeneous

state u~2k2V=(k1kf )1=2 and v~0. We initiate the formation of a

spiral wave by applying a perturbation from the homogeneous

background, u~0 and v~4k2V=(k1kf )1=2, to a small rectangular

region fx,yD(Nx=2{5)lƒxƒNxl=2,0ƒyƒNyl=4g. The sym-

metry breaking of the wave is induced by initializing the right half

of the domain, fx,yDx§Nxl=2,0ƒyƒNyl=4g, in the refractory

regime U~k2V=(k1kf )1=2 and V~kf V=(k1kf )1=2.

The results are presented in Fig. 2. We display the particle count

per subvolume of the activator species V at simulation time

t~1000 s. The top-left panel shows the initial configuration of the

experiment and the right-most columns illustrate the effect of the

scaling parameter V in the stochastic simulation. For comparison,

we also include the corresponding snap-shot of the deterministic

model (bottom left). We observe a distinct spiral pattern for

V >*250, corresponding to e100 particles per subvolume. In the

high-V regime, V~25000, the result is virtually indistinguishable

from the deterministic experiment. This example illustrates neatly

how the system-size expansion indeed reproduces the deterministic

Table 5. Identification of symbolic species in the Oregonator
model.

A BrO{
3

B oxidizable organic species

X HBrO2

Y Br{1

Z Mox

R HOBr

Identification of the species in the FKN representation (after [6]).
doi:10.1371/journal.pone.0042508.t005

Table 6. Simulation parameters for the Oregonator model.

Parameter

Dx~1:5|10{5 mm2s{1

Dz~0:6 Dx

~kk1~843:2 s{1

~kk2~1:04|10{9 s{1

~kk3~4:216 s{1

~kk4~5:22|10{15 s{1

~kk5~0:048 s{1

k6~k7~100 s{1

L~0:54 mm

Nx~Ny~256

Simulation parameters for the Oregonator model of the BZ reaction Eqs. (7)–
(14).
doi:10.1371/journal.pone.0042508.t006
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limit. Note that the case V~25000 corresponds to about 104

particles per subvolume, which translates to a total of 109 particles in

the integration domain. This regime would be inaccessible without

the GPU-accelerated implementation we employ here.

As expected, nucleation of the spiral wave breaks down in the

microscopic regime. For V~25 (top middle panel), the wave-front

Figure 3. Nullclines in the Oregonator model. We display the nullclines (logarithmic scale) of the activator species x (blue curve) and the
inhibitor z (brown curve) for the Oregonator model in the deterministic limit for the parameter set given in Table 6 and V~2:7|10{11. We assume
that the intermediary species Y is in a steady-state equilibrium with X and Z and ignore diffusion. The blue (brown) arrow illustrates the gradient in
phase space of the activator (inhibitor) on either side of the nullcline and the unstable fix point is marked with Su. The system is in the unstable
(oscillatory) regime. We plot an example trajectory (dashed curve) of a larger perturbation from the (linearly stable) trivial homogeneous state.
Starting at point A, the system enters a limit cycle in phase space.
doi:10.1371/journal.pone.0042508.g003

Figure 4. Formation of a spiral wave in the Oregonator model. Shown are snap-shots of the formation of a spiral wave in the Oregonator
model for the BZ reaction Eqs. (7)–(14), initialized as shown in the top left panel, at t~50 s in the deterministic simulation (bottom left) and in
stochastic simulations for different scale factors V (rightmost columns).
doi:10.1371/journal.pone.0042508.g004
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quickly dissipates and the inner part of the spiral wave is only

faintly visible. In the low-number limit (V~2:5, corresponding to

about 5 particles per subvolume) we do not observe any spiral

structure. While the interface between the stable homogeneous

state and the refractory region is still distinct, the area behind the

passing wave front is nearly homogeneous. In particular, we find

no evidence for nucleation of thermal waves, which are noise-

sustained wave patterns in subexcitable media [12,28,68]. In

summary, this subsection demonstrates nicely how our method

allows to cover a wide parameter range with genuinely stochastic

simulations.

