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Abstract
Severe asthma is “asthma which requires treatment with high dose inhaled corticosteroids (ICS) plus a second controller (and/or
systemic corticosteroids) to prevent it from becoming ‘uncontrolled’ or which remains ‘uncontrolled’ despite this therapy.” The
state of control was defined by symptoms, exacerbations and the degree of airflow obstruction. Therefore, for the diagnosis of
severe asthma, it is important to have evidence for a diagnosis of asthma with an assessment of its severity, followed by a review of
comorbidities, risk factors, triggers and an assessment of whether treatment is commensurate with severity, whether the prescribed
treatments have been adhered to and whether inhaled therapy has been properly administered. Phenotyping of severe asthma has
been introduced with the definition of a severe eosinophilic asthma phenotype characterized by recurrent exacerbations despite
being on high dose ICS and sometimes oral corticosteroids, with a high blood eosinophil count and a raised level of nitric oxide in
exhaled breath. This phenotype has been associated with a Type-2 (T2) inflammatory profile with expression of interleukin (IL)-4,
IL-5, and IL-13. Molecular phenotyping has also revealed non-T2 inflammatory phenotypes such as Type-1 or Type-17 driven
phenotypes. Antibody treatments targeted at the T2 targets such as anti-IL5, anti-IL5Ra, and anti-IL4Ra antibodies are now
available for treating severe eosinophilic asthma, in addition to anti-immunoglobulin E antibody for severe allergic asthma. No
targeted treatments are currently available for non-T2 inflammatory phenotypes. Long-term azithromycin and bronchial
thermoplasty may be considered. The future lies with molecular phenotyping of the airway inflammatory process to refine asthma
endotypes for precision medicine.
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Introduction

Asthma is a global health problem. It has been defined as a
heterogeneous disease characterized by airway inflamma-
tion usually presenting with a history of wheeze, shortness
of breath, chest tightness, and cough that vary with time
and in intensity, associated with variable airflow obstruc-
tion. It affects around 300 million people globally of all
ages and ethnicities, with a death rate of ∼250,000 people
each year. In China, a recent survey of a representative
population of asthma found a prevalence of 4.2% of
asthma in adults aged 20 or above, representing 45.7
million Chinese.[1] Asthma is associatedwith a high degree
of morbidity, part of which is represented by those
suffering from asthma despite being treated with anti-
asthma medication, although many patients with asthma
remain undiagnosed or are not receiving adequate
medication. The recent asthma survey in China found
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15.5% of asthmatics reporting at least one emergency
room visit and 7.2% experiencing at least one hospital
admission in the past year. It is likely that this morbidity is
accounted for by inadequate treatment of asthma because
only 5% to 6% of asthmatics had been treated with
inhaled corticosteroids (ICS), suggesting undertreat-
ment.[1]

It is those asthma patients who experience uncontrolled
asthma despite adequate therapy who are now labelled as
suffering from severe asthma that represent an important
economic burden to healthcare providers. The prevalence
of severe asthma has been reported to be 3.6% amongst
asthmatics attending a hospital clinic in the Netherlands[2]

and 4% to 6% in a Swedish cohort.[3] In China, the
incidence of severe asthma amongst asthmatics ranges
from 3.4% to 8.3%.[4-6] In terms of death rates from
asthma, between 2011 and 2015 in high income countries,
these are reported to be the highest in UK, Australia and
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US averaging three to five standardized deaths per million
population, while those in lower income countries as high
as 12 to 25 per million population in Mauritius, South
Africa and Philippines (http://globalasthmareport.org/
burden/mortality.php; checked on October 6, 2021).
Data regarding China are sparse, but in 2004 to 2005, a
standardized death rate of 24.5 per million population
was reported.[7] It is to be noted that many of these asthma
death rates are preventable because of inadequate
diagnosis and treatment, and therefore the death rate
due to uncontrolled or severe asthma would be lower than
that reported. However, it is clear that the costs for
uncontrolled or severe asthma are higher than those for
controlled asthma. In Europe, the direct costs through
hospital care, medication and indirect costs from time out
of work range from 509 Euros per patient for those with
controlled disease to 2281 Euros for uncontrolled disease
per patient.[8] The costs of asthma in Europe are estimated
to be 21 billion Euros for asthmatics aged between 16 and
54 years in 2014. In the United States, $56 billion is the
estimated costs for asthma in 2015 (www.aafa.org/page/
cost-of-asthma-on-society.aspx; checked on October 5,
2021).

The last 20 years of research into asthma has improved our
understanding of the asthma with the recognition that far
from being a single disease entity, asthma is a complex
heterogenous disease that presents with several clinical
phenotypes driven by a multiplicity of molecular mecha-
nisms. This complexity of the severe asthma diathesis has
become fully appreciated following the international
agreement of a working definition of severe asthma that
has in turn led the foundation towards an increased
understanding of the underlying phenotypes and mecha-
nisms. The clarification of the inflammatory processes
such as the dominance of the Type-2 (T2) inflammation
and the concomitant phenotyping into clinical and
molecular phenotypes has contributed to improving the
management of these patients.[9] This has subsequently led
to the successful introduction of monoclonal antibody
therapies directed at various targets underlying T2
inflammation, an example of precision medicine applied
to severe asthma.

In this review, we will start with the agreed definition of
severe asthma and the clinical approach to the diagnosis
and management of patients with severe asthma. In
parallel, we will describe the clinical and molecular
phenotypes of severe asthma and the underlying driving
mechanisms of severe asthma that underpin these
phenotypes. Finally, we will review the new treatments
that have been introduced for severe asthma and
summarize current on-going research towards more
precision medicine for severe asthma.
Defining Severe Asthma

Prior to any consensus on the definition of severe asthma,
there has been several terms used by clinicians to
characterize these patients such as “brittle” asthma,
corticosteroid-resistant asthma, difficult-to-control
asthma, difficult-to-treat asthma, difficult chronic asthma,
and life-threatening asthma which qualifies the type of
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asthma presenting in a particular asthma patient. One of
the first international definitions of the World Health
Organization (WHO) Consultation on Severe Asthma
defined severe asthma as “uncontrolled asthma which can
result in risk of frequent severe exacerbations (or death)
and/or adverse reactions to medications and/or chronic
morbidity.”[10] This definition encompassed three groups
of asthmatics: (1) untreated severe asthma representing
patients who cannot receive treatment for their asthma
because they cannot afford the treatments or do not have
access to such treatments, (2) difficult-to-treat severe
asthma in patients who are treated for their asthma but are
not responsive to the treatments for many reasons
including not being adherent to treatments or not
receiving the right treatments, and (3) treatment-resistant
severe asthma where control is not achieved despite the
highest level of recommended treatment and asthma for
which control can be maintained only with the highest
level of recommended treatment.

