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ABSTRACT: Hydraulic fracturing (HF) is an important technique for enhancing the
permeability of petroleum and gas reservoirs. To understand the coupling response
mechanism of fluid pressure and in situ stress during the expansion of hydraulic fractures�
based on the theory of the fluid flow of seepage porous media and damage mechanics�a
poromechanical model of hydraulic fracture propagation is proposed and the finite element
method (FEM) numerical weak coupling calculation method of hydraulic fracturing is
realized. First, the effect of the coupling stress field is described by introducing the β value of
the amount of pore volume that varies, resulting from internal pressure per unit of fluid
internal, and the coupling calculation method of the pore pressure-effective stress-element
damage-pore pressure expansion coefficient is formulated. Second, based on the concept of
damage localization, a calculation method for the hydraulic fracture opening equation is
proposed, and then the element damage-hydraulic fracture opening-permeability tensor-pore
pressure field calculation cycle is established. The model indicates four stages of fracture
propagation: I, fracture nucleation, II, kinetic propagation, III, steady propagation, and IV, propagation termination. Finally, as an
example, a numerical simulation of three-dimension hydraulic fracturing is performed. In comparison to previous research, the
morphology of the fracture zone and the fluid pressure contour of the horizontal section are approximately ellipses, which verify the
feasibility of the weak coupling calculation method; the fracture parameters verify its accuracy, which include the length, width, and
fluid pressure.

1. INTRODUCTION
Hydraulic fracturing (HF) is an important technique to
enhance the permeability of petroleum and gas reservoirs. The
mechanisms of fracture propagation are explained well by
analytical solutions (2D,1−3 P3D,4,5 and PL3D6,7), which
mainly deal with the lubricant flow, elastic displacement of
fracture walls, and incomplete coupling between the fluid front
and the fracture tip. However, the analytical solutions can only
output the temporal and spatial distributions of hydraulic
fracture parameters such as fracture opening, length, and fluid
pressure on a predefined propagation path. Even some finite
element methods (FEMs),8−11 based on cohesive zone models,
need to predefine the propagation path on a lined node. These
models essentially place the parallel plate crack model in an
infinite elastic body. Although they have good planar
applications, the complexity of grid technology is a
disadvantage factor for large-scale engineering applications.
And they ignore the temporal and spatial distributions of
stress, damage, and pore fluid pressure around the injection
hole, which are significant for monitoring the hydraulic fracture
zone growth and assessment of permeability enhancement.12,13

In addition, some microscopic models are also used for the
numerical simulation of hydraulic fracturing, such as discrete
element models (DEMs),14,15 discrete fracture seam network
model (DFN),16,17 and lattice model (Lattices).18,19 These

models mainly reflect the microscopic formation of crack
mechanism, focusing on the complexity and microseismic
properties of cracks. This method has a certain arbitrariness in
determining the microscopic primitive mechanism and
attribute parameters. It will lead to fluctuations in the
macroattribute evaluation, which is not conducive to large-
scale engineering applications and evaluation.
The poromechanical model can satisfy both the needs of

assessment of hydraulic fracture propagation. It is based on the
coupling analysis between the porous flow and stress and
damage utilizing the FEM, which comprises direct coupling
and load transfer methods.20 The former is also referred to as
strongly coupled, where the final solutions of the unknown
multiple physical field variables are recovered by solving the
simultaneous equations. However, many engineering problems
do not satisfy the conditions of strong coupling, especially for
some dynamical evolution problems such as damage-induced
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fracture, where it is difficult to ensure solution convergence.
The load transfer method approaches a solution of the
unknown field variables by successively solving the multi-
physical field equations, where one field variable is used as an
input for the solution of another, which is repeated through a
sequence of couplings until a tolerance for an equilibrium
solution is reached. This load transfer, sequential, or leap-frog
method represents only weak coupling and since fluid-driven
fractures are always evolving; therefore, this method is
particularly appropriate for dealing with the nonlinearities in
these problems. However, there are some key points in the
poromechanical model to be dealt with, such as how to define
the fracture opening using the continuum variables, how to
deal with the strain energy loss resulting from hydraulic
fracturing, how to control the direction of fracture propagation,
and how to apply the fluid load to simulate the continuum
injection. Previously, some hydraulic fracturing models have
mitigated these issues.21−23