Oregonator Model
We now turn our attention to the celebrated Belousov-

Zhabotinsky (BZ) reaction family [69,70]. It is widely regarded

as the archetype of an oscillating chemical reaction and, most

generally, involves oxidation of an organic species by bromic acid,

catalyzed by metal ions. Its particular appeal to researchers stems

from the fact that it can be easily reproduced in a laboratory

setting and the system has been extensively studied [71]. In fact,

various recipes exist to perform the experiment at home [6].

The ease of handling makes the BZ reaction an ideal test bed to

study the influence of external noise on the formation and

dynamics of patterns. Experimentally, a light-sensitive catalyst can

be used to control the excitability of the reaction with a high

spatial and temporal resolution [8,72–74]. Using this technique,

sophisticated experiments have been performed to elucidate the

dynamics of spiral waves in the BZ reaction [25,42,75,76].

The oscillatory properties of the BZ reaction can be understood

in terms of the Field-Körös-Noyes (FKN) mechanism [6,77].

While the details of this model are fairly complex and of little

interest here, it is worth mentioning that HBrO2 plays the role of

the activator in an autocatalytic reaction that is inhibited by

bromide ion. A considerable simplification is provided by the

popular Oregonator model [78]. The Oregonator reaction scheme

is an abstract representation of the FKN mechanism, consisting of

six reactants that can be identified with the chemical compounds

in the BZ reaction (we give the identification in Table 5), and five

reactions, namely

AzY �?
k1

XzR ð7Þ

XzY �?
k2(V)

2R ð8Þ

AzX �?
k3

2Xz2Z ð9Þ

2X �?
k4(V)

AzR ð10Þ

BzZ �?
k5 f

2
Y : ð11Þ

Here A and B are assumed to be constant and we subsume

them into the reaction constants such that reaction (7) is replaced

by the unimolecular reaction A �?
~kk1

XzR where ~kk1~ak1 (with a

the constant copy count per subvolume of A). Reactions (9) and

Figure 5. Nullclines in the Ca2z model. We display the nullclines of the Ca2z concentration c (blue curve), which can be regarded as the
activator, and the fraction of open channels n (brown curve) for the Calcium oscillation model in the deterministic limit [Eqs. (27)–(29)] for the
parameter set given in Table 7 and assume that diffusion is switched off. The blue (brown) arrow illustrates the gradient in phase space of the
activator (inhibitor) on either side of the nullcline and the fix points are marked with S1,2,3. We plot an example trajectory (dashed curve) of a larger
perturbation from the homogeneous state S1 . Starting at point A, the system relaxes towards S1 via a long excursion.
doi:10.1371/journal.pone.0042508.g005
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(11) are rewritten accordingly. The reaction rates k2 and k4 scale

as k2(V)~~kk2=V and k4(V)~~kk4=V. Essentially, X is the activator

and Z the inhibitor. f is a bifurcation parameter and it can be

shown that the steady state of system (7)–(11) is unstable for

1=2vf v1z
ffiffiffi
2
p

[6]. In terms of the taxonomy for active media,

the Oregonator model is characterized by the upside-down N-

shape of the activator nullcline.

Numerous numerical studies about the formation and dynamics

of patterns in diffusive Oregonator systems exist [2,79,80], some of

them dedicated to the influence of noise [8,25,81]. However, to

the best of our knowledge, a mesoscopic, genuinely stochastic

simulation of the three-state Oregonator system as given by Eqs.

(7)–(11) has not yet been achieved. The multi-scale parallelization

model provided by Inchman allows us to present such an

experiment here.

The aim is to stochastically reproduce spiral waves as observed

in deterministic simulations [2]. To this end, we allow diffusive

motion of the activator species X and the inhibitor species Z,

while Y remains spatially frozen. Our simulations are carried out

in the unstable (oscillatory) regime f ~1:5 [2]. Reaction (11) then

assumes a fractional stoichiometry. While this makes perfect sense

as a mathematical abstraction to encapsulate intermediate

reactions and products, it cannot be modelled in a discrete

domain. We therefore introduce two artificial species, Y � and Y ��

and replace Eq. (11) with three helper reactions

BzZ �?
k5

Y �zY �� ð12Þ

2Y � �?
k6

Y ð13Þ

2Y �� �?
k7

Y �: ð14Þ

Provided the time-scales of reactions (13) and (14) are much

smaller than any other time-scales involved, the chemical

dynamics are correctly reproduced. Note that it is not necessary

to scale k6 and k7 provided they are larger than any other reaction

rates.

