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Abstract

Genetic heterogeneity describes the occurrence of the same or similar

phenotypes through different genetic mechanisms in different individuals.

Robustly characterizing and accounting for genetic heterogeneity is crucial to

pursuing the goals of precision medicine, for discovering novel disease

biomarkers, and for identifying targets for treatments. Failure to account for

genetic heterogeneity may lead to missed associations and incorrect

inferences. Thus, it is critical to review the impact of genetic heterogeneity

on the design and analysis of population level genetic studies, aspects that are

often overlooked in the literature. In this review, we first contextualize our

approach to genetic heterogeneity by proposing a high‐level categorization of

heterogeneity into “feature,” “outcome,” and “associative” heterogeneity,

drawing on perspectives from epidemiology and machine learning to illustrate

distinctions between them. We highlight the unique nature of genetic

heterogeneity as a heterogeneous pattern of association that warrants specific

methodological considerations. We then focus on the challenges that preclude

effective detection and characterization of genetic heterogeneity across a

variety of epidemiological contexts. Finally, we discuss systems heterogeneity

as an integrated approach to using genetic and other high‐dimensional multi‐
omic data in complex disease research.
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1 | INTRODUCTION

Further advancement in precision medicine necessitates
robust characterizations of genetic heterogeneity in studies
of complex disease. Heterogeneity is a ubiquitous theme in
epidemiological research, offering compelling explanations
for disease complexity, missing heritability, treatment
resistance, and other phenomena. Heterogeneity is defined

in a variety of ways, from “simple variation” to “a
complex pattern of association.” Under the latter
definition, genetic heterogeneity is commonly dis-
cussed but usually inadequately evaluated. Failing to
properly account for genetic heterogeneity can result in
missed associations, biased or incorrect inferences, and
impedes the progress of personalized medicine. This
review provides an overview of genetic heterogeneity
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and how it affects the design and analysis of genetic
studies of complex disease.

Heterogeneity can appear both within and between
explanatory and response variables, described in this review
as “features” and “outcomes.” We focus on the unique
nature of genetic heterogeneity as a heterogeneous pattern of
association. To do so, we identify three “categories” that
describe the various occurrences of heterogeneity in
biomedical data. The proposed categorization draws on
the definitions, challenges, and methods for analyzing
heterogeneity within the epidemiological landscape. Most
types of heterogeneity do not fall exclusively within one
category; specific terms can fall under different categories
based on the goals of a particular study or analysis. We do
not attempt to comprehensively identify all types of
heterogeneity, but rather identify commonly used terms
to establish and describe the three categories before
exploring genetic heterogeneity and its impact on genetic
studies in more detail.

The three categories proposed in this review are
feature heterogeneity, outcome heterogeneity, and associa-
tive heterogeneity. We briefly describe the first two
categories, drawing on common examples from different
epidemiological contexts. Next, we describe associative
heterogeneity in detail and why genetic heterogeneity
specifically falls in this third category. The “associative”
nature of genetic heterogeneity makes it uniquely
challenging to capture and characterize. We review in
depth the many challenges that complicate the detection
and characterization of genetic heterogeneity in genetic
studies including power, noise, heterogeneity among
common and rare variants, heritability, and epistasis.
Because of these challenges, genetic heterogeneity often
ends up as a potential explanation for less‐than‐ideal
results in limitation sections. Furthermore, traditional
epidemiology approaches usually emphasize homogene-
ity of the sample at the expense of sample size and
generalizability. We propose investigators instead
directly consider genetic heterogeneity in their analyses
and we include a review of promising approaches to do
so successfully. Lastly, we emphasize the importance of
considering all three categories of heterogeneity together,
that is, taking a “systems heterogeneity” approach to the
genetic epidemiology of complex disease.

2 | DEFINITIONS AND
CATEGORIZATIONS OF
HETEROGENEITY

In the most basic sense, the term “heterogeneity”
commonly refers to types of variability in different forms
of data, for example, in sample populations, cells, tissues,

and phenotypes. This variability can be known and directly
measured (observed) or unknown and not directly
measured (unobserved). In the epidemiology literature,
the term “heterogeneity” is used both in this generic sense
but also in a context that goes beyond simple variation, for
example, genetic heterogeneity (Ford et al., 1998). Genetic
heterogeneity is uniquely defined in the context of an
independent association of more than one locus or allele
with the same or similar phenotypic outcome (McGinniss
& Kaback, 2013). This definition differs from other usages
of heterogeneity and warrants specific methodological
approaches and study design considerations. Further, a
clear understanding of how heterogeneity appears (i.e.,
observed, unobserved, or as part of an association) helps
inform approaches to analysis.