In the present paper, based on the theory of the fluid flow of
seepage porous media and damage mechanics, an anisotropic
tensor format is established for the hydromechanical properties
of porous media; a poromechanical model of hydraulic fracture
propagation is proposed, and the FEM numerical weak
coupling calculation method of hydraulic fracturing is realized.
This comprises several components: (1) the fracture opening
is calculated based on damage localization, employing the
thickness of localization; (2) the strain energy loss resulting
from fracturing is compensated by the fluid pressure invasion
through poroelastic coupling; (3) the direction of fracture
propagation is controlled by the tensors of the hydro-
mechanical properties induced by hydraulic fracture opening;
and (4) continuous injection is achieved with the fracture
growth through a loading scheme of stepwise increases in
solution duration. As an example, the model is used to assess
hydraulic fracture propagation in a three-layer reservoir; the
morphology of the fracture zone and parameters such as
length, width, and fluid pressure are validated with the
analytical solutions. The model exhibits four stages of fracture
propagation: fracture nucleation, kinetic propagation, steady
propagation, and propagation termination, which represents
the full coupling between the fracture tip and fluid front.

2. CONTROLLING EQUATIONS
We define the relationships that enable the simulation of the
effects of fluid pressure on the propagation of a fluid-driven
fracture. This involves both the transport of fluid and the
mechanism of fracture expansion driven by that fluid.

2.1. Flow in Porous Media. Under the action of pressure
gradient, water flow penetrates into the porous media of the
coal reservoir, which is a dynamic process of hydraulic
expansion. The porosity−elastic coupling conceptual model
is shown in Figure 1. In the initial stage of dynamic adjustment,
the q value of the velocity of fluid flowing into the pore is
greater than that flowing out, and the redundant water
accumulates in the pores to form pore fluid pressure P
resulting in the effective stress σ′ increasing. Second, with the
increase of P, the inflow pressure gradient gradually decreases,
while the outflow pressure gradient gradually increases. In the
final stage, the pressure gradient at the inflow end and outflow
end disappears, the q of the inflow is equal to the outflow, and
the seepage of porous media reaches a steady-state flow.
During reservoir formation, the porous flow satisfies Darcy’s

law:24

q K P= (1)

where ∇ is the differential operator vector and K is the
permeability. Using the law of mass conservation, the pore
pressure is determined as

t
q

d
d

T+ =
(2)

where ξ is the mass of fluid, ϖ is the fluid generation rate of a
unit solid volume, and t is time. According to the coupling
between the compressibility of the solid and fluid, the
differential change in the fluid mass, dζ, can be represented as

V
m C P C P C Pd

1 d
( d d ) d

b f
pp f pc c= +

(3)

where ρf is the mass density of the fluid, dm is the differential
increment of fluid mass, Vb is the bulk volume, and ϕ is the
porosity. Equation 3 shows that the volume increment of a
fluid consists of three parts, where ϕCccdP and ϕCfdP are the
pore volume increments caused by the fluid pressure
increment, dP, resulting from pore elasticity and fluid
compressibility; ϕCpcdPc is the compressive volume increment
of the pore volume caused by an increment in the confining
stress dPc. The coefficient Cpp represents the internal
expansibility in volume resulting from increments in the fluid
pressure, Cpc is the internal contractility in volume resulting
from increments in the confining stress, and Cf represents the
fluid compressibility resulting from increments in the fluid
pressure:25

Figure 1. Porosity−elastic coupling conceptual model: (a) the initial stage, (b) pressure gradient gradually increasing stage, and (c) the steady-flow
stage. G: porous media; P: pore fluid pressure; σh: in situ stress; and qin and qout: fluid flow in and out of the RVE, respectively.
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where Vp is the pore volume and Pc = σii/3 is the average stress,
whose sign convention is defined as positive for compression.
Further, we can define the storage coefficient of fluids by
adding the first and third expressions in eq 4, as C = Cpp + Cf.
Rewriting eq 3 and substituting this into eq 2 yield

C
P
t

K P C
P
t

d
d

( )
d
d

T
pc

c= + +
(5)

This states that in any element of the porous media,
increments in the fluid volume comprise three parts: the net
increment that flows in minus that flowing out, source
generation, and drainage resulting from external stress
increments, which correspond to the three terms in the
right-hand side of this equation.