We can write deterministic equations for the evolution of the

copy counts as a set of three coupled partial differential equations,

Lx(x,t)

Lt
~x(x,t) k3{2

~kk4

V
x(x,t)

" #
zy(x,t) k1{

~kk2

V
x(x,t)

" #
zDx+2x(x,t),

ð15Þ

Ly(x,t)

Lt
~

f

4
k5z(x,t){y(x,t) k1z

~kk2

V
x(x,t)

" #
, ð16Þ

and

Lz(x,t)

Lt
~2k3x(x,t){k5z(x,t)zDz+2z(x,t): ð17Þ

We chose a parameter set, given in Table 6, that is designed to

recover literature results of deterministic simulations of the two-

state Oregonator model in the limit V?? [2]. As in the previous

subsection, the simulation domain is a square region (side length

L~0:54 mm) divided into subvolumes by a (Nx,Ny)~(256,256)

regular lattice with spacing l~2:1nm. A spiral wave is induced

following the recipe of Jahnke et al. [2]. We set species X to the

stationary equilibrium value x~9:77|10{3k3=(2k4)~3:94|

1012V everywhere except for a narrow wedge (0ƒhƒ0:5 where

h denotes the polar angle) where we set an overdensity

(X~0:8k3=(2k4)). The inhibitor species Z is initialized according

to the formula Z~(9:77|10{3zh=12p)k2
3=(k5k4)~3:32|

1013V. Finally, we initialize Y to the dynamic equilibrium value,

viz. y~2fk3k4z=(2k2k4qzk2k3x)~(6:05|109Vz)=(0:002zx).

The nullclines for the time evolution of x and z from Eqs. (15)

and (17) are plotted in Fig. 3, where we switch off diffusion and

also assume that species Y is in steady-state equilibrium with X
and Z [6]. A typical excursion is included (dashed curve) for a

perturbation starting at point A that quickly enters the limiting

cycle and the system exhibits oscillations.

Fig. 4 presents the outcome of these simulations. We display the

number of particles of species X per subvolume at t~50s for

different values of the scale parameter V. The top-left panel

illustrates the wedge that is used to induce the spiral wave through

an overdensity. For comparison, we also include the result of a

deterministic run (bottom-left panel). The transition from the low

V to high V regime is clearly visible. At V~1:6|10{14 (top-

middle panel) the particle number per subvolume is too low (Xe10

and Ze100) to allow coherent structure formation. We can see

how a spiral wave starts to nucleate at V~1:3|10{13 (top-right

Table 7. Simulation parameters for the Ca2z model.

Parameter

b~0:02 mM

c~2 mM

kc~0:1 mM

b~0:111

k1~0:7 mM

v1~0:889

m~0:583

k2~0:7 mM

tn~2s

kflux~8:1 n{1
maxmM s{1

m0~0:567

m1~0:433

km~4 mM

DC~20 mm2s{1

DP~0 mm2s{1

nmax~1000

kp~0

L~250 mm

Nx~Ny~128

Simulation parameters for the Ca2z model Eqs. (18)–(26). With the length L

and number of grid cells N given, we find for the subvolume size VSV~1:95l

and can therefore convert the concentration base mM into the number of

particles per subvolume mM~10{6NSVNa~1:18|1015 .
doi:10.1371/journal.pone.0042508.t007
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panel), corresponding to Xe 50 and Ze 2000, but is quickly

dispersed through noise. However, the passing wave triggers target

patterns in the medium (compare top-left part of the picture). A

coherent spiral wave is first visible at V~8|10{12 (bottom

center) and for high V~6:4|10{11 (bottom right) the pattern is

virtually indistinguishable from its deterministic counterpart. We

note that the high-V simulation contains about 106 particles per

subvolume. This has not been achieved before at comparable

densities.

