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A B S T R A C T   

Background and purpose: Information in multiparametric Magnetic Resonance (mpMR) images is relatable to 
voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to 
predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map (“forward 
models”), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) 
on post-treatment mpMR images (“inverse model”), in Breast Cancer Metastases to the Brain (BCMB) treated 
with Stereotactic Radiosurgery (SRS). 
Materials and methods: Local outcomes, planning computed tomography (CT) images, dose maps, and pre- 
treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced 
(T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) 
mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and 
intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, 
T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 
BCMB patients. 
Results: Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT 
images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 
± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV 
on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse 
model. 
Conclusions: A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB 
has been demonstrated.   

1. Introduction 

Rates of Breast Cancer Metastases to the Brain (BCMB) are increasing 
with improved systemic control of metastatic breast cancer [1]. SRS and 
fractionated SRS (fSRS) represent the current standard treatment for 
patients with limited number of brain metastases, after surgery or as 
definitive treatment [2–5]. SRS and fSRS can lead to late toxicities, with 

radionecrosis (RN) being the most common. RN is a potentially devas-
tating long-term side effect of SRS for brain metastases, with a reported 
incidence ranging from 6 % to 24 % [2,6–10]. Onset of RN is usually 
3–12 months after SRS but can also occur later [10]. RN can cause sei-
zures, cognitive deficits and other non-specific symptoms, depending on 
the affected area, or it can be asymptomatic and diagnosed on serial 
follow-up imaging. Currently, the radiation dose prescribed to a tumor 
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by the radiation oncologist is based on nationally accepted standards 
and evidence from clinical trials [11–13]. Intra-tumor and inter-tumor 
biologic variations produce heterogeneities in sensitivity to radiation 
[14], and there is a need for automated tools to aid the radiation 
oncologist in prescribing optimal dose distributions to achieve maximal 
control of spatially heterogenous tumors while averting toxicities such 
as RN. 

Multiparametric Magnetic Resonance Images (mpMRIs) contain in-
formation that is mechanistically relatable to voxel-level tumor response 
to therapies. For example, Diffusion-Weighted MRI (DW-MRI) is sensi-
tive to changes in viable cellularity in the tumor [15,16]. Microbleeds 
and metal scavenging in melanoma brain metastases, particularly 
following Radiation Treatment (RT), can be visualized on Susceptibility- 
Weighted Imaging [17]. Perfusion imaging by Dynamic Susceptibility 
Contrast MRI is useful for differentiating recurrent brain metastases 
from radiation treatment-related changes [18]. Dynamic Contrast- 
Enhanced MRI (DCE-MRI) provides quantitative voxelwise measures 
of tumor perfusion, vascularity, and microvascular permeability that are 
responsive to changes in brain metastases following SRS [19,20]. The 
value of radiation dose boost to tumor regions that are hypercellular 
(identified on pre-RT DW-MRI) with high perfusion (identified on pre- 
RT DCE-MRI) has been investigated, on the hypothesis that 
hypercellular-hyperperfused regions have a greater likelihood of tumor 
recurrence post-radiation [21–24]. 

We have considered the feasibility and utility of deep learning 
models to inform dose painting for prescribed radiologic outcomes. In 
this proof-of-concept study in BCMB patients treated with SRS we report 
preliminary “forward models” for predicting post-treatment mpMRIs 
from co-registered pre-treatment mpMRIs and the delivered RT dose 
map, and a preliminary “inverse model” for predicting the RT dose map 
that will yield prescribed values in treated voxels on post-treatment 
mpMRIs. We have investigated post-RT vs. pre-RT changes in cali-
brated intensity within the treated volume that are associated with local 
tumor control without toxicity. Such post-RT mpMRI intensity criteria 
could serve as targets for radiologic outcome-optimized RT dose plan-
ning using the inverse and forward models, as envisioned in Fig. 1. 