A later definition of severe asthma from a task force of the
European Respiratory Society (ERS) and American
Thoracic Society (ATS)[11] focused on severe asthma
being a treatment-resistant asthma after the patient has
been treated effectively and all other cofounders, such as
medication compliance and comorbidities have been
addressed. The definition was: “When a diagnosis of
asthma is confirmed and comorbidities have been
addressed, severe asthma is defined as ‘asthma which
requires treatment with high dose ICS plus a second
controller (and/or systemic corticosteroids) to prevent it
from becoming ‘uncontrolled’ despite this therapy.”[11]

Uncontrolled asthma was defined according to the
presence of poor symptom control, frequent severe
exacerbations, serious exacerbations and presence of
airflow limitation.
Diagnosing and Managing Severe Asthma

The diagnosis of severe asthma will be made in clinical
practice in patients with asthma who remain uncontrolled
despite receiving asthma treatments, at which stage the
patient may be qualified as having “difficult-to-control
asthma.”Within this cohort of difficult-to-control asthma
who are referred to secondary care, a proportion will
ultimately receive a diagnosis of severe asthma. This
should happen when there has been exclusion of any other
diagnoses that could mimic asthma, when the right
treatments have been provided according to current
guidelines and when the patient has been shown to be
adherent to treatment. This approach will ensure that the
first two types of patients under the WHO classification
(untreated and difficult-to-treat asthma) have been
excluded and that we have a patient with severe asthma
according to the ATS-ERS definition of severe asthma.

It has been recommended that patients are evaluated
within an asthma specialist service by a physician who
specializes in asthma with access to the services of a whole
multidisciplinary team.[12] The assessment in a multidis-
ciplinary team environment allows the experienced
clinician to ensure that the classical symptoms of asthma
(fluctuating dyspnoea, wheezing, cough) are caused by
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Table 1: Systematic assessment of difficult-to-treat/severe
therapy resistant asthma.

Item Contents

1 Refer to an asthma specialized service
2 Confirmation of asthma diagnosis: Lung function

variability; bronchial provocation test
3 Exclude other conditions masquerading as asthma
4 Assess severity of disease: Poor symptom control,

airflow obstruction, frequent exacerbations, life-
threatening severe exacerbations

5 Check inhalation technique and adherence to
treatments

6 Optimization of treatment according to national
guidelines

7 Assess adherence to therapy
8 Adaptation and using self-management plans
9 Identification and avoidance of trigger factors
10 Assessment and management of comorbidities
11 Phenotyping according to clinical-physiological-

inflammatory parameters
12 Individualization of management plan
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asthma rather than one of the many other conditions that
can cause a similar medley of clinical symptoms.

A systematic assessment of the patient with difficult-to-
treat-asthma should be performed within a severe asthma
service [Table 1]. First, confirmation of the diagnosis of
asthma and its severity should be evaluated, a process that
can take up to 3 to 6 months of evaluation in the clinic.
Bronchodilator reversibility or assessing variability of
airflow obstruction with a peak flow diary or, if possible,
the measurement of bronchial hyperreactivity may be used
to support the diagnosis of asthma. High resolution
computed tomography (HRCT)of the lungs is not indicated
in the routine management of asthma but it can be used to
exclude alternative diagnoses or the existence of additional
conditions or co-morbidities of the lung. These conditions
include intra- or extra-thoracic airway obstruction, obliter-
ative bronchiolitis, chronic obstructive pulmonary disease,
congestive heart failure, hypersensitivity pneumonitis,
hyper-eosinophilic syndromes, allergic bronchopulmonary
aspergillosis and eosinophilic granulomatosis with poly-
angiitis (Churg-Strauss syndrome).

Assessing the factors that may underlie symptoms or
exacerbations such as poor adherence to treatments and
improper inhaler technique, comorbidities, and assess-
ment of risk factors and triggers must be made
[Supplementary Table 1, http://links.lww.com/CM9/
A939]. Anxiety and depression and socio-economic
factors may also form the basis of uncontrolled asthma.
Social and psychological or psychiatric support may also
be provided. The prevalence of treatable pulmonary and
non-pulmonary traits is higher in severe asthma compared
to non-severe asthma.[13] Use of a systematic approach
and attention to managing comorbidities can improve
outcomes, quality of life, asthma control, reduce health
care usage, and minimize the amount of oral corticoster-
oid (OCS) use.[14,15]
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Addressing non-adherence to prescribed inhaled and oral
therapies is important since it can exist in 30% to 70% of
prescribed medication[16] in difficult-to-treat asthma,
including the adherence to oral prednisolone therapy.[17,18]

For oral prednisolone adherence based on prednisolone-
cortisol assays, the adherence varied from 33% to 45% in
two specialist asthma centers.[18,19] Non-adherence has
been associated with poorer asthma outcomes, from
worsening symptoms scores, increase in hospitalization,
exacerbations rates, and mortality.[16] Unintentional non-
adherence can usually be addressed by better education,
once a daily inhaler preparations, and ensuring (where
possible) that if multiple inhalers in use are of the same type
used in the same manner. Intentional non-adherence is a
complex problem requiring further evaluation of the
reasons behind it and will require other members of the
asthma multidisciplinary team to be involved.[20]

Assessment of the severity of asthma based on the
definition of asthma control is necessary. Severity has
been defined according to either poor symptom control, or
presence of frequent severe exacerbations or serious
exacerbations or presence of airflow limitation.[11] Those
patients that do not meet those criteria, but whose asthma
control worsens when tapering corticosteroid dose, also
meet the criteria of severe asthma. These criteria can
predict future risks from asthma as well as side-effects of
medications.