The categories highlight the conceptual contrast
between heterogeneity that is not part of an association
and genetic heterogeneity as a pattern of association. We
use the terms “feature” and “outcome” heterogeneity to
describe variation that is independent of association.
Features and outcomes are defined by the hypothesis of a
given study; thus, some features may be investigated as
outcomes in another study and vice versa. Associative
heterogeneity specifically includes heterogeneous patterns
of association, genetic heterogeneity being the primary
example and the focus of this review. Two variables are
associated if one variable provides information about
another (Altman & Krzywinski, 2015). Statistical associa-
tion can suggest true causal relationships, but can also
result from confounding or other uncontrolled factors.
Following robust observational studies, experimental vali-
dation is necessary to establish a causal role for the genetic
mechanisms that give rise to genetic heterogeneity.
Traditional causal models and inferential approaches
should also be applied to better understand and describe
genetic mechanisms underlying disease, including genetic
heterogeneity (Madsen et al., 2011).

Thoughtful study design and strategic analysis choices
can further facilitate these discoveries. Figure 1 offers
conceptual illustrations of example observations from each
of these three categories with their homogeneous counter-
part. We further highlight examples of associative heteroge-
neity in Figure 2, showing the different alleles, loci, and
environmental aspects associated with an outcome.

3 | APPROACHES TO VARIATION
IN FEATURES AND OUTCOMES

3.1 | Feature heterogeneity

Variation is often synonymous with the concept of
heterogeneity. Variability in explanatory variables (i.e.,
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FIGURE 1 Conceptual illustrations contrasting homogeneity and heterogeneity using example observations within features, outcomes,
or associations. Panel (a) depicts age as a feature with less variability on the left and with more variability on the right. Panel (b) depicts a
phenotypic outcome, again with less variability on the left and more variability on the right. Panel (c) depicts subjects (rows) and features
(columns) where features can have different values (shading). On the left, the feature highlighted by the dotted box is homogeneously
associated with Disease X. On the right, associative heterogeneity is represented by two different features independently associated with
Disease X within different groups of subjects.
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features) can be regarded as a mechanism of interest,
noise, or more often, as a potential confounder.
Heterogeneity of any kind necessarily relies on the
existence of underlying variability. Feature heterogeneity,
however, refers to feature value variation and its
distribution among subjects or samples. Feature hetero-
geneity can include variation in risk factors such as age
and family history; clinical variables such as blood
pressure or tumor grades; or cellular‐level variables such
as gene expression, epigenetics, and the cellular micro-
environment. Feature heterogeneity is normal and
expected across many scenarios, and has been widely
explored (A. J. Holmes & Patrick, 2018; Lawson et al.,
2020; Murphy et al., 2019). Still, in many epidemiological
studies and especially in clinical trials, feature heteroge-
neity in certain covariates is strategically avoided and
homogeneous samples are encouraged to minimize
confounding and heterogeneous treatment effects (Kent
et al., 2016, 2010). For example, in genome‐wide
association studies (GWAS), failure to account for
different allele frequencies of variants among different
study populations can give rise to the illusion of genetic
heterogeneity.

Methods applied to assess feature heterogeneity
depend on the goals of a given analysis and whether
the heterogeneity is being controlled for or analyzed
directly. Sources of feature heterogeneity can be either
observed, such as age, or unobserved, such as genetic
ancestry. Most methods for feature heterogeneity can be
divided along this margin. When feature heterogeneity is
observable, samples or subjects are often stratified before
implementing regression or other association approaches
(M. Wang et al., 2016), for example by age or other risk
factors. Computational methods to understand under-
lying variation are especially useful for identifying
unobserved feature heterogeneity. Methods for analyzing
gene expression must be able to differentiate potential
contributors to heterogeneity; filtering out noise while

preserving meaningful signal (e.g., from alternative
splicing sites, etc.) (Wan & Larson, 2018). Principal
component analysis (Patterson et al., 2006) or uniform
manifold approximation and projection (Diaz‐Papkovich
et al., 2019) can be used to capture genetic background
variation or population substructure. Detailed discus-
sions of these and other methods can be found elsewhere
(Diaz‐Papkovich et al., 2019; Jaffe & Irizarry, 2014;
Lu, 2019).

3.2 | Outcome heterogeneity

Outcome heterogeneity reflects the variation in outcomes or
dependent variables. Types of heterogeneity approached
from the perspective of “outcomes” include clinical,
phenotype, disease, and trait heterogeneity. While epide-
miological studies primarily focus on disease phenotypes,
outcome heterogeneity is also inherent in healthy indivi-
duals and phenotypes. Understanding healthy variation is a
key component of a diverse range of studies from healthy
aging (S. Kim & Jazwinski, 2018) to immunogenetics (De
Jager et al., 2015). In epidemiological and clinical research,
clinical heterogeneity denotes variability in symptoms and
clinical presentation of disease phenotypes, irrespective of
underlying genetic architecture (Milaneschi et al., 2016). In
the context of this review, phenotypes include diseases and/
or disease characteristics measured as outcomes. Phenotype
heterogeneity is often used interchangeably with clinical
heterogeneity. Phenotype heterogeneity most often refers to
the variation in symptoms among individuals with the
same disease (Figure 1b) (Chiò et al., 2011). For many
diseases, phenotype heterogeneity has been captured using
descriptive studies, disease registries, and electronic health
record (EHR) data (Shivade et al., 2014). With improve-
ments in imaging, biomarkers, and other diagnostic tests,
phenotypes have become increasingly well‐defined
(Haffner et al., 2021; Ryan et al., 2018). Still, for complex