2.2. Stress Rebalancing. The pore fluid pressure will
enlarge the longitudinal strains, such that the total strain is the
superposition of the confining stress-induced strain and pore
pressure-induced longitudinal strains, as follows:

PE 1= + (6)

where ε is the total strain vector, E is the stiffness matrix, σ is
the (confining) stress vector, ΔP = P − P0 is an increment in
the pore fluid pressure, P0 is the reference pore fluid pressure,
and β is the linear expansion coefficient vector resulting from
internal forces of fluid pressure increments. In the initial state,
β is isotropic�β = βx = βy = βz�and is defined as

C
1
3 bp=

(7)

in which Cbp is the bulk expansion coefficient, defined as25
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By employing the concept of thermal elasticity, β can also be
calculated as

K3 d
=

(9)

where Kd is the bulk modulus of the solid skeleton and α is the
Biot coefficient; therefore the stresses corresponding to the
total strains in eq 6 are the effective stress σ′, which can be
written as

P= + (10)

Since the pore fluid pressure is not uniformly distributed, the
effective stress will lead to stress redistribution. The tensor
form of the stress differential equation can be written as

P f 0i j j i, + + = (11)

where f i is the body force per unit volume.

3. FRACTURE OPENING AND ANISOTROPY
The key features to use FEM to represent hydraulic fracture
propagation include the following: establishing the fracture
opening in a continuum element and establishing a series of
second-order Cartesian tensors regarding the damage,
poroelasticity coefficients, and permeability.

3.1. Fracture Opening. Progressive fracturing in geo-
materials is a multiscale phenomenon that can be divided into
three main stages: the evolution of distributed microdamage,
localization and subsequent macrocrack nucleation, and
macrocrack propagation.26−28 For FEM, the entire fracture
process can be represented by a damage variable D as follows:
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where εt0 is the threshold strain, representing the initiation of
crack nucleation; εtu is the final strain when the fracture has
transected the porous element; κ is a combined parameter,
calculated as κ = εt0/(εtu − εt0); and εI is the tensile strain
controlling fracture opening. This tensile strain is in the same
direction as the first effective principal stress σI′ (Figure 2a,b),
while the effective stress follows the cohesive law (Figure 2c).
The magnitude of fracture opening can be determined from

the strain and damage by employing the thickness of the
damage localization band, denoted as δ, and is typically 1−2
times the size of the cleat spacing. The element size is denoted
as L. It can be divided into two zones in the tensile direction: a
concentrated damage zone of dimension δ and an undamaged
zone of dimension L − δ. Both zones are subject to the same
stress, σ′; therefore,

w D E w w
L

E(1 ) 0

t

0= =
(13)

where w represents fracture opening, wt represents the total
elongation of the element, and E0 represents the initial elastic
modulus. From this equation, we have the following relation:

Figure 2. Cohesive zone model of hydraulic fracture: (a) the localized damaged band; (b) the cohesive breakdown process; and (c) the
relationship between effective stress and strain.
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The total strain can be expressed as

w
LI

t
=

(15)

Substituting eq 15 into eq 14 gives the hydraulic fracture
opening:

w
F D(1 )

L

I=
+ (16)

According to eq 6, the relationship between strain and stress
can be written as

E
PI

1

0
= +

(17)

By substitution of eq 17 into eq 16, the constitutive
relationship between fracture opening and fluid pressure is
obtained as
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where σ1 is the minimum confining stress normal to the
fracture surfaces, taken as negative.