Finally, treatments need to be reviewed and optimized.
Combination therapy of long-acting beta-agonist (LABA)
with medium/high dose ICS should be established, with
addition of leukotriene modifier and long-acting musca-
rinic antagonist (LAMA). Use of daily oral prednisolone
can be considered but with the introduction of targeted
antibody therapies for severe asthma, resort to the use of
OCS therapy may be reduced.

Self-management education should be provided with
incorporation of a personalized written or electronic
asthma action plan. A review at 3 to 6 months should
determine whether the patient has severe asthma, with the
diagnosis confirmed if the asthma remains uncontrolled
despite optimization of therapy. If the asthma remains
well-controlled, stepping-down treatment can be consid-
ered, and if asthma symptoms or exacerbations occur on
stepping down high dose treatment, then severe asthma
can be diagnosed.
Risk Factors and Co-morbidities of Severe Asthma

Severeasthmaphenotypeshavebeenassociatedwithgenetic
factors, age of asthma onset, disease duration, exacerba-
tions, rhinosinusitis, and inflammatory characteris-
tics.[21-24] Early childhood-onset severe asthma is
characterized by allergic sensitization and a strong family
historyofasthma.[25,26]Ontheotherhand, late-onset severe
asthma is often associated with female gender and reduced
lung function, persistent eosinophilic inflammation, nasal
polyps and sinusitis, and aspirin sensitivity.

[25,27-29]

Obesity is associated with childhood and adult-onset
severe asthma, but its impact may differ by age at onset
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and the degree of allergic inflammation.[30,31] Tobacco
smoke and environmental air pollution have been
considered as risk factors for more severe asthma.[32,33]

Cigarette smoking, exposure to air pollution and obesity
have been linked to corticosteroid insensitivity, also
present in severe asthma.[34-36] Exacerbations in severe
asthma aremore frequent in those with comorbidities such
as rhinosinusitis, gastro-oesophageal reflux disease,
recurrent respiratory infections and obstructive sleep
apnoea.[37] Sensitization to the fungus, Aspergillus
fumigatus, has also been linked to severe asthma
development in adults.[38]

Patients with severe asthma face the risks of lung function
decline, recurrent exacerbations, corticosteroid-induced
side effects and mortality,[39] being greater in those with
uncontrolled asthma as compared to those with controlled
asthma. Future risk of exacerbations can be predicted
from a history of exacerbations, in addition to other
factors including smoking history, poor lung function,
nasal polyps, obesity, and co-morbid depression.[40-44]

Loss of lung function in severe asthma has been associated
with exacerbation rate, OCS usage, and age.[45] Higher
mortality has been associated with poor asthma control
and presence of severe airflow obstruction.[46] Severe
asthma patients taking OCSs had more comorbidities that
may be related to systemic corticosteroid exposure such as
T2 diabetes, obesity, osteoporosis, hypertension, cata-
racts, and dyspeptic symptoms than those with milder
asthma.[47]

HRCT scan can also be used to denote future risks. The
presence of air trapping on HRCT has been associated
with asthma-related hospitalizations, intensive care unit
visits, duration of asthma, airway neutrophilia, and
airflow obstruction.[48] Mucus plugging is another recog-
nized feature of acute severe asthma and fatal asthma.[49]

Using a quantified mucus plugging scoring system, 67% of
asthmatics with forced expiratory volume in one second
(FEV1) of less than 60% predicted had plugs present in
four or more lung segments.[50]
Long-term OCS therapy

The co-morbidities that are associated with long-term
OCS therapy need to be addressed by monitoring bone
densitometry and treating reduced bone density appropri-
ately as well as monitoring for metabolic sequelae of OCS
use, such as non-alcoholic fatty liver disease. With the
advent of monoclonal antibodies, or biologic therapies,
the reliance on long-term OCS for the treatment of severe
asthmatics has been reduced. This could occur with the
early administration of such biologic therapies prior to
considering the use of OCS therapy. In addition, with
establishment of biologic therapies particularly antiinter-
leukin (IL) 5, anti-IL5Ra and anti-IL4Ra antibodies,[51-53]

the dose of OCS can be reduced and sometimes
discontinued.

Corticosteroid-insensitive patients continue to experience
side-effects from OCS therapy.[54] Use of sputum eosino-
phil counts which has been recommended by the ERS-ATS
guidelines may help toward adjusting to the lowest dose of
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OCS needed.[55] Low levels of sputum or blood eosinophil
counts indicate a non-eosinophilic phenotype that is likely
to be less responsive to OCS therapy, and therefore
corticosteroids can be down-titrated. On the other hand,
the blood eosinophil count may increase as a result of
down-titration of the OCS dosage, in which case this
would represent a corticosteroid-sensitive but relatively
resistant eosinophilic asthma. A recent expert consensus
statement relating to OCS use, tapering, adverse effects,
adrenal insufficiency, and patient-physician shared deci-
sion-making has been published and will be helpful in the
management of OCS therapy in severe asthma.[56]
Clinical Severe Asthma Phenotypes

Clinicians over the years have described various descrip-
tive phenotypes such as early childhood onset severe
allergic asthma, late adult-onset eosinophilic asthma,
obesity-associated asthma, aspirin-associated asthma, and
smoking-associated asthma. In addition, clinical pheno-
typing has also been done on the basis of clinical features
and the presence of chronic airflow obstruction and
exacerbations.[57]