FIGURE 2 Examples of two independent causes of a single phenotype under four scenarios, allelic heterogeneity, locus heterogeneity,
phenocopy, and more complex examples of heterogeneity. Causal factors are in black.
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or late‐onset diseases, certain characteristics remain
unobserved and contribute to outcome heterogeneity. Trait
or disease heterogeneity are special cases of outcome
heterogeneity that describe traits, phenotypes, or diseases
which are defined with insufficient specificity such that
they are actually two or more separate traits (Thornton‐
Wells et al., 2006; Wray & Maier, 2014). Trait and outcome
heterogeneity more generally may suggest the existence of
underlying genetic or other associative heterogeneity
(Swinnen & Robberecht, 2014). Many investigators have
suggested that certain diseases are more accurately defined
by their phenotypic subtypes, including autism (Stevens
et al., 2019) and Alzheimer's disease (Mitelpunkt et al.,
2020). Analyses focused on subphenotypes are especially
common in psychiatric epidemiology (Wendt et al., 2020).

Similar to feature heterogeneity, methods accounting for
outcome heterogeneity share the methodological goal of
understanding the contributors of variation, whether
observed or unobserved. When readily observable, outcome
heterogeneity can often be explicitly accounted for in study
design, e.g., phenotype heterogeneity guiding decisions about
disease subtype analyses. Begg and colleagues suggest
guidelines for systematically addressing outcome heteroge-
neity in epidemiologic studies and offer two strategies: risk
prediction (when subtypes are known) and hierarchical
clustering (subtypes unknown) (Begg et al., 2013). Both
supervised and unsupervised machine learning methods are
employed for classification or subtyping of observed complex
phenotypes (Athey & Imbens, 2015; Huang et al., 2018;
Jacob et al., 2019; Kourou et al., 2015). Clustering algorithms,
latent class analyses, factor analyses, and network ap-
proaches are other unsupervised approaches that attempt
to identify unobserved outcome heterogeneity (Lubke &
Muthén, 2005). When disease subtypes are unknown,
hierarchical clustering minimizes within‐group variation
and maximizes between‐group variation to establish an
optimal set of subtypes (Van Rooden et al., 2010). Similarly,
Thornton‐Wells and colleagues described three unsupervised
clustering methods for analyzing trait heterogeneity in the
presence of genetic heterogeneity and epistasis: Bayesian
classification, hypergraph‐based clustering, and fuzzy
k‐modes clustering (Thornton‐Wells et al., 2006).

4 | ASSOCIATIVE
HETEROGENEITY

Associative heterogeneity refers to any heterogeneous
pattern of association between different features and an
outcome. Associative heterogeneity is synonymous with
etiologic heterogeneity, and differs from the other two
categories by requiring heterogeneity in the relationship
between features and outcomes. Examples include

epigenetic heterogeneity in cancer (Guo et al., 2019),
heterogeneous EHR data (i.e., clinical notes and labora-
tory values) and clinical outcomes (Pivovarov et al.,
2015), and specific to this review, genetic heterogeneity
(Urbanowicz et al., 2013). Locus and allelic heterogeneity
are the two commonly described subtypes of genetic
heterogeneity, although more complex scenarios also
exist. We will use the definitions of genes, loci, and
alleles reviewed in Elston et al. (2012).

Locus heterogeneity occurs when mutations at
different loci result in the same disease (Figure 2). A
common example of locus heterogeneity is breast
cancer, where mutations in BRCA1 or BRCA2 can
independently cause disease. Allelic heterogeneity
arises when different alleles at the same locus cause
the same or similar expression of a phenotype
(Figure 2). While individual variants also have alleles,
allelic heterogeneity specifically references different
variants at the same locus, not alternative forms of the
same variant. For example, cystic fibrosis exhibits
widespread allelic heterogeneity, with over 100 possi-
ble causal mutations at the CFTR gene (Audrézet et al.,
2004). Allelic heterogeneity also plays a role in more
complex traits such as gene expression levels and
schizophrenia (Hormozdiari et al., 2017). In some
instances, locus or allelic heterogeneity can manifest
phenotype heterogeneity—the variability in presenta-
tion of a disease reflecting the different underlying
genetic etiologies (Wood et al., 2011). Cystic fibrosis
again provides a useful example, exhibiting extensive
clinical heterogeneity arising from allelic heterogene-
ity (Paranjapye et al., 2020). Traditional methods
reviewed in Section 4.1 for investigating genetic
heterogeneity are often underpowered or focus on
removing heterogeneity from the subjects and/or data.
More recently, machine learning approaches are
increasingly applied to this problem and offer potential
improvements in high‐dimensional data and multi‐
omic data (D. Kim et al., 2015). We examine the
specific challenges of genetic heterogeneity and the
methodological hurdles that result in Section 5.