2. Materials and methods 

2.1. Patient data 

In this retrospective IRB-approved study (PRO00023399), planning 
CT images and associated RT dose maps, Apparent Diffusion Coefficient 
of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast- 
enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inver-
sion Recovery (FLAIR) mpMR images acquired pre-RT (3–33 days), post- 
RT (12–143 days), at local recurrence if applicable (54–831 days), and at 
diagnosis of RN if applicable (44–1088 days), in 39 BCMB patients were 
curated from our Radiology and Radiation Oncology databases [25]. 
Brain metastases were assessed on pre-radiation MRI reconstructed with 
1 mm slices and fused with CT simulation imaging. The GTV was 
expanded uniformly by 1–2 mm to create the Planning Target Volume 
(PTV). Dose (range 15–30 Gy, mean 21 Gy) and fractionation (1–5 
fractions) were based on physician preference. Doses were prescribed to 
ensure coverage of ≥ 95 % of the PTV with the prescription dose. Plans 
were generated using Brainlab software. Treatments were initiated 
within 2 weeks of simulation CT using multiple dynamic conformal arcs 
or Intensity Modulated Radiotherapy (IMRT), with image guidance by 
the Brainlab ExacTrac positioning system. Data from 27 patients with 
complete and artifact-free mpMR image sets, and matched spin-echo 
acquisitions of T1w and T1wCE images at pre-RT and post-RT, were 
randomly split into training (18 patients) and test (9 patients) cohorts. 
Dose maps from multiple fractions, where applicable, were summed and 
used in the following analyses. 

2.2. Image Pre-Processing 

mpMRIs from all scan dates were resampled and co-registered with 
the planning CT using MIRADA-RTx (Mirada Medical, Denver, CO, 
USA). Voxel intensities on skull-stripped, co-registered T2w, FLAIR, T1w 
and T1wCE images were calibrated [26] as detailed in Supplementary 
Materials. Intensity-calibrated voxels on co-registered mpMRI were 
assigned to objectively-defined tissue types for visual quality check of 
spatial registration and intensity-calibration (Supplementary 
Figs. S1–S5). 

Fig. 1. Envisioned utility of the proposed forward and inverse models in a workflow for mpMRI outcome-optimized RT dose planning. ADC: Apparent Diffusion 
Coefficient of water; T1w: calibrated unenhanced T1-weighted MRI intensity; T1wCE: calibrated contrast-enhanced T1-weighted MRI intensity; T2w: calibrated T2- 
weighted MRI intensity; FLAIR: calibrated Fluid Attenuated Inversion Recovery MRI intensity; RT: radiation treatment; OARs: organs at risk. 
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2.3. RT dose vs. mpMRI response 

Voxelwise subtraction of calibrated post-RT and pre-RT whole brain 
mpMR images was performed to calculate ΔADC, ΔT2w, ΔFLAIR, ΔT1w 
and ΔT1wCE. Voxelwise change in enhancement (ΔΔT1w) was 
computed as (T1wCE – T1w)post-RT minus (T1wCE – T1w)pre-RT. Voxels 
in these 6 subtraction images were binned per patient by total RT dose 
received, and the Mean of Means ± Standard Error of Means (S.E.M) 
over all patients visualized as RT dose vs. mpMRI response plots. 

2.4. Lesion outcomes vs. mpMRI response 

Responding vs. locally-recurrent vs. RN lesions were compared by 
mean calibrated intensity changes (ΔADC, ΔT2w, ΔFLAIR, ΔT1w, 
ΔT1wCE) within the GTV. 

2.5. Deep learning 

We extended the one-input-one-output 2D pix2pix architecture 
published by Isola et al. [27] to n-input-one-output, with 54,418,177 
trainable weights, for training the forward and inverse models (details in 
Supplementary Materials sections 3.1 and 3.2). pix2pix is a type of 
conditional generative adversarial network (GAN) with a UNET-based 
[28] generator and a patchGAN discriminator [27]. The adversarial 
loss is combined with the L1 loss into a composite loss function that is 
used to update the generator [27]. Fig. 2(a) depicts how a Forward 
Model was trained to predict a given post-RT mpMRI type, in this case 

ADC, from all 5 pre-RT mpMRIs and the RT dose map. Fig. 2(b) depicts 
how the inverse model was trained to predict the RT dose map corre-
sponding to 5 pre-RT and 5 target/desired post-RT mpMRIs. The models 
were optimized on training data using the following numbers of itera-
tions: T1wCE – 225, T2w – 200, T1w – 150, FLAIR – 175, ADC – 125, 
and, inverse model – 150. We also optimized the learning rate of the 
models. For the generator, we tuned the weighted sum of adversarial 
loss (BCE) and L1 loss, and found a ratio of 1:100 to be optimal on the 
training data [27]. For the discriminator, the standard deviation of the 
exponentially decaying gaussian noise added to the real and fake inputs 
was optimized on training data. 