Unbiased methods of clustering used in the Severe Asthma
Research Program have refined these clusters with
identification of phenotypes of (1) early onset atopic
asthmawithmild tomoderate severity, (2) obese late onset
non-atopic asthma female patients with frequent exacer-
bations, and (3) those with severe airflow obstruction and
use of daily OCS therapy.[27] In the European Unbiased
Biomarkers in Prediction of Respiratory Disease Out-
comes (U-BIOPRED) cohort that included severe smoking
and ex-smoking patients, three severe asthma phenotypes
were described: (1) late-onset asthma with past or current
smoking and chronic airflow obstruction, (2) non-
smoking severe asthma with chronic airflow obstruction
and use of OCS therapy, and (3) obese female patients
with frequent exacerbations but with normal lung
function.[58] Inclusion of sputum eosinophilia as a marker
of eosinophilic asthma has resulted in two clusters: one of
non-eosinophilic inflammation characterized by early-
onset, symptom-predominant group in female obese
patients, and another of eosinophilic inflammation with
late-onset disease, associated with rhinosinusitis, aspirin
sensitivity, and recurrent exacerbations,[25] later described
as a severe eosinophilic asthma phenotype[59] [Supple-
mentary Table 2, http://links.lww.com/CM9/A939].
Molecular Phenotypes of Severe Asthma

Definition of T2-high phenotype

The airway epithelium responds to external stimuli such as
allergens, pollutants and infectious agents (eg, viruses) to
cause the recruitment and/or activation of cells that are
involved in the innate and adaptive immune response
(such as dendritic cells, mast cells, and innate lymphoid
cells),[60] which leads to the orchestration of airway
inflammation and mechanisms that drive the pathophysi-
ology of asthma.[61] Thus, it controls the regulation of T2
cytokines through the production of the alarmins such as
thymic stromal lymphopoietin (TSLP), IL-25, and IL-33,
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Figure 1: Airway epithelium interactions with environmental factors to induce innate and adaptive immune and inflammatory responses with the release of TSLP, IL-33, and IL-25.
Generation of Th2 cells and ILC2s leads to the elaboration of IL-4, IL-5, and IL-13, inducing an allergic eosinophilic inflammation with eosinophil recruitment and activation, and IgE
production. Activation of Th1 and Th17 cells may contribute to neutrophilic inflammation. Airway wall remodeling and repair driven by epithelial-mesenchymal transformation and the
effects of ILs on airway structural cells such as airway smooth muscle cells and epithelial cells contribute to chronic airflow obstruction and bronchial hyper-responsiveness. Targets for
interleukin intervention against IL-4, IL-5, and IL-13 are shown. B7-2: Also known as cluster of differentiation 86 (CD86); GM-CSF: Granulocyte-macrophage colony-stimulating factor; IFN
g: Interferon g; IgE: Immunoglobulin E; IL: Interleukin; ILC2: Type 2 innate lymphoid cells; MHC II: Major histocompatibility complex; RANTES: Regulated upon activation, normal T cell
expressed and presumably secreted; TCR: T-cell receptor; T2: Type 2 inflammation; TGFb: Transforming growth factor b; Th0: T helper 0; Th1: T helper 1; Th2: T helper 2; Th17: T helper
17; TNFa: Tumor necrosis factor a; TSLP: Thymic stromal lymphopoietin.
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which can be induced following exposure of epithelial cells
to external stimuli including environmental pollutants,
viruses and allergens[62] [Figure 1]. IL-33 is a member of
the IL-1 cytokine family and an inducer of chemo-
attractants for T-helper type 2 cells (Th2). TSLP is an IL-7-
related cytokine secreted by airway epithelial cells that
activates dendritic cells to release chemokines that attract
and activate Th2 cells. Expression levels of both IL-33 and
TSLP are increased in airway epithelium of patients with
asthma, particularly in those with severe asthma.[63,64]

These alarmins can be produced in response to allergens
such as house dust mite and A. fumigatus in a Toll-like
receptor 4/myeloid differentiation factor 88 (MyD88)-
dependent manner,[65,66] as well as exposure to diesel
exhaust particles[67] and to virus infections.[68] There is
also increased expression of the IL-33 and TSLP receptors
in sputum cells from patients with severe asthma.[69]

The alarmins TSLP and IL-33 direct T-helper cells towards
a Th2 phenotype with the secretion of IL-4, IL-5, and IL-
13, and also directly stimulate innate lymphoid T2 cells to
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produce IL-5 and IL-13.[62] The Th2 cytokines, including
IL-3, IL-4, IL-5, IL-9, and IL-13, are expressed in
bronchial submucosa of patients with the disease. IL-5
is involved in the terminal differentiation of eosinophils
and in the activation of airway eosinophils. IL-13
increases the activation of inducible nitric oxide synthase
(iNOS) enzyme in the epithelium, leading to an increase in
exhaled nitric oxide (NO), goblet cell metaplasia and
bronchial hyperresponsive-ness. IL-4 promotes immuno-
globulin E (IgE) synthesis and primes the vascular
endothelium for the extravasation of eosinophils.

T2-high and severe eosinophilic asthma

Hierarchical clustering of differentially expressed genes
between eosinophilic and non-eosinophilic inflammatory
profiles using sputum cell transcriptomics revealed three
molecular phenotypes.[70] The first transcriptomic-associ-
ated cluster (TAC1) was characterized by the immune
receptors of IL-33, eotaxin (CC chemokine receptor 3),
and TSLP with the highest enrichment of gene signatures

http://www.cmj.org


Figure 2: Three transcriptomic-associated clusters (TAC) obtained from hierarchical clustering of differentially expressed genes obtained by comparing the transcriptome of sputum cells
obtained from eosinophil-high and eosinophil-low sputum from patients with severe asthma. Each of the lower boxes represent the genes or class of genes that characterize each TAC
signature, the salient clinical features and the sputum granulocytic inflammation. CCR3: CC chemokine receptor 3; FEV1: Forced expiratory volume in one second; IFN: Interferon; IL-33R:
Interleukin 33 receptor; TNF: Tumor necrosis factor; T2: Type 2 inflammation; TSLPR: Thymic stromal lymphopoietin receptor; U-BIOPRED: Unbiased Biomarkers in Prediction of
Respiratory Disease Outcomes.
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for the IL-13/T2-inflammation signature being associated
with sputum eosinophilia [Figure 2]. This grouped
patients with severe asthma with OCS dependency,
frequent exacerbations, and severe airflow obstruction,
characteristics of the severe eosinophilic asthma pheno-
type[59] [Supplementary Table 2, http://links.lww.com/
CM9/A939].