3.2. Fracture-Induced Anisotropy. The presence of a
hydraulic fracture will lead to anisotropy in the hydro-
mechanical properties, including the damage, coefficients of
poroelasticity, and permeability. These may be represented
using a series of second-order Cartesian tensors, which are
defined in the global coordinates.29,30

3.2.1. Anisotropy of Damage. The damage tensor Dij in
global coordinates can be converted from Dij

σ, which is defined
in the coordinates of the principal stresses (σ1, σ2, σ3) as

D M M Dpq pi qj ij= (19)

where Mij is the conversion matrix, defined as

M e eM ij i j= [ ] = [ × ] (20)

and the Dij
σ are given by

D D D i j, 0 ( , 1)n ij11 = = (21)

where Dn represents the tensile damage in the direction of σ1,
which is derived from eq 14. Therefore, the damage tensor in
global coordinates is written as

D M M Dpq p q n1 1= (22)

3.2.2. Anisotropy of Poroelasticity Coefficients. A
hydraulic fracture also leads to anisotropy in the coefficients
Cpp and Cbp. Therefore, a set of damage correlation coefficients
are introduced to realize anisotropy, as follows:

C C C C,pp pp bp bp= = (23)

where ψ and Σ are the orthotropic coefficient vectors, with the
components taking the following forms:

D D
i1

1
,

1
1

( 1, 2, 3)i
i

i
i

= = =
(24)

where Di represents damage in the global directions of x, y, and
z.
3.2.3. Anisotropy of Permeability. The permeability tensor

resulting from a series of joint sets or fractures is well
understood.31,32 However, these only consider fluid flow along
the fracture, neglecting the normal flow, which represents the
leak-off. We established a permeability tensor considering both
flows, as follows

K M K MT= (25)

where K and Kσ are the matrices of the permeability
coefficients in global coordinates and principal stress
coordinates, respectively, and Kσ is written as

k k N N k k k N N k k N N

k k N N k k N N
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n l 1 1 l n l 1 2 n l 1 3

n l 2 1 n l 2 2

l

n l 2 3

n l 3 1 n l 3 2 n l 3 3

l

= [

+

+

+

]

(26)

where N1, N2, and N3 are the three projections of the normal
vector N of fracture surfaces on the three principal stress
vectors; and kn and kl are the normal and tangent
permeabilities, respectively.
The normal permeability kn can be obtained by multiplying

the in situ permeability k by a modification ξ as follows:

k kn = (27)

The in situ permeability decreases exponentially as the effective
stress increases25 and is calculated as follows:

k k e0
( / )m 0= (28)

where k0 is the intrinsic permeability tested in the lab; σm′ is the
effective average stress, noted as compression positive; σ0 is the
reference stress, evaluated as the mean, maximum, or minimum
of the magnitude vector of σm′ ; and ζ is a constant that ranges
between 1.0 and 1.6.
The permeability along the fracture kl follows a cubic

law33,34 as follows:

k
w
12l

3
=

(29)

In this section, all of the components necessary for the
simulation of hydraulic fracture propagation are established. In
the next section, these factors are formulated into weakly
coupled FEM equations, which work through the coupling
analysis scheme.

4. COUPLING ANALYSIS
4.1. FEM Format of Coupling Equations. The differ-

ential equations eqs 5 and 11 can be transformed into FEM
formats by utilizing the Galerkin variational principle; in the
solid solution domain, the FEM format of eq 11 is written as

K a P Ps s f= + (30)

where Ks is the global stiffness matrix, a is the column matrix of
the unknown nodal displacements, Ps is the column matrix of
solid load, and Pf is the column matrix of fluid pressure,
calculated as
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(31)

where E is the elasticity stiffness matrix of the porous rock, B is
the element strain matrix, and εf is the column matrix of
incremental strain generated by the incremental pore pressure
ΔP.
In the fluid solution domain, the FEM format of eq 6 can be

written as

CP P QK f+ =
•

(32)

where P is the column matrix of the unknown pore pressure, Ṗ
= dP/dt; Kf is the permeability matrix; C is the matrix of
storage coefficients; and Q is the column matrix of the flow
rate. The latter two can be calculated as follows:

C C Cf( )pp f= + (33)

and

Q Q Q Qq g pc
= + + (34)

where Cpp and Cf are the matrices of poroelasticity assembled
using the coefficients defined in eq 5 and Qq, Qg, and Qpc are
the column matrices of the flow rate, generation rate, and
confining stress change-induced fluid content change,
respectively. All of the global matrices are assembled as

K K C C Q Q, ,f
e
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e

e= = =
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where N is the shape function matrix. The weak coupling
format of eqs 32 and 34 is written as
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4.2. Analysis Process. As shown in the analysis flow chart
in Figure 3, the coupling analysis can be divided into several
calculation steps:
(1) Establish the in situ stress and permeability fields. The in

situ stress distribution determines the permeability
distribution around the injection hole, which�in
turn�determines the initial location of fracture
propagation.