Ca2+ Waves
The universal role of intracellular Calcium as a second

messenger in cell physiology has been extensively investigated

[5]. Numerous experiments pay special attention to the spatio-

temporal behavior of the cytoplasmic Ca2z concentration

following an initial agonist stimulation [4,5,82,83]. These studies

provide evidence for an intimate connection of intracellular

Calcium to the theory of excitable media [4]. Elaborate imaging

techniques reveal the existence of highly intricate patterns such as

target patterns and spiral waves [5,84–86]. Following the ongoing

motif of this article we focus on the generation and dynamics of

spiral waves in Xenopus oocytes [84,86]. Xenopus is an African

aquatic frog. Its oocytes can have a diameter larger than 600 mm
which greatly facilitates observation of macroscopic wave patterns

[5].

The dynamics of cytoplasmic Ca2z are determined by a variety

of influx and pump processes depending on the cell type in

question. Details about these processes can be found in standard

cell physiology textbooks [5]. Here, we briefly describe the parts

relevant to our simulations. The concentration gradient between

cytosolic and extracellular Calcium is maintained by two separate

pathways. (i) An ATPase pump can remove intracellular Ca2z

through the plasma membrane. (ii) Calcium can be stored into

membrane-bound internal reservoirs, inter alia the endoplasmic

reticulum (ER). Removal from cytosolic Ca2z into internal

storages is accomplished by a SERCA ATPase pump. Similarly,

Calcium can be released from the ER into the cell through inositol

(1,4,5)- trisphosphate (IP3) sensitive receptors. IP3, which can

diffuse freely inside the cell, is a second messenger that is released

following a triggering event through an external agonist stimula-

tion. Most importantly, IP3 receptors are sensitive to the Ca2z

concentration which activates and inhibits Calcium release on

different time scales. Finally, leakage of extracellular Calcium

across the plasma membrane increases the cytosolic Calcium

concentration.

By now, the importance of a stochastic approach to modelling

intracellular Ca2z is widely recognized [5,19]. Numerous

experiments give clear evidence that Ca2z release from IP3

receptor (IPR) clusters occurs through a series of stochastic events

called ‘‘puffs’’ [87].

The standard approach to capture the observed stochastic

behavior is to model all diffusive processes (of Calcium and IP3)

deterministically and include the release of Ca2z through IPRs as

a Markov process with discrete events [88–90]. An early attempt

to treat Calcium diffusion stochastically through a master equation

approach was, due to limited computational resources, restricted

to one spatial dimension [11]. Using a spatially homogeneous

model of intracellular Calcium oscillations, Kummer et al.

investigate the transition from the stochastic to the deterministic

regime [91]. However, we are not aware of any models that are

spatially resolved in multiple dimensions and treat all components

stochastically.

Developing such a model is a formidable task that we do not

attempt here. Instead, we implement a stochastic version of a

minimal model that was successfully used to reproduce spiral wave

patterns observed in Xenopus oocytes by Atri et al. [85]. The aim

Figure 6. Formation of a spike spiral wave in the Ca2z model. Shown are snap-shots of a spiral wave in the Ca2z model Eqs. (18)–(26),
initialized as shown in the top left panel, at t~100 s in the deterministic simulation (bottom left) and in stochastic simulations for different scale
factors V (rightmost columns).
doi:10.1371/journal.pone.0042508.g006
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here is to demonstrate that, in principle, the complexity is

manageable and we can perform stochastic simulations of Ca2z

spiral waves over the whole range of particle numbers up to the

deterministic (large particle number) regime. As a single pool model,

we only keep track of the cytosolic Calcium concentration c and

do not separately account for Ca2z bound in the ER storage. We

ignore the spatial structure of IPRs, which tend to aggregate in

clusters [5,87,90], and instead simply assign a number of open

IPRs, n, to each subvolume. n changes in response to c and the

local IP3 concentration, p. We allow c and p to diffuse freely inside

the cell, with respective diffusion coefficients Dc and Dp. We

completely ignore the capability of Ca2z ions to bind to large

proteins, a process called buffering [92–94].