Using a different approach to determine the enrichment of
an IL-13/T2-high gene expression signature in bronchial
epithelial cells of patients with asthma, a T2-high
phenotype was found in up to 37% of patients with
severe asthma.[71] The T2-high patients were more
symptomatic despite treatment with ICS and most often
on OCS therapy, characterized by higher levels of nitric
oxide in exhaled breath and of blood and sputum
eosinophils. This, therefore, defined the molecular signa-
ture of the severe eosinophilic asthma. Using a composite
measure of IL-4, IL-5, and IL-13 gene expression in
induced sputum cells from severe asthma patients, 70% of
patients on high dose ICS had a T2-high phenotype.[72]

The “T2-high” phenotype[70] is likely to be driven by
activated eosinophils through the production of cytotoxic
proteins such asmajorbasic protein, eosinophil peroxidase,
eosinophil cationic protein and eosinophil derived neuro-
toxin, which cause damage to epithelial and other lung
structural cells.[73] Release of proinflammatory cytokines
and chemokines and of lipid eicosanoid products may
contribute to bronchial hyperresponsiveness and airway
wall remodeling. The success of anti-IL5 and anti-IL5Ra
antibody treatments in reducing exacerbations in severe
eosinophilic asthma has firmed up this phenotype as an
endotype while the therapeutic effects of anti-IgE antibody
support the severe allergic asthma phenotype.
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Non-T2 pathways and neutrophilic asthma

The second cluster, TAC2, derived from the U-BIOPRED
sputum transcriptomic analysis was characterized by
inflammasome-associated genes, interferon-a and tumor
necrosis factor-a-associated genes, with sputum neutro-
philia, high serum C-reactive protein levels and a higher
prevalence of eczema, defining patients with neutrophilic
asthma[69] [Figure 2]. The third phenotype (TAC3) was
characterized by metabolic pathway genes, ubiquitination
and mitochondrial function which are normally reduced
in asthma and with paucigranulocytic inflammation and
little airflow obstruction. The non-T2 pathways that could
drive asthma pathobiology include type 1 innate lymphoid
cells, inflammasome, neutrophil and IL-17 activation,
oxidative phosphorylation, and interferon-gamma (IFNg)
activation.[74] Th1 CD4+ T cells produce IFNg which
plays a role in controlling intracellular infections and in
autoimmunity. Th1 cells expressing IFNg are increased in
bronchoalveolar lavage fluid, sputum cells and bronchial
biopsies from patients with asthma.[75-77] Bronchoalveo-
lar lavage fluid from severe asthmatic patients showed
greater Th1 cells and neutrophil numbers accompanied by
higher IFNg levels than in non-severe asthmatics.[78]

Th17 cells are CD4+ T cells that express IL-17A, IL-17E,
IL-17F, and IL-22 mediating neutrophil activation via IL-
8 production.[79,80] Th17-associated cytokines IL-17A
and IL-17F have been localized in the airways of patients
with severe asthma.[81] Th17 cells have been implicated as
a cause of neutrophilia in severe asthma.[82] An “IL-17-
high” asthma phenotype has been characterized by
bronchial epithelial dysfunction and upregulated antimi-
crobial and inflammatory response.[83] An IL-6 trans-
signaling signature developed in U-BIOPRED also
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indicated an IL-6 phenotype that drives non-T2 airway
inflammation and epithelial dysfunction.[84]

Sputum neutrophilia has been associated with severe
asthma, corticosteroid insensitivity, and chronic airflow
obstruction[85-88] and is also observed during acute
exacerbations.[89,90] Sputum neutrophilic inflammation
associated with inflammasome activation supports the
presence of a neutrophilic phenotype of asthma.[70] In
neutrophilic asthma, an elevated gene expression of
nucleotide-binding domain and leucine-rich, repeat-con-
taining family, pyrin domain containing 3, caspase-1 and
IL-1b in sputum cells has been reported.[69,91] Increased
airway neutrophilia may be the result of infection,
exposure to air pollutants, or treatment with corticoste-
roids, particularly OCSs.[92]
Non-T2 pathways: airway wall remodeling

Airway wall remodeling is characterized by an increase in
airway smooth muscle mass, subepithelial fibrosis and
increased numbers of mucous glands and goblet cells. The
epitheliuminsevereasthmais thicker than inmild-moderate
asthma, with increased proliferation, apoptosis and release
of pro-inflammatory factors.[93] Airway smooth muscle
mass increase is associated with airflow obstruction and
bronchial hyper-responsiveness, with an enhanced prolif-
erationrate.[85,94,95]Fibrocytes,whichcandifferentiate into
myofibroblasts, are increased in blood and in airway
smoothmusclebundles inasthmapatientswithfixedairway
obstruction and/or severe disease.[96-98] Subepithelial
thickening of the bronchial reticular layer is a feature of
asthma of all severities.[22,85,99] Patientswith severe asthma
have increased expression of transforming growth factor-b
isoforms and collagen deposition, compared to those with
mild asthma, in association with eosinophilia.[100,101] In
severe eosinophilic asthma, the increased subbasement
membrane thickness was associated with matrix metal-
lopeptidase 10 andMET protooncogene, receptor tyrosine
kinase (MET) which are the most differentially expressed
proteins that drive airway wall remodeling.[102]

HRCT scan studies in asthmatic subjects may reveal
abnormal radiologic findings, such as bronchial wall
thickening, bronchial wall dilatation, bronchiectasis,
mosaic lung attenuation, mucus plugging, prominent
centrilobularopacities, emphysema, andatelectasis.[103,104]

Mosaic lung attenuation represents involvement of small
airways (<2mm) and acinar air spaces. Its delineation can
be improved by using a expiratory phase computerized
tomography (CT).[105] HRCT scan abnormalities such as
bronchial wall thickening (62%), bronchial enlargement
(40%), and emphysema (8%) have been shown to be
present in 80% of severe asthma subjects.[106]
Non-T2 pathways: corticosteroid insensitivity