Phenocopy is another phenomenon that falls
under the umbrella of associative heterogeneity.
Phenocopies are affected individuals whose disease
is not caused by the same (genetic) factors as other
individuals with the disease (Lescai & Franceschi,
2010), but are rather the result of one or more
environmental factors (Figure 2). The presence of
phenocopies effectively increases associative hetero-
geneity by introducing additional associated variables
spanning other genetic, epigenetic, and environmen-
tal factors, thereby decreasing the power to detect any
one of them (Lescai & Franceschi, 2010).
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4.1 | Methods for associative
heterogeneity

In the latter half of the twentieth century, linkage methods
for family studies led to the discovery of now‐prominent
examples of genetic heterogeneity, followed more recently by
findings from GWAS and whole genome and whole exome
sequencing. Despite many successes, GWAS findings are
often constrained by small effect sizes and failures to
replicate in other studies, especially among complex diseases
(O'Connor, 2021). The still‐unmet promises of the “GWAS
era” provide opportunities for improvements in methodolo-
gies to address gaps in understanding associative heteroge-
neity in genetic data and beyond.

Identifying and characterizing genetic heterogeneity
remains imperative as the information gained is
invaluable for therapeutic advancement (Lohr et al.,
2014; J. Zhang et al., 2018) and improved predictive
accuracy (Rahman et al., 2017). Ideal methods for
addressing associative heterogeneity should seek to
combine their capacity for improved prediction with an
explanatory component that can provide clinically
relevant interpretations. Heidema and colleagues (2006)
offer an excellent framework to evaluate the strength of
new models for analysis of associative heterogeneity,
including the following components: the ability to handle
high dimensionality, power to detect true effects,
performance in the presence of complex genetic archi-
tectures, and open‐source availability of any software.
Below we explore methods for associative heterogeneity
in more detail, highlighting some of these successes and
continuing challenges and limitations for population‐
level genetic studies. We also suggest that methods
development efforts prioritize clinical applicability and
interpretability.

4.1.1 | Epidemiologic approaches to
associative heterogeneity

Before the GWAS era, family studies were considered the
most informative strategy for mapping casual variants.
Linkage analysis aims to identify genetic markers that
cosegregate with the phenotype of interest, thereby
mapping the location of a linked gene or genomics
region (Cantor, 2019). A number of linkage methods
directly address heterogeneity, for example, multi‐locus
models that aid in the detection of linkage for non‐
Mendelian phenotypes (Risch, 1990) and novel stratifica-
tion approaches (Talebizadeh et al., 2013). Described in
terms of population prevalence and the ratio of risk for
relatives, Risch's additive model corresponds to genetic
heterogeneity (as related to identity‐by‐descent sharing

in affected sibling pairs), while the multiplicative model
accounts for interaction between loci (Risch, 1990).
Genetic heterogeneity has been identified using linkage
analysis in a variety of diseases, including multiple
sclerosis (Haines et al., 1998), hereditary lymphedema
(Ferrell, 1998), and rheumatoid arthritis (Cordell, 2003).
With the availability of next‐generation sequencing,
there are increasing efforts to utilize the strengths of
linkage methods to explore whole exome and whole
genome sequencing and similar approaches for investi-
gating complex traits (Xiao et al., 2019).

A variety of hypotheses about the genetic contribu-
tion to disease have dominated the literature, especially
the ‘common disease‐common variant' hypothesis, which
is typically interrogated using a GWAS approach. This
hypothesis postulates that common diseases are caused
by combinations of common alleles (minor allele
frequency 5%) with individually small effect sizes (Risch
& Merikangas, 1996). This is reflected by the average
effect size of 1.33 for candidate SNPs among most
published GWAS results (Hindorff et al., 2009). However
in the presence of genetic heterogeneity, these small
effect sizes are unsurprising (Kulminski et al., 2016).
Increasing sample sizes in many epidemiological studies
have helped to bolster the power of GWAS approaches,
but these benefits often have been outweighed by the
multiple testing burden and lack of replication, an
inevitable consequence of testing hundreds of thousands
to millions of variants. Detecting underlying genetic
heterogeneity requires even greater statistical power,
especially when individual effect sizes are small. We
discuss the issue of power further in Section 5.

Many common diseases such as cardiovascular
disease, psychiatric diseases, and cancer are highly
complex, exhibiting genetic, phenotypic, and other types
of heterogeneity. Complex diseases are caused by a
combination of genetic and environmental factors
(Stessman et al., 2014). GWAS has been an invaluable
step in our understanding of complex diseases such as
autoimmune disorders (Sawcer et al., 2011), metabolic
traits (Polychronakos & Li, 2011), and psychiatric
disorders (International Schizophrenia Consortium,
2009), among others, illuminating mechanisms and
pathways for ongoing research. Furthermore, nearly
88% of GWAS hits (NHGRI catalog) are in noncoding
regions (Edwards et al., 2013), suggesting that regulatory
elements and noncoding RNAs play an important role in
complex diseases and contribute to genetic heterogeneity
(Boyle et al., 2017; Castelnuovo & Stutz, 2015). Despite
many successes, GWAS and other large‐scale methods
have delivered mixed results overall, including varying
effect sizes (Han & Eskin, 2012) and variants with no
known biological significance (Nishizaki & Boyle, 2017).
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Methods to reduce the multiple testing burden in the
context of genetic heterogeneity and other complex
architectures have also been developed for GWAS data,
including reducing the stringency using false discovery
rates instead of the Bonferroni correction (Benjamini &
Hochberg, 1995), genomic interval search (Llinares‐
López et al., 2015), and use of haplotypes (Guinot
et al., 2018). Additionally, incorporating “expert knowl-
edge” into the analysis of GWAS data can be used to
prioritize the most informative variants (Urbanowicz
et al., 2012). Expert knowledge can refer to biological
pathways, gene ontologies, phenotype networks, and
informative feature selection methods (Harari et al.,
2012; Ritchie, 2011). Still, key challenges remain that
limit the ability of the GWAS methodology to character-
ize genetic heterogeneity, and is among the likely
explanations for lack of replication in GWAS studies
(Hodge et al., 2016; Sirugo et al., 2019).