2.6. Evaluation of forward and inverse models 

The 5 forward models (to predict post-RT ADC, T2w, FLAIR, T1w, 
and T1wCE) and 1 inverse model were trained on 1940 slices from 18 
BCMB patients and tested on 437 held-out slices (136 slices containing 
GTV) from another 9 BCMB patients. 

Forward models were provided pre-RT ADC, T2w, FLAIR, T1w, and 
T1wCE images of a given slice, and the RT dose map delivered to that 
slice, with the model output being the predicted post-RT image (ADC, 
T2w, FLAIR, T1w or T1wCE) of that slice. This predicted post-RT image 
was compared to the corresponding ground-truth post-RT image on the 
basis of Root Mean Square Percent Error (RMSPE). 

We envision the inverse model being used to predict the dose map 
that will yield prescribed changes within the GTV on post-RT ADC, T2w, 
FLAIR, T1w, and T1wCE (Fig. 1). To test the inverse model we provided 

Fig. 2. 2D pix2pix model training framework. (a) Forward Model: The inputs to the forward model were the co-registered RT dose map and pre-RT mpMRIs, while 
the target was a sigmoidal dose-dependent blend (inset) of the ground truth pre-RT and post-RT image of a given type (ADC in this example). (b) Inverse Model: The 
input images to the inverse model were the 5 types of co-registered pre-RT mpMRIs and corresponding 5 types of post-RT mpMRIs, while the target was the ground 
truth RT dose map delivered to the slice. 
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the following inputs: pre-RT ADC, T2w, FLAIR, T1w, and T1wCE images 
of a given slice, and “desired” post-RT ADC, T2w, FLAIR, T1w, and 
T1wCE images of the same slice that were identical to the corresponding 
pre-RT mpMRIs except that pixel values within the GTV were replaced 
with corresponding ground truth post-RT values. The model output was 
a dose map predicted to produce these changes within the GTV on ADC, 
T2w, FLAIR, T1w, and T1wCE, which was compared to the actual dose 
map delivered to that slice using RMSPE. 

We simulated inverse model predictions of RT dose distributions 
required to produce four hypothetical cases of post-RT changes within 
the GTV: either moderate (1500 µm2/s) or high (3000 µm2/s) desired 
post-RT ADC in the GTV, and either partial suppression of contrast- 
enhancement (desired post-RT T1wCE = voxelwise average of pre-RT 
T1w and pre-RT T1wCE) or complete suppression of contrast- 
enhancement within the GTV (desired post-RT T1wCE = true pre-RT 
T1w). 

2.7. Statistical analysis 

ΔADC, ΔT2w, ΔFLAIR, ΔT1w and ΔT1wCE within the GTVs of 10 
responding, 14 recurrent, & 10 RN BCMB lesions treated with SRS were 
compared using unpaired Student’s t-test (significance threshold p <
0.05). RMSPE between calibrated-normalized-scaled ground truth (IGT) 
and predicted voxel intensities (IPred) was calculated as: 

RMSPE =
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where R is the expected post-scaling intensity range (− 1 to + 1 = 2), and 
V is the number of voxels in a GTV. 

3. Results 

3.1. RT dose vs. mpMRI response 

mpMRI response to RT was analyzed in 39 subjects, though some 
images were dropped due to presence of artifacts (ADC) or because T1w 
and T1wCE were not acquired with matched SE or GRE sequences 
(Fig. 3). ADC response is negligible below a dose of ≈23 Gy, above 
which post-RT ADC increases relative to pre-RT ADC (Fig. 3a). 

Calibrated post-RT FLAIR intensity tends to decrease relative to pre-RT 
values with increasing dose above ≈10 Gy (Fig. 3b), and calibrated post- 
RT T2w intensity decreases relative to pre-RT intensity at doses above 
≈18 Gy (Fig. 3c), though these trends are noisy at the highest doses due 
to a smaller number of voxels that received those doses. Unenhanced 
T1w intensity is largely unchanged at doses below ≈28 Gy, above which 
calibrated post-RT T1w intensity tends to increase relative to pre-RT 
intensity (Fig. 3d). Calibrated post-RT T1wCE intensity appears to 
decrease relative to pre-RT T1wCE with increasing dose above ≈20 Gy 
(Fig. 3e); subtraction of the confounding increase in post-RT T1w rela-
tive to pre-RT T1w with dose makes this trend more apparent (Fig. 3f). 