The three constituents of the Atri et al. model, c, n, and p,

correspond to the species C, N, and P. Leakage of Ca2z through

the plasma membrane is modelled as a zeroth-order reaction:

1 �?bV
C: ð18Þ

Sequestering of Calcium into the ER is implemented as a decay

reaction,

C����������?
kMM(C,c,V)

1, ð19Þ

where the SERCA pump process is represented by a Michaelis-

Menten type rate law

kMM(C,c,V)~
cV

kcVzC
: ð20Þ

and c and kc are free parameters. In writing down Eq. (20) as a

rate law we neglect the possibility of pump reversal [5,95].

Moreover, a complete stochastic approach requires modeling the

underlying transport reactions on a molecular level. However, the

literature model we are trying to reproduce [85] does not account

for pump reversal and we leave a more elaborate model to future

work.

Release of Calcium from the ER into the cell is controlled

through IP3-sensitive gates. As a reaction, we write

1 ���������������������������?
kIPR(C,N,P,kflux,b,v1,k1,m0,m1,km,V)

C ð21Þ

and encode the details of the channel behavior in the rate law,

kIPR(C,N,P,kflux,b,v1,k1,m0,m1,km)

~kfluxV m0z
m1P

kmVzP

� �
bz

v1C

k1VzC

� �
N:

ð22Þ

Eq. (22) is based on the assumption that each IPR has three

Calcium binding sites, a single site, a domain where two Ca2z ions

can bind cooperatively, and one site reserved for IP3. The channel

is open if the single Calcium site and the IP3 site are both active

while the cooperative Calcium binding domain remains unac-

tivated. The channel open probabilities can then be modelled with

cooperative kinetics [85]. A more accurate description would be

given by an eight-state IPR model, or a simplified version of it

[5,96,97]. More recently, models with saturating binding rates

were proposed [5,98]. Implementing a full stochastic version of the

eight-state IPR has been done [99] but is computationally

expensive. Most simulations therefore opt for a simplified version

or a Langevin approach (cf. Introduction) [5,88–90].

The Atri et al. model of the open channel dynamics, that we

adopt here, is based on the assumption that the inhibitive domain

of IPR relaxes on a slower time scale tn than the activating sites

[85]. The activating sites reach a fast equilibrium with Ca2z and

IP3 and we therefore add a creation reaction,

1 �������������?
kRH(C,k2,nmax,tn ,V)

N, ð23Þ

where nmax denotes the total number of IPR channels per

subvolume, k2 is a free parameter and the rate law is given by

kRH(C,k2,nmax,tn)~
nmax

tn

1{
C(C{1)

(k2V)2zC(C{1)

� �
: ð24Þ

Open channels are ‘‘destroyed’’ on the relaxation time scale tn and

we write

N �?
t{1
n 1: ð25Þ

Finally, we allow breakdown of IP3 with a rate kp:

P �?
kp

1: ð26Þ

The deterministic limit of the stochastic model Eqs. (18)–(26)

reproduce the partial differential equations given in Atri et al. [85]

for the average number of Calcium ions per subvolume, c(x,t),

Lc

Lt
~b{

cVc

kcVzc
zkfluxV m0z

m1p

kmVzp

� �
bz

v1c

k1Vzc

� �
nzDc+2c,

ð27Þ

the fraction of open channels per subvolume n(x,t)~N=nmax,

tn
dn

dt
~1{

c2

(k2V)2zc2
{n, ð28Þ

and the concentration of IP3, p(x,t),

Lp

Lt
~{kppzDp+2p: ð29Þ

Note that we omit the argument of the dependent variables for

readability. Fig. 5 displays the nullclines for c (blue curve) and n

(brown curve) (with constant IP3 concentration). In our simplified

model, we can regard Calcium ions as activator while the number

of open channels acts as the inhibiting species [100]. The nullclines

for this model are L-shaped and exhibit three fix points (labelled

S1,2,3). Again, we include an example trajectory (dashed curve) in

the plot.