The standard epidemiologic approach strives to find
the best disease model in a homogeneous sample of the
population. Rothman and colleagues assert the ‘neces-
sary avoidance of representativeness' (i.e., collecting a
homogeneous sample rather than a heterogeneous one)
in scientific studies (Rothman et al., 2013). This approach
is especially salient in establishing the efficacy of a new
treatment in randomized controlled trials. Minimizing
heterogeneity among study subjects is necessary to
achieve an unconfounded analysis of the relationship
between their exposure(s) and outcome(s) of interest.
Randomization or other strategies to reduce bias can give
the illusion of homogeneity, but despite these efforts,
unobserved or unmeasured heterogeneity is often
unavoidable. In the context of GWAS and other genetic
studies, homogeneity allows for the most robust evidence
for association, however it can also limit the general-
izability of results (Martin et al., 2019). For example,
ancestry‐related genetic differences are one explanation
for the failure of risk alleles from European‐derived
GWAS studies (homogeneous) to replicate in other
populations (Kraft et al., 2009).

Genetic ancestry can influence the design and
analysis of genetic studies in multiple ways. First, as
mentioned in Section 3.1, it can result in feature
heterogeneity—population substructure that is indepen-
dent of disease and must be controlled for to prevent
spurious associations. Second, differences in variant and
disease frequencies between ethnic groups can help
identify disease‐causing genes or variants. Mapping by
admixture linkage disequilibrium was an early method
for identifying disease‐associated variants, especially
among recently admixed populations with large differ-
ences in allele frequencies (Smith & O'Brien, 2005).
Joint approaches testing both genotype and ancestry

association further improved statistical efficiency in
studies of admixed populations (Szulc et al., 2017; Tang
et al., 2010). These and other admixture approaches have
the most power when differences in phenotype frequency
are highest, such as multiple sclerosis which is most
prevalent in individuals of northern European ancestry
(Chi et al., 2019). Lastly, genetic ancestry can give rise to
genetic heterogeneity as more specifically defined, that is,
as a heterogeneous pattern of association. For example, a
recent study of systemic lupus erythematosus identified
different risk variants by ancestry group (Y.‐F. Wang
et al., 2021). Genetic ancestry continues to be an
important factor in discovering genetic associations and
increasingly for illuminating health disparities
(Shriner, 2017).

Despite precise phenotyping, stratification, rigorous
subtype analyses, and large sample sizes, failing to fully
account for heterogeneity can preclude the discovery of
true associations. Instead, it may be useful to embrace
heterogeneity and employ analysis strategies that can
account for various levels and categories of heterogene-
ity. This may include implementing random‐effects
models in meta‐analyses (Langan et al., 2019), investigat-
ing evidence for interactions (Park et al., 2018), utilizing
admixed populations (Hou et al., 2021), and assessing
etiologic (associative) heterogeneity in the context of
environmental exposures (Peterson et al., 2018).

4.1.2 | Associative heterogeneity in the
prediction era

Two main paradigms dominate the methodological goals
of population level genetic research—prediction and
inference. In the era of big data and machine learning,
the two are often combined. For example, GWAS
represents an attempt at large‐scale inference, but has
recently been employed to inform prediction tools such
as polygenic risk scores (PRS) (Albiñana et al., 2021).
Still, if heterogeneity is unaccounted for, the predictive
capabilities of models will likely remain suboptimal (Ng
et al., 2014). Efforts to improve predictive capabilities in
the context of feature, outcome, and associative hetero-
geneity continue to expand, especially in cancer research
and in multi‐omic datasets (Kourou et al., 2015).