Severe asthma may be considered as having poor
therapeutic response to corticosteroid therapy.[107,108]

The defining feature of severe asthma is need for high dose
ICS to gain disease control or despite this, the disease is
poorly controlled (as previously described in this review),
with only 62% of moderate to severe asthma gaining
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control with ICS and LABAs inhalers.[109] Corticosteroid
insensitivity has been defined clinically by <15%
improvement of peak expiratory flow rates from baseline
after receiving 7 to 12 days of 30mg of prednisolone.[110]

Half of severe asthma patients in the U-BIOPRED cohort
were on OCS therapy, and had a higher prevalence of
nasal polyps, uncontrolled asthma, and a higher number
of exacerbations compared with those not on OCS
maintenance,[111] associated with elevated fractional
exhaled nitric oxide (FeNO) and sputum eosinophils,
evidence of corticosteroid insensitivity. After treatment
with intramuscular triamcinolone, most patients showed
little response in terms of lung function (FEV1), blood
eosinophil count or levels of FeNO, accompanied by little
change in the expression of IL-4, IL-5, and IL-13 genes in
sputum cells, indicating a degree of corticosteroid
insensitivity in this group.[112]

Cigarette smoking, bacterial infections, obesity, and
deficiency of vitamin D have been associated with
corticosteroid insensitivity.[107,108] Impaired nuclear trans-
location of the glucocorticoid receptor, activation of
mitogen-activated protein kinase pathways, activation of
transcription factors by IFNg and increased oxidative stress
resulting in reduction in histone deacetylase expression and
activity are implicated molecular mechanisms.[108] The
observations of overexpression of Haemophilus parain
fluenzae (H. parainfluenzae) in bronchoalveolar lavage
fluid and culture of H. parainfluenzae with macrophages
inducing corticosteroid resistance in these cells link steroid
resistance toHaemophilus infection.[113] Th17 cells may be
induced by bacterial infections, and have been implicated in
corticosteroid insensitivity.[114,115]Theanti-IL5aantibody,
mepolizumab,[51] anti-IL-5Ra antibody, benralizumab,[52]

and anti-IL4Ra antibody, dupilumab[53] reduced mainte-
nancedoseofOCSby50%inOCS-dependentpatientswith
severe eosinophilic asthma, implicating a role for these T2
cytokines in corticosteroid insensitivity. Therefore, bothT2
and non-T2 pathways may underlie corticosteroid insensi-
tivity in severe asthma.
Phenotyping and Biomarkers for Severe Asthma

After the diagnosis of severe asthma has been ascertained,
phenotyping in terms of whether the patient falls within
the category of severe eosinophilic asthma should be
determined [Figure 3]. This is often referred to as a T2 high
phenotype asthma because the severe eosinophilic asthma
has been linked to T2 inflammation as measured in the
bronchial epithelium by the expression of genes involved
in T2 inflammation.[71] Using this measure of T2
inflammation, a blood eosinophil count of 115 cells/mL
was found to have the highest sensitivity and specificity for
detecting T2 inflammation with a receptor operating curve
discrimination of 68.9%.[71] The reason why this
phenotype should be ascertained is that there are biologic
treatments that target specific components of the type-2
inflammation (IL-5, IL-4, and IL-13) and provide clinical
benefits when given to severe eosinophilic asthma patients.

Blood eosinophil count has been used to identify T2-high
status, derived from the clinical trials of these biologic
therapies. A level of 300 cells/mL blood eosinophil count
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Figure 3: Management algorithm for severe asthma. After confirming the diagnosis of severe asthma, Type-2 (T2) biomarkers which are currently based on blood eosinophil count,
fractional exhaled nitric oxide (FeNO) and total serum immunoglobulin E (IgE) and presence of allergies can be used to diagnose severe eosinophilic or severe allergic asthma. Those with
high-T2 biomarker and regular exacerbations of asthma can be offered biologic anti-T2 treatments. Those with low T2-biomarker will need to have a reduction in oral corticosteroid dosage
(OCS) in case the steroids are suppressing the level of T2-biomarkers. Trial of long-term azithromycin or bronchial thermoplasty may be considered. IL: Interleukin; IL4Ra: Interleukin 4
receptor alpha; IL5Ra: Interleukin 5 receptor alpha; ppb: Part per billion; SPT: Skin prick tests; sIgE: Specific immunoglobulin E.
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has been used as the cut-off point although a level of> 150
cells/mL has also been used, with most studies showing
that the higher the cut-off point used, the greater the
beneficial effects of the biologic therapies (anti-IL5, anti-
IL5Ra, and anti-IL4Ra antibodies) in terms of reduction
in exacerbation rates. For anti-IgE therapy, a blood
eosinophil count> 260/mL is predictive of this response in
severe allergic patients.[116]

Sputum eosinophils are the most sensitive and specific
noninvasive biomarker for eosinophilic airway inflamma-
tion,[117] but is difficult to obtain reliably and measure
easily. A differential cell count of> 2% to 3% indicates an
underlying eosinophilic inflammatory process and is
diagnostic of eosinophilic airway disease.[117]

FeNO is another biomarker of T2 inflammation of the
airways, indicating the activity of T2 cytokines IL-4 and
IL-13, as these cytokines upregulate the expression of
epithelial iNOS.[118] Recent evidence has confirmed the
utility of using FeNO as an indicator of T2 inflammation,
with its use as a tool for precision medicine in the
management of severe asthma during periods of stability
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and instability.[119] The severe asthma ATS/ERS and
Global Initiative for Asthma (GINA) guidelines have
indicated that a FeNO > 20 parts per billion (ppb) is
enough to indicate T2-high signal and to identify those
who are likely to respond to current anti-T2 biologic
therapies.[120]
Therapeutic Approaches for Severe Asthma