(2) Porous flow analysis, where transient analysis is carried
out with the fluid flux as the surface load, permeability as
the input, and pore pressure as the output.

(3) Stress adjustment analysis, where the pore fluid pressure
is input as the body force, and the strains and effective
stresses are attained through static solutions.

(4) Damage judgment: if no new damaged elements are
generated, the injection flow rate or injection time must
be increased, and the abovementioned processes must
be repeated; else, the fracture opening and anisotropy of
hydromechanical properties are calculated, and the input
parameters are renewed.

(5) The above steps can be repeated to realize a numerical
simulation of the complex hydraulic fracture propaga-
tion.

4.3. Fluid Loading Scheme. To identify fracture growth
during continuous injection, a loading scheme that gradually
increases the duration of the solution is employed. This
requires the assumption that the fracture is completely closed
when the hydraulic fluid is drained, such that the parameters of
the hydromechanical properties can be elastically handled. As
shown in Figure 4a, CV represents the global elasticity rigidness
of the surrounding rock, which decreases with the fracture
propagation, while the increasing fluid loading is carried out by
the increasing injection volume V. Based on this, the loading
scheme is shown in Figure 4b, where in each transient seepage
field calculation, the volume of the injected fluid QT(n) is
applied in full form in the rock fracturing circle. The transient
calculation time length of each step is expressed in eq 41, such
that the gradual expansion of the transient seepage field can be
achieved by continuously increasing the number of cyclic steps.
Further, to simulate an actual injection process, a limit flow
rate Qm and a character time up to this pressure T0 are set up
as follows:

Q
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T
T T T
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Figure 3. Flow diagram of the coupling analysis.
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where T(n) represents the length at step n.
Correspondingly, the flux loaded on the walls of the

injection hole through the coal bed is written as

q Q dh/( )0 m= (40)

where h represents the coal bed thickness and d is the hole
diameter. In this paper, Qm = 10 m3/min.

5. RESULTS AND DISCUSSION
5.1. FEM Model. The example model (Figure 5) is taken

from a coal bed methane formation, which is buried at a depth
of 750 m, has horizontal dimensions of 200 m × 200 m, has
top and bottom bed thicknesses of 5 m, a coal bed thickness of
h = 10 m, and an injection hole diameter of d = 20 mm. The
minor horizontal principal stress is σh = 7.8 MPa, the major
horizontal principal stress is σH = λσh = 15.6 MPa, and the
stress ratio is λ = 2.0. The vertical stress is calculated as σv =
ρgH, where ρ is the mass density of overlaying rocks, H is the
buried depth, and g is the gravitational acceleration. All
boundary displacements are set to zero since it is the
requirement of implanting the initial stresses; on the other
hand, it is more reasonable to reflect the real in situ
deformation state. Figure 5a shows the formation compositions
and positions of cross sections; Figure 5b,c shows the middle
horizontal and vertical sections with the injection hole crossed,
respectively. The direction of the horizontal major principal
stress σH is expressed using angle θ, which rotates
anticlockwise from the negative Z coordinate.

5.2. Properties of Porous Formation and Hydraulic
Fluid. The formation parameters include the permeability,
coefficients of poroelasticity, and damage model parameters.
These are usually assumed to satisfy the Weibull distribution,
with the probability density function as follows:
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where Ω represents the element property parameters, Ω0 is the
reference modulus, and m is the shape factor, which represents
the homogeneity of the parameter distribution. The higher the
m value, the better the homogeneity; in this paper, m = 10. The
reference moduli are listed in Table 1, which reflects their
average values. The hydraulic fluid properties are listed in
Table 2.