Empirical evidence strongly suggests that polygeni-
city underlies the genetic component of many complex
diseases (Visscher et al., 2012), leading to the develop-
ment of metrics such as PRSs aimed at consolidating
estimates of genetic risk using GWAS data. However,
polygenic models can have poor generalizability across
populations due to a combination of factors such as
sample size (Dudbridge, 2013), differences in genetic
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variation between populations, genetic heterogeneity,
and large environmental contributions (Torkamani et al.,
2018). Some PRSs have been integrated into clinical
practice, but have been met with criticism regarding the
potential for European‐derived scores to exacerbate
health disparities due to reduced predictive performance
in minority populations (Martin et al., 2019). An
expanded consideration of genetic heterogeneity in
genomics‐derived models such as PRSs may produce
improved and less biased predictions. Additional chal-
lenges to identifying genetic heterogeneity include lags
in developing high‐dimensionality computational ap-
proaches compared to other areas of methods develop-
ment. While strategies to reduce the multiple testing
burden have offered improvements, machine learning
methods may offer advantages over traditional hypothe-
sis testing approaches (Rodgers, 2010). For example, D.
Kim et al. (2015) applied an integrative framework to
TCGA breast cancer survival data and showed improved
predictive performance using grammatical evolutionary
neural networks. This approach showed improvement in
handling heterogeneity over methods such as survival
multifactor dimensionality reduction and both detect
gene–gene interactions (Motsinger‐Reif et al., 2008),
however, these models face limitations in the presence
of additional noise such as missingness or phenocopy. A
novel multifactor dimensionality reduction approach
sought to account for genetic heterogeneity using
phenotype covariates (Mei et al., 2007), highlighting the
potential utility of phenotypic heterogeneity as an
indicator of underlying genetic heterogeneity. Epigenetic
age estimators that rely on the "epigenetic clock”
(Ashapkin et al., 2019) (i.e., underlying epigenetic
heterogeneity) have also shown to be reliable predictors
in both aging and cancer (Jones et al., 2015; Yu et al.,
2020). Deep learning approaches such as convolutional
neural networks have also been used to classify
genetically heterogeneous cancer types using imaging
data (Chang et al., 2018). Deep learning methods extract
patterns in data using multiple “layers” or networks,
where each layer learns progressively more abstract
patterns (Truong et al., 2020).

One promising family of machine learning methods
for the detection, modeling, and interpretable characteri-
zation of associative heterogeneity are learning classifier
systems (LCS). LCSs are a type of rule‐based machine
learning particularly suited to complex problem domains
(Urbanowicz & Moore, 2009). LCSs have been applied to
epidemiological surveillance (J. H. Holmes et al., 2000)
and biomedical data mining (Bacardit et al., 2009;
Urbanowicz et al., 2013). They conduct a form of piece‐
wise modeling by evolving a set of human interpretable
(IF:THEN) rules to cover the problem space (Urbanowicz

& Browne, 2017). The algorithm ExSTraCS is one
example of an LCS that has been developed to detect
and characterize complex associations including both
epistatic interactions and genetic heterogeneity
(Urbanowicz & Moore, 2015).

5 | OTHER CHALLENGES IN
CAPTURING GENETIC
HETEROGENEITY

Genetic heterogeneity plays an extensive role in biologi-
cal processes and poses various analytical challenges that
can limit advancements in complex disease epidemiol-
ogy. Various errors and biases in study design and
implementation can amplify feature and outcome het-
erogeneity, undermining or confounding subsequent
analyses (Clayton et al., 2005). Challenges in approaches
to genetic heterogeneity echo those found in most
association analyses, including low statistical power
(Manchia et al., 2013), a high multiple testing burden
(Llinares‐López et al., 2015), rare variants (Betancur &
Coleman, 2013), missing heritability (Ehret et al., 2012),
and lack of replication (Yashin et al., 2015). Also, given
that genetic heterogeneity is not the only factor
complicating patterns of association involved in complex
disease, it may be useful to jointly consider both genetic
heterogeneity and epistasis.

5.1 | Heritability and power

As previously suggested, genetic heterogeneity is believed
to represent a component of the “missing heritability”
problem cited as one of multiple phenomena contribut-
ing to the incomplete understanding of genetic risk of
many diseases (Ehret et al., 2012; Van Der Sluis et al.,
2010). Heritability is the proportion of variation in a
phenotype that is due to genetic factors (Wray & Maier,
2014). Genetic heterogeneity can reduce power to detect
associations by effectively reducing the overall popula-
tion into smaller unobserved “subgroups” representing
the different genetic etiologies. This reduces the ability of
population‐level approaches to explain the full heritabil-
ity of a disease. If phenotype heterogeneity is present in
population studies, heritability estimates are reduced
compared to estimates from family studies (Wray &
Maier, 2014). Phenotype heterogeneity can also affect
heritability estimates if it arises from underlying genetic
heterogeneity. Further, when diseases are genetically
correlated or exhibit shared heritability, power to detect
associations increases for loci that contribute to both
diseases but decreases for variants that are heterogeneous
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between them. The existence of multiple casual variants
at the same locus, allelic heterogeneity, can also go
undetected and contribute to reduced heritability esti-
mates (Wood et al., 2011). Multiple studies have
demonstrated that accounting for allelic heterogeneity
explains additional variation for a variety of phenotypes
including gene expression (Jansen et al., 2017), height (G.
Zhang et al., 2012), BMI (Ehret et al., 2012), and lipid
levels (Y. Wu et al., 2013).