Once the patient with severe asthma has been phenotyped,
consideration of therapeutic approaches remains the final
important aim. Use of currently available controller
treatments need to be ascertained irrespective of the
phenotype of the asthma. Consideration needs to be given
regarding new biologic therapies, particularly if the
patient fulfils the criteria of a severe allergic or severe
eosinophilic asthma, both being under the umbrella of T2-
high inflammation[121] [Figure 3]. The list of currently
available anti-T2 biologic therapies is shown in Figure 4.
This represents the start of precision medicine for severe
asthma.[9,122] There are currently no specific therapies for
the various T2-low phenotypes, including neutrophilic
asthma, airway wall remodeling and corticosteroid
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Figure 4: Therapeutic antibodies targeting type 2 cytokines, IL-4, IL-5, and IL-13, and
anti-IgE. IgE: Immunoglobulin E; IL: Interleukin; IL4Ra: Interleukin 4 receptor alpha; IL5Ra:
Interleukin 5 receptor alpha; T2: Type 2 inflammation.
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insensitivity. However, long-term azithromycin and
bronchial thermoplasty may be considered. Currently,
anti-TSLP and anti-IL-33 antibody therapies are being
developed which might target both T2-high and T2-low
phenotypes.
Current Controller Treatments

Patients with severe asthma are by definition usually at
steps 4 and 5 of the therapeutic recommendations of the
GINA guidelines (https://ginasthma.org/wp-content/
uploads/2021/05/GINA-Main-Report-2021-V2-WMS.
pdf). Controller therapies using a combination of ICS and
LABA remain the backbone of treatment, with the
possibility of using the maximum dose of ICS, although
the step-up of medium to high-dose ICS may only provide
a small improvement in control. Nevertheless, a trial of
high dose ICS is recommended with the proviso that if
there is little benefit, maintenance ICS dose should revert
to the medium dose. The more recent recommendation
from GINA is on the use of the maintenance and reliever
therapy approach using the single inhaler of formoterol
and an ICS, for which there is support for its efficacy in
reducing severe exacerbations.[123] Triple therapy of
LABA-LAMA-ICS is now recommended for the treatment
of severe asthma, with previous studies showing that the
LAMA, tiotropium bromide, added to ICS-LABA inhala-
tion improved lung function and reduced exacerbations
compared to ICS-LABA alone.[124]
Biologic antibody therapies

Omalizumab

Omalizumab, the first approved biologic for asthma, is a
recombinant humanized monoclonal antibody that binds
to circulating free IgE, thereby preventing IgE binding to
its receptor (FceR1) expressed on the surface of basophils
and mast cells and therefore the release of mediators from
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these cells.[125] Omalizumab is indicated for severe allergic
asthma in whom appropriate pharmacotherapy and
allergy avoidance have not been helpful and in those
with a total serum IgE from 30 to 700 IU/mL (with the
possibility of including those with serum IgE levels up to
1300 IU/mL) and raised specific IgE to at least one
aeroallergen.[11] A meta-analysis that included 3000
patients with moderate to severe asthma reported a
decreased risk of exacerbation while ICS doses were
successfully reduced during omalizumab treatment.[126] In
a study of severe allergic asthma, omalizumab led to a
25% reduction in exacerbations while improving quality
of life scores and asthma symptom scores.[127]

Treatment response should be evaluated at 4 months,
using a combination of quality of life, exacerbation
frequency and health care use. In a post hoc analysis of the
EXACT study of omalizumab in subjects with moderate-
to-severe persistent asthma, a high blood eosinophil count
> 260 cells/mL and a FeNO > 19.5 ppb were found to
predict those patients likely to benefit most with a
reduction in exacerbation frequency.[117] However, in a
prospective real-world study (PROSPERO study), these
biomarkers had minimal predictive value for omalizumab
treatment outcomes, particularly for exacerbation reduc-
tion,[128] questioning the need for using these biomarkers
to predict responders.

Anti-IL-5/anti-IL-5Ra antibodies: mepolizumab, reslizumab,
and benralizumab

Mepolizumab, reslizumab, and benralizumab block the
IL-5 pathway which is the key cytokine for eosinophil
maturation, survival and transition of this granulocyte
from the bone marrow into the systemic circulation.
Mepolizumab and reslizumab are immunoglobulin G
(IgG) 4 humanized monoclonal antibodies that bind IL-5,
thus preventing it from binding to the IL-5Ra on
eosinophils.[121] On the other hand, benralizumab is an
IgG1 humanized monoclonal antibody that targets the a
subunit of the IL-5 receptor. It induces apoptosis of
eosinophils and basophils through antibody-dependent
cell mediated cytotoxicity.

These three monoclonal antibodies (mAbs) have been
approved for use in patients with severe eosinophilic
asthma that demonstrate a blood eosinophil count of
≥300 cells/mL and experience frequent exacerbations.
They reduce the risk of exacerbations by 40% to 50%
with modest effects on lung function,[129-132] which have
been replicated in real-world practice.[133-135] Mepolizu-
mab and benralizumab also reduced the maintenance dose
of OCS in OCS-dependent patients with severe eosino-
philic asthma by 50% while reducing the frequency of
exacerbations.[51,52]

The 2019 GINA guidelines for severe asthma recommend
the use of an anti-IL-5 and anti-IL-5Ra antibody for
patients who remain uncontrolled with exacerbations in
the past year despite step 4 or 5 therapy and who have a
blood eosinophil count > 300 cells/mL (https://ginasthma.
org/wp-content/uploads/2021/08/SA-Pocket-guide-v3.0-
SCREEN-WMS.pdf). The ERS-ATS recommendation on
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the other hand suggests a blood eosinophil count cut-off
point ≥150 cells/mL.[119]
Anti-IL4Ra antibody: dupilumab

Dupilumab is a fully humanized monoclonal antibody
directed at the a-subunit of the IL-4 receptor leading to the
blockade of the effect of the T2-cytokines, IL-4, and IL-
13,[121] involved in airway recruitment of eosinophils, B
cell class switch to IgE production, goblet cell hyperplasia
and mucus production, airway remodeling through
airway smooth muscle proliferation and collagen deposi-
tion and airway epithelial cell expression of iNOS.
Dupilumab decreased exacerbations in moderate to severe
uncontrolled asthma, with greater improvements in those
with higher blood eosinophil levels, reaching 67% in those
patients with blood eosinophils ≥300 cells/ mL.[136,137]

The greatest treatment benefit in terms of reduction in
exacerbation rates and improvement in FEV1 as compared
with placebo was observed in patients with elevated T2
biomarkers (baseline blood eosinophil count of ≥150
cells/mL and baseline FeNO of > 25 ppb).[128] It is also
effective in reducing OCS dose in those with severe OCS-
dependent asthma while reducing exacerbation risk.[53]

Dupilumab therapy is also associated with improvements
in lung function, asthma control and quality of life.