3.2. Lesion outcomes vs. mpMRI response 

We have compared mean ΔADC, ΔFLAIR, ΔT2w, ΔT1w, and 
ΔT1wCE intensity changes within the GTV between 10 responding, 14 
recurrent, and 10 RN lesions in 28 BCMB patients treated with SRS 
(Fig. 4). ΔT1wCE was positive in responding lesions and negative in RN 
lesions (p < 0.04). ΔFLAIR was positive in responding lesions, negative 
in locally-recurrent lesions, and close to zero in RN lesions, though these 
differences did not reach statistical significance. ΔADC was higher in 
responding lesions compared with locally-recurrent and RN lesions, 
though this difference also did not reach statistical significance. ΔT1 and 
ΔT2 tended positive in RN lesions and negative in recurrent lesions, 
though these trends were not statistically significant (Fig. 4). 

3.3. Forward model test results 

The 5 forward models were used to predict post-RT mpMRIs from the 
pre-RT mpMRIs and the delivered RT dose distribution. In the test pa-
tient in Fig. 5(a), the forward model predicts a post-RT decrease in 
FLAIR intensity within the GTV, in significant agreement with the 
ground truth post-RT FLAIR. No enhancement within the GTV is pre-
dicted on post-RT T1wCE by the forward model, in agreement with 
ground truth post-RT T1wCE. Agreement between forward model- 
predicted post-RT and ground truth post-RT is partial on ADC, T2w 
and FLAIR. In the test patient in Fig. 5(b), there is moderate agreement 
between forward model-predicted post-RT and ground truth post-RT 
images on all 5 scan types. RMSPE within the GTV between the pre-
dicted post-RT images and the ground-truth post-RT images, in 136 test 
slices that contained GTV, were 0.12 ± 0.044 (ADC), 0.14 ± 0.066 
(T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 

Fig. 3. The y-axes plot the mean of means ± S.E.M of the voxelwise change (post-RT − pre-RT) in mpMRI intensity across all subjects at each dose level (x-axes) over 
the whole brain: (a) ΔADC vs. RT dose, (b) ΔFLAIR vs. RT dose, (c) ΔT2w vs. RT dose, (d) ΔT1w vs. RT dose, (e) ΔT1wCE vs. RT dose, (f) ΔΔT1w vs. RT dose. 
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(FLAIR). Results for individual test slices are listed in Supplementary 
Table 2. 

3.4. Inverse model test results 

The inverse model was used to predict RT dose distributions that 
would produce the observed post-RT mpMRI voxel intensities within the 
GTV. In the test patients shown in Fig. 6, the inverse model predicts dose 
distributions within the GTV that bear qualitative similarity to the 
ground truth dose distributions actually delivered to these slices. How-
ever, it also predicts non-zero doses outside the GTV even though the 
target/desired post-RT mpMRIs were created to differ from pre-RT 
mpMRIs only inside the GTV. Additional examples from each of the 9 
test subjects are presented in Supplementary Fig. S6(a)-S6(i). RMSPE 
within the GTV between the predicted RT dose maps and the ground- 
truth dose maps was 0.37 ± 0.20; results for all 136 test slices that 
contained GTV are listed in Supplementary Table 2. In simulations, the 
inverse model predicts that higher doses to tumor would be required to 
produce higher post-RT tumor ADC and/or lower post-RT contrast 
enhancement on T1wCE (Supplementary Fig. 7). 

4. Discussion 

Rule-based, atlas-based and prior-knowledge based methods have 
been reported for planning the delivery of a prescribed radiation dose to 
targeted tumors while sparing organs-at-risk (OARs), but such 