Most approaches that tackle complex patterns of
association in genetic studies are plagued by issues of
insufficient power and the multiple testing burden that
arises in high‐dimensional data analysis. The presence of
heterogeneity (of any kind) can have a substantial effect
on power. Manchia et al. (2013) demonstrate that
phenotypic heterogeneity of 50% in a case‐control study
(i.e., 50% of the cases are controls that have been
misclassified or are cases with a different casual factor
influencing their disease) increases the required sample
size nearly threefold. Feature or outcome heterogeneity
due to misclassification, measurement error, and selec-
tion biases (Sutton et al., 2000) also contribute to
reductions in power (Cheng et al., 2010). Simply
increasing sample size to improve power may have the
opposite effect if additional heterogeneity is introduced
into the study population (Kulminski et al., 2016).
Conversely, despite reductions in sample size, subset
analyses may boost statistical power if they accurately
capture underlying genetic differences (Bhattacharjee
et al., 2012). Many strategies have been proposed to
improve power in the presence of genetic heterogeneity,
in linkage analysis, (Bureau et al., 2008; Risch, 1990), via
meta‐analyses (Bhattacharjee et al., 2012; Zintzaras &
Ioannidis, 2005), and in the context of epistasis
(Urbanowicz et al., 2013).

5.2 | Rare variant heterogeneity

Common variants are not alone in their contribution to
genetic heterogeneity in complex common diseases; rare
variants must also be considered. Rare variants have a
minor allele frequency of less than 1%–5% and are thus
excluded from most GWAS (Gorlov et al., 2008). Hence,
rare variants are a likely source of some of the
unexplained variability (heritability) of some diseases
(Lee et al., 2014), although the debate over their relative
contribution is ongoing (Gibson, 2012). Both rare and
common variants can lead to the same disease
(McClellan & King, 2010). Schizophrenia is a common
example of a genetically heterogeneous disease likely
caused by a “spectrum of risk variants” including rare
copy number variants at multiple different loci, rare

alleles at the same locus, or common variants with small
or modest effects (Sebat et al., 2009; Sullivan et al., 2018).
Multiple studies have suggested that the interplay
between rare and common variants also contributes to
certain diseases, including cancer and epilepsy (Dibbens
et al., 2007; Hahn et al., 2016).

Different rare variants associated with a given disease
outcome could be viewed as the most extreme form of
genetic heterogeneity. As a worst‐case scenario, it's
possible that some disease phenotypes could result from
unique rare genetic variants specific to small groups of
individuals. Studies are increasingly capturing rare
variants via whole genome or whole exome sequencing,
and some apply gene‐level or other “binning” approaches
to improve power (Moore et al., 2016; Povysil et al.,
2019). Other gene‐based methods include burden tests
first introduced by B. Li and Leal (2008) and further
improved by others (Sun et al., 2013), kernel‐based tests
(Dutta et al., 2019; M. C. Wu et al., 2011), and functional
regression approaches (Fan et al., 2016; Svishcheva et al.,
2019). While associative heterogeneity nearly always
places increased demand on power (Cirulli & Goldstein,
2010), gene‐level rare variant analyses may benefit from
the presence of allelic heterogeneity (Povysil et al., 2019).
The cumulative effect of multiple risk variants in the
same gene (i.e., allelic heterogeneity) across different
subjects can aid in detecting the causal gene (Povysil
et al., 2019).

5.3 | Epistasis

Epistasis, alongside genetic heterogeneity, is a key contrib-
utor to the genetic landscape of complex diseases (Monir &
Zhu, 2017). Epistasis is the interaction between genes at
different loci (i.e., not alleles). Epistasis is also difficult to
capture and model and is another likely source of some
"missing heritability” of various phenotypes (Ritchie, 2015;
Zhu & Fang, 2018). While the definition of genetic
heterogeneity includes an assumption of independence
between loci, epistasis could exist alongside heterogeneity
as an additional complex pattern of association. Tradition-
ally, associative heterogeneity and epistasis represent
mutually exclusive patterns of association (between the
same set of loci) (Cordell, 2002). Applying Rothman's
sufficient component cause framework, Madsen et al.
(2011) demonstrated that in fact, additive and multiplicative
penetrance models can correspond to both genetic hetero-
geneity and epistasis, unless highly specific assumptions are
made. Thus, while strict genetic heterogeneity and epistasis
cannot occur between the same pair of loci, both
mechanisms (between a different set of loci) could give
rise to the same phenotype.
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Others have also sought to jointly identify associative
heterogeneity and epistasis. For example, Fenger et al.
utilized latent class analysis and structural equation
modeling to uncover heterogeneous subpopulations, and
suggested that inclusion of epistasis increased the
likelihood of detecting a true association (between
genetic variants and complex traits) in a homogeneous
population (Fenger et al., 2008). Li and colleagues
combined clustering with deep learning to analyze
datasets with both genetic heterogeneity and epistasis
(X. Li et al., 2018). Turner and Bush (Turner & Bush,
2011) demonstrated the conceptual overlap between
epistasis and genetic heterogeneity in an analysis of
regulatory SNPs. They suggest that multiple different
epistatic combinations that influence a disease also fall
under the umbrella of heterogeneity.