While the GINA severe asthma guidelines suggest using
dupilumab for patients with severe eosinophilic asthma
with exacerbations in the past year with either a blood
eosinophil count of ≥150 cells/mL or a FeNO>25 ppb
(https://ginasthma.org/wp-content/uploads/2021/08/SA-
Pocket-guide-v3.0-SCREEN-WMS.pdf; checked on Octo-
ber 5, 2021), the ERS-ATS guidelines advise its use in
severe eosinophilic asthma including corticosteroid-
dependent asthma regardless of blood eosinophil
counts.[119] However, those with higher blood eosinophil
counts and higher FeNO are expected to respond better.

The indications for using these expensive biologic
therapies are also dependent on the regulations set by
the health care system of each country, which could be
determined not only by being medically suitable for such
therapies according to biomarker status, but also by other
factors such as cost-benefit issues and affordability.
Other Therapies for Severe Asthma

Bronchial thermoplasty

Bronchial thermoplasty is a bronchoscopic procedure
whereby intraluminal thermal energy is applied to the
airway wall, with the aim of ablating the airway smooth
muscle, although epithelial cells and nerves are also
affected.[138] In patients with severe asthma, there is a
modest effect in improving asthma-related quality of life
scores and bringing some reduction in asthma exacer-
bations.[11] A sustained reduction in severe exacerbations
over a 3-year follow-up period after bronchial thermo-
plasty in severe asthma with no improvement in pre- or
post-bronchodilator FEV1 has been reported.[139] There is
limited information on the identity of patients with severe
asthma who will benefit most from bronchial thermo-
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plasty. It has been suggested that bronchial thermoplasty
should be considered for patients with severe asthma
associated with non-T2 inflammation and non-eosino-
philic inflammation. This procedure in patients with
severe asthma resulted in 11.8% of 152 procedures
associated with emergency respiratory readmission and in
48.1% having a post-procedural stay in hospital.[140] A
10-year review of clinical data in patients that have
undergone bronchial thermoplasty reported an increased
rate of bronchiectasis.[141]

The Asthma guidelines of the Expert Panel Working
Group of the National Heart Lung, and Blood Institute in
the US have conditionally recommended against bronchial
thermoplasty in individuals aged 18 years and older with
persistent asthma.[142] It advised for the conduct of
registered clinical trials and long-term registry studies of
bronchial thermoplasty to fully assess the clinical benefits
and harms.
Long-term macrolide therapy

An abnormal microbiome has been associated with severe
asthma.[143] The use of antibiotics in the treatment of
severe asthma is therefore of interest with a potential two-
pronged mode of action using macrolide antibiotics as an
antineutrophilic and an anti-bacterial agent. In a placebo-
controlled study of patients with symptomatic asthma on
ICS and LABA, azithromycin administered three times per
week reduced the number of exacerbations (1.86 per
patient year in the control group versus 1.07 in the active
group) together with an improvement in asthma and
quality of life.[144] It was not clear whether severe
exacerbations or hospitalizations were reduced. Patients
with eosinophilic asthma benefited as well as patients with
non-eosinophilic asthma. Azithromycin reduced airway
H. influenzae load, with no changes in total or pathogenic
bacterial loads. But there is emergence of antimicrobial
resistance. It is not known whether this therapy does
improve outcomes among patients with severe asthma.
The ERS-ATS severe asthma guidelines suggest a trial of
macrolide treatment to reduce asthma exacerbations in
adult asthma subjects on GINA/National Asthma Educa-
tion and Prevention Program (NAEPP) step 5 therapy that
remain persistently symptomatic or uncontrolled, but they
suggest against the use of chronic macrolide treatment in
children and adolescents with severe uncontrolled
asthma.[119]
Future directions

The introduction of these T2 targeted biologic antibody
treatments for severe asthma remains a big advance in the
treatment of asthma. One particular area of therapeutic
advance has been in reducing the need for OCS therapy in
severe asthma by these biologic therapies. The current
development of other biologics such as the anti-TSLP and
the anti-IL-33 antibody represents further development as
they blocks the effect of these alarmins, TSLP and IL-33,
produced by epithelial cells interacting with environmen-
tal factors such as allergens, pollutants, and infectious
agents. Patients with severe, uncontrolled asthma who
received tezepelumab, a monoclonal antibody to TSLP,

https://ginasthma.org/wp-content/uploads/2021/08/SA-Pocket-guide-v3.0-SCREEN-WMS.pdf
https://ginasthma.org/wp-content/uploads/2021/08/SA-Pocket-guide-v3.0-SCREEN-WMS.pdf
http://www.cmj.org


Chinese Medical Journal 2022;135(10) www.cmj.org
had fewer exacerbations and better lung function, asthma
control, and health-related quality of life than those who
received placebo irrespective of the blood eosinophil
counts.[145] Thus, these may be targeting not only T2-
mechanisms but also non-T2 mechanisms. Once these
non-T2 pathways that may be driving severe asthma are
defined, specific therapies can be developed to treat
patients with non-T2 phenotype. The failure of some non-
T2 targeted therapies such as anti-IL-17 or anti-tumor
necrosis factor antibody treatments may have resulted
from inadequate selection of asthma phenotype. Further
advances will result from the application of precision
medicine to severe asthma, which is bringing the right
treatment to the right patient.[9] The introduction of these
efficacious treatments raises the issue as to whether these
may represent disease modifying treatments, particularly
if introduced earlier at the onset of severe asthma.
Therefore, the best time to introduce these treatments
for severe asthma with respect to the available treatments
needs to be determined. The future looks very promising
for severe asthma.
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