We collect the parameters we used for our simulation runs in

Table 7. This particular choice corresponds to numerical models
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of the spiral wave formation in Xenopus oocytes [85]. We perform

the experiments on a square integration domain with side length

L~250 mm which is divided into subvolumes by a (Nx,Ny)~

(128,128) lattice, corresponding to a lattice spacing of

l~1:95 mm. We stimulate the formation of a spiral wave, in a

way analogous to the Gray-Scott model experiments, by forcing an

overdensity in the Calcium concentration c~0:92 mM upon a

rectangular region fx,yDNx=2{5ƒx=lƒNx=2,0ƒy=lƒNy=4g
embedded in the homogeneous background c~0:129 mM,

n~0:96627 nmax, and p~0:095 mM. We induce breaking of the

wave by initializing the right half of the domain (x=l~Nx=2) in

the refractory regime c~0:19 mM and n~0:71 nmax.

The results of these simulations are presented in Fig. 6. Shown

are the density maps (number of ions per subvolume) of Ca2z at

t~100s for different values of the scale parameter V (right-most

columns). The top-left panel illustrates our initial conditions and

we include the outcome of a deterministic simulation (bottom-left

panel) for comparison. The results concur with the findings of the

other models presented above. For a small value of the scale

parameter (V~10{3 in the top-middle panel) the number count

of Calcium ions per subvolume is in the order of ~110 and the wave

is unable to nucleate. However, even for a comparably small

V~0:125 (top-right panel), corresponding to about *500 Ca2z

particles, the stochastic simulation approximates the deterministic

results remarkably well. The spatial variance decreases for

increasing V. The largest of our runs, V~125 entails aboute106 particles per subvolume. The fact that coherent waves are

possible even with a small particle number underlines the

importance of being able to explore the whole parameter range,

from low particle numbers to high particle counts, in a single

approach.

Discussion

In this article, we demonstrate methods for stochastic meso-

scopic simulations of pattern formation in excitable media. We

present case studies for three qualitatively different models from

chemical physics and biology which stand exemplary for the wide

variety of excitable systems. Specifically, we model the Gray-Scott

reaction system, as a prototype for excitability through autocat-

alytic reactions, the Oregonator model, which can be used to

describe pattern formation in the chemical Belousov-Zhabotinsky

reaction system, and finally a simplified model for intracellular

Calcium waves. We introduce a two-layer parallelization approach

that can be fruitfully used to achieve mesoscopic simulations with a

macroscopically relevant number of particles. To the best of our

knowledge, this has not been done before for the Oregonator

model.

The main contribution of the research presented here is to

demonstrate how efficient computation techniques allow to cover

the whole range of particle counts – from the low particle regime,

which is dominated by discrete fluctuations, to the deterministic

high-particle number approximation – in a unified approach. This

is significant. Firstly, our results numerically confirm that, as

predicted by the system-size expansion, a mesoscopic jump-

process description of a reaction-diffusion systems indeed ap-

proaches the correct deterministic limit as it is given by the

corresponding Fokker-Planck equation. More importantly, how-

ever, a unified approach is necessary to explore how system

characteristics undergo qualitative changes when the particle

number is increased. The Ca2z model demonstrates that it is not

possible to a priori determine the transition point. Furthermore, if a

model involves different scales of particle numbers, it is highly

desirable to treat all components with a common approach. It is

for these reasons that large-scale, mesoscopic simulation tech-

niques are indispensable.

Finally, we point out that our simulation tool Inchman (http://

www.csse.monash.edu.au/̃berndm/inchman/) is designed as an

open platform to promote collaborative research. Users can join

groups and share their models and simulation results. We make

the model files available in the open repositories. We invite

researchers to reproduce the results presented here and encourage

users to refine and adapt the models to address more sophisticated

research questions. As we have demonstrated through our case

studies presented here, Inchman is a valuable tool to model

reaction-drift-diffusion systems in a variety of disciplines.
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