6 | SYSTEMS HETEROGENEITY

Given the pervasiveness of all categories of heterogeneity
in complex diseases, the concept of systems heterogene-
ity has been proposed to offer a more integrated view (D.
C. Wang & Wang, 2017). This approach is especially
salient as genetic data is increasingly supplemented by
transcriptomic, proteomic, metabolomic, and other data.
Notably, in addition to heterogeneity within data types, a
systems approach takes into account interactions
between them. Simultaneously considering the interact-
ing factors from the single‐cell to between‐patient level
has potential to greatly improve identification of bio-
markers and treatment targets. These types of integrated
approaches are becoming widespread as data mining and
other bioinformatics tools improve (Gomez‐Cabrero
et al., 2014; Liu et al., 2019). For example, D. Kim et al.
(2015) introduced an integrative framework to combine
heterogeneous data sources (e.g., multi‐omics) to identify
interactions in survival data. Additional work by Kim
and colleagues demonstrated that integration of multi‐
omics data can improve outcome prediction (D. Kim
et al., 2014).

Many of the recent advancements in analyzing
heterogeneity have been made in cancer research by
integrating multiple data types (Bareche et al., 2018).
Song et al. (2016) reviewed methods for the clinical
detection of underlying genetic heterogeneity in breast
cancer using molecular imaging, next‐generation
sequencing, and expression profiling. Natrajan et al.
(2016) modeled tumor microenvironment using a “tumor
ecosystem diversity index” derived from histology image
analysis. Knowledge of spatial and temporal intratumor
heterogeneity has drastically improved using single‐cell
approaches including detailed characterization of

branched evolution, signaling networks, gene expression
and other mechanisms (Gupta & Somer, 2017; Patel
et al., 2014). For example, scRNA‐seq data has helped
resolve cell type composition from bulk RNAseq data
(Chu et al., 2022; X. Wang et al., 2019). Capturing multi‐
omic heterogeneity is also imperative for understanding
phenotypic plasticity and uncovering mechanisms of
treatment resistance (Sheng et al., 2018).

Others have developed integration methods targeted
to cancer research and beyond, with various methods
and packages available for application to “big data”
(Dong & Srivastava, 2013; Karczewski & Snyder, 2018;
Rohart et al., 2017). Network analysis (Sudhakar et al.,
2020), multi‐view clustering (Rappoport & Shamir, 2018;
Shi et al., 2019), factor analyses (Argelaguet et al., 2018)
and Bayesian approaches (Ray et al., 2014) are only a
handful of methods aimed at analyzing heterogeneous
multi‐omic data. While these approaches integrate
heterogeneous data types, few have a specific focus on
elucidating underlying associative heterogeneity. A full
consideration of feature, outcome, and associative
approaches to heterogeneity as part of study design and
during analysis of multi‐omic data types would be useful
for pursuing a systems approach in population level
studies.

7 | SUMMARY

“Intuitively, the concept of heterogeneity is clear, but as
we scrutinize it, our initial impression fractures into
complexity” (Kolasa & Rollo, 1991). Using an epidemio-
logical framework, this complexity can be condensed to
heterogeneity in features, outcomes, and in the relation-
ships between them. As a heterogeneous pattern of
association between features and an outcome, genetic
heterogeneity falls into the latter category, termed
“associative heterogeneity” in this review. Detecting
and characterizing genetic heterogeneity is key for
advancing our knowledge of complex diseases, but key
challenges and limitations remain. Well‐known issues of
power, heritability, and variant frequency limit the
ability of methods to detect genetic heterogeneity.
Understanding genetic heterogeneity as a heterogeneous
pattern of association is essential for choosing the most
effective approaches and methods. Other complex
patterns of association such as epistasis and gene‐
environment interactions can also exist alongside genetic
heterogeneity and should also be considered. Addition-
ally, ever‐growing sample sizes and an increased
emphasis on representativeness and generalizability
conflicts with standard assumptions of homogeneity
and demands further attention. Expert consideration of
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these and other ways in which genetic heterogeneity
impacts the design and analysis of genetic studies can
help us confront these and other ongoing methodological
challenges.

Detecting genetic heterogeneity at the population
level warrants thoughtful study design and the develop-
ment of computational approaches that can tackle
complex scenarios in genetic data and beyond, especially
as multi‐omic analyses and integrated datasets become
increasingly common. Causal inference frameworks for
genetic heterogeneity (Madsen et al., 2011) and other
“genetically informed” inference methods (Pingault
et al., 2018) can be used to support these efforts.
Prediction modeling for disease risks, diagnoses, and
treatment decisions can likely also benefit from a
consideration of genetic heterogeneity and its challenges
during model development, allowing for enhancing
accuracy and generalizability. Cancer and other complex
diseases that are known to be highly heterogeneous are a
valuable resource for interrogating underlying genetic
heterogeneity and for developing and testing new
methods. New approaches to analyzing genetic heteroge-
neity should capitalize and build on the strengths of
traditional epidemiological frameworks to improve risk
estimates, capture missing heritability, increase predic-
tion accuracy, provide mechanistic insights, and identify
biomarkers and targets for treatment. We are confident
that these avenues for research on genetic heterogeneity
will aid in advancing the goals of personalized medicine.
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