5.3. Validation and Discussion of Results. 5.3.1. Hy-
draulic Fracture Zones. The numerical results of the hydraulic
fracture zone are shown in Figures 6−8, from which the basic
features can be derived.

Figure 4. Loading scheme at the full flow rate: (a) relationship of fluid pressure at the crack mouth and loading flow rate; and (b) loading divisions
of the flow rate.

Figure 5. (a) Three-dimensional (3-D) FEM model, (b) the horizontal middle section, and (c) the vertical middle section.

Table 1. Properties of Porous Formations

parameter coal bed
top/bottom

bed

intrinsic permeability, k0 (mD) 1.462 0.146
porosity, ϕ 0.06 0.02
internal expansion coefficient, Cpp (MPa−1) 0.01 0.01
internal contraction coefficient, Cpc (MPa−1) 0.01 0.01
Biot coefficient, α 0.33 0.33
mass density, ρ (kg/m3) 1200 2500
solid skeleton elasticity modulus, Ed (GPa) 9 11.56
solid matrix elasticity modulus, Es (GPa) 13.42 15
Poisson’s ratio, v 0.3 0.3
solid skeleton compression strength limit, σc
(MPa)

7.7 16.25

ratio of compression to tension strength, γ 15 15
tensile strain threshold, εt0, 10−3 0.0085 0.015
final tensile strain, εtu, 10−3 0.085 0.65
thickness of localized damage band, δ (mm) 19 5
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(1) Hydraulic fractures always propagate in the direction of
the major principal stress σH, with the fracture surface
normal to the minimum principal stress σh (Figure 6).
This conforms to conventional knowledge, proving that
the tensors established for the hydromechanical proper-
ties are correct and can effectively control the direction
of fracture propagation.8,11,21,22

(2) Figure 6 shows that the horizontal cross section of the
fracture zone and fluid pressure contours can be
approximated as ellipses. This is consistent with the
results found by Liu.35

(3) The vertical section also approximates an ellipse, which
is slightly cut through the top and bottom beds in the
vicinity of the injection hole (Figure 7c). This conforms
to the results found by Peirce36 for three-layered
formations.

5.3.2. Temporal Variation of Hydraulic Fracture Param-
eters. The parameters of hydraulic fractures include the
fracture length, opening pressure, and fluid pressure. The
fracture lengths are measured from the resultant pictures
shown in Figure 8. The fracture opening and fluid pressure at
the fracture mouth are measured by setting a monitor element
at the fracture mouth during transient analysis. The
comparisons of the temporal variations of these parameters
via the analytical solutions are shown in Figures 910−11. The
analytical solutions proposed by Nordgren2 and Geertsman
and Klerk37 for KGD and PKN models in cases of high leak-off
values are adopted herein:
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where G is the coal bed shear constant; S is the principal stress
normal to fracture surfaces, S = σh = 7.8 MPa; η represents the
effects of leak-off, η = 0.32 × 10−15; and Cl is the leak-off
coefficient involved with the permeability, porosity, in situ
stresses, fracture toughness, and fluid viscosity, etc. It is
valued38 at Cl = 4.98 × 10−4, and q0 is the injection flow.

The comparisons show that the numeric solutions conform
well with the analytical solutions, while some slight differences
indicate that the numerical solutions can exhibit more plentiful
information about hydraulic fracture propagation. Based on the
porosity−elastic coupling model (Figure 1), combined with
the damage−fracture evolution characteristics of materials, the
process of hydraulic fracturing can be divided into four stages
(Figure 11), which are conceptualized in Figure 12.
Stage-I: fracture nucleation, during which a macroembryo

fracture takes form in the close vicinity of the injection hole.
Since it is aggregated from distributive cracks, their gaps and
bridging constitute fracture cohesive zones. In this stage, the
peak fluid pressure is used to both overcome the traction of the
cohesive zone and support the confining normal stress.
Stage-II: kinetic propagation, during which the sudden

breaking of cohesive traction causes the fluid pressure at the
fracture mouth to drop significantly, and the fracture opening
increases quickly to a peak value, along with the fracture
length.
Stage-III: steady propagation, during which the fluid

pressure at the fracture mouth remains constant, while the
fracture length increases quickly and the fracture opening
slowly becomes constant.
Stage-IV: propagation termination, where�as the fracture

length increases�the injection flow rate cannot increase due
to leak-off, which gives rise to a slow drop in the fluid pressure,
decreasing the fracture opening and propagation termination.
It is obvious that the analytical solutions ignore stage-I and

stage-IV.
5.3.3. Spatial Variation of the Parameters of the

Hydraulic Fracture. The analytical solutions of fracture
opening and fluid pressure along the fracture length are
referred to as the SCR asymptotes by Adachi and Detournay et
al.:39−41
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where Ω, Π, ξ, γ, τ, and gm are the dimensionless forms of
fracture opening, fluid pressure, position coordinate, fracture
length, injection time, and viscosity scaling, respectively. The
comparisons between the numerical solutions and the
analytical solutions for fluid pressure and the half-width
along the fracture length are shown in Figures 13 and 14. The
contrast between the fluid pressure and half-width along the
fracture length is shown in Figure 15.
The comparison in Figure 13 shows that the fluid pressure of

the numerical solution is distributed throughout the fracture

Table 2. Hydraulic Fluid Parameters

mass density, ρw (kg/m3) 1000
compressibility coefficient, Cf (MPa−1) 4.5 × 10−4

viscosity coefficient, μ (Pa·s) 1.005 × 10−3

Figure 6. Hydraulic fracture propagation in the direction of maximum principal stress.
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and extends to the fracture tip. However, if we realize the
premise of analytical solutions, the numerical solution is
acceptable. Owing to mathematical difficulties, the coupling
between the fracture tip and fluid front in analytical solutions is
generally assumed to be progressive, such that the fluid
pressure distribution always lags behind the fracture tip,

leading to the existence of a pressure void ahead of the fluid
front. Therefore, we can regard the analytical solution as a case
of incomplete coupling between the fracture tip and fluid front,
which always occurs in situations with a large toughness, high
viscosity, and no leak-off; in most cases, the fluid pressure
distribution goes ahead of the fracture tip; complete coupling
occurs, which is what the numerical solution represents. The
comparisons in Figures 14 and 15 further indicate that there is
a cohesive zone ahead of the fracture tip.

Figure 7. (a) Horizontal middle section, (b) fluid pressure distribution, and (c) vertical middle section.

Figure 8. Fracture length at different injection times.

Figure 9. Half-length of the crack.

Figure 10. Width of the crack at the fracture mouth.

Figure 11. Fluid pressure at the fracture mouth.

Figure 12. Four-stage conceptual model.
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Based on these facts, two types of coupling modes in the
fracture tip are proposed: the incomplete coupling model
(Figure 16a) and complete coupling model (Figure 16b),
which correspond to the analytical models and numerical
solutions in the present paper, respectively. In the complete
coupling model, D = 1 represents the completely fractured
zone, D = 0 represents the elastically expanding zone of pore
pressure; in between them, 1 > D > 0 represents the cohesive
fracture zone, where the fracture opening acts more like an
aequilate “bag”, indicating that the fluid pressure energy is
mainly used to overcome in situ stress clamping and viscosity
dissipation from the fluid front invasion and leak-off.

6. SUMMARY
In this paper, a numerical simulation of three-dimensional
hydraulic fracturing is performed. The advantages of
poromechanical modeling are as follows:
(1) It can reflect the temporal and spatial evolution and

distribution of the stress field, damage field, and pore
fluid pressure field around the injection hole during the
process of hydraulic fracturing.

(2) Compared with the analytical solution, the numerical
solutions of the fracturing parameters, including the
fracture length, opening pressure, and fluid pressure, are
more accurate. In particular, the reflection of the fluid
pressure advance distribution at the crack tip and
cohesive fracture is an improvement to the theoretical
model.

(3) The established anisotropic tensor format for the
hydromechanical properties of porous media can be
used to simulate hydraulic fracturing in complex stress
and inclined formation.

However, some further studies should be conducted on the
following aspects:
(1) The thickness of the localized fracture band δ is a

material parameter that should be specifically research-
ed.

(2) The precision of the fracture zone is determined by
element size, so proper selection of the RVE size should
be studied.
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