automated treatment planning solutions do not provide voxel-level 
predictions of RT dose that are optimal for specific outcomes [29–33]. 
Dose boosting to a sub-volume within the target, and Dose Painting by 
Numbers (DPbN), are two broad approaches for prescribing non- 
uniform RT dose distributions to target heterogeneous tumors 
[34–37]. DPbN requires knowledge of a prescription function that 
mathematically transforms specific values of an imaging variable into 
the corresponding optimum dose values [35]. In the absence of such a 
known prescription function, some groups have assumed a linear rela-
tionship between voxel intensities on radiologic images and the dose to 
be prescribed [38,39], while others have investigated redistribution of 
the Maximum Tolerated Dose (MTD) according to 18F-Fluorodeox-
yglucose (FDG) uptake on PET/CT in Head and Neck Squamous Cell 
Carcinoma (HNSCC) [40–42]. Information from pre-RT ADC maps and 
multi-tracer PET images has been combined to compute tumor control 
probability functions that inform focal dose-escalation to prostate tumor 
sub-volumes [43,44]. In HNSCC patients treated with standard chemo-
radiation, the logarithm of relative change in FDG-PET SUV on serial 
FDG-PET/CT images was modeled as a linear random function of 
treatment dose for doses below 40 Gy, normalized using the in vitro 
tumor survival fraction at 2 Gy, and combined with voxelwise baseline 
FDG SUV to compute a dose prescription function to guide treatment 
dose adaptation in a subsequent fraction [45,46]. Recently, in a study of 
oropharyngeal cancer patients treated with IMRT, models to predict 
post-RT FDG-PET images from pre-RT FDG-PET images and the RT dose 
map have been described [47,48]. 

Fig. 4. post-RT minus pre-RT changes on ADC maps and calibrated FLAIR, T2w, T1w, and T1wCE MRI within the GTVs of 10 responding, 14 recurrent, & 10 RN 
lesions in 28 BCMB patients treated with SRS. * indicates a significant difference (p < 0.04). 

Fig. 5. Example test results of the Forward Models in two patients. In both panels the top row shows the pre-RT mpMRIs of a test slice, the middle row shows the co- 
registered ground truth post-RT mpMRIs of the same slice, and the bottom row shows the post-RT mpMRIs predicted by the 5 forward models for the delivered RT 
dose map that is also shown in the middle row. Brain masks and GTV masks are shown on the top row for visual reference, but were not used as model inputs. 
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We have proposed an inverse model that will take pre-RT mpMRIs as 
inputs to predict the RT dose distribution required to achieve prescribed 
mpMRI outcomes within the GTV. We envision that this predicted 
radiologic outcome-optimized dose distribution will inform the physi-
cian’s dose prescription (Fig. 1, step 5), following which treatment is 
planned, approved by the physician, sent for physics QA, post-RT out-
comes to this plan predicted using the forward model, with iterative 
fine-tuning of the plan by the physician if necessary, before the patient is 
treated (Fig. 1). 

We observed increasing ΔADC, suggesting cell death [15,16], with 
increasing RT dose (Fig. 3(a)). Net change in contrast-enhancement 
ΔΔT1w trended negative with increasing RT dose (Fig. 3(f)), consis-
tent with RANO-BM criteria [49–51]. ΔFLAIR and ΔT2w also trended 
negative with increasing dose (Fig. 3(b)-(c)), suggesting a decrease in 
vasogenic edema with RT. There is an apparent change in trend above 
32 Gy on ΔFLAIR, ΔT2w, ΔT1wCE and ΔΔT1w, though not many voxels 
received these doses. Interestingly, ΔT1w increases at higher doses, 
suggesting the formation of hemorrhagic and/or proteinaceous products 
(Fig. 3(d)). This underlying change on ΔT1w may explain the counter- 
intuitive finding that ΔT1wCE is positive in responding lesions and 
negative in RN lesions (Fig. 4). A multivariable analysis of mpMRI 
changes corresponding to local response, recurrence and RN, on a larger 
and more diverse dataset, is required for identifying statistically robust 
criteria on post-RT and/or ΔmpMRIs corresponding to local response 
without RN, to inform step 3 in Fig. 1. 

The 5 forward models achieved RMSPE values of 0.08–0.14 (8–14 %) 
inside the GTV. The inverse model predictions qualitatively resemble 
the dose distributions delivered to the GTV (Supplementary Fig. S6(a)- 
(i)) though voxelwise similarity within the GTV was heterogeneous over 
all test slices (RMSPE 0.37 ± 0.2 (37 ± 20 %), Supplementary Table 2). 
The resection cavity in Test Patient #4 (Supplementary Fig. S6d) 
received a high dose but, unsurprisingly, did not change significantly 
post-RT vs. pre-RT; the inverse model rationally predicts that a lower 
dose would have achieved this radiologic outcome, leading to high 
RMSPE (Supplementary Table 2). The mpMRI response to low RT doses 
is small (Fig. 3), which may explain the higher RMSPE of 0.74 in Test 
Patient #5 who received a relatively low dose (Supplementary Fig. S6e 

and Supplementary Table 2). Increase in ADC [15,16] and decrease in 
contrast enhancement [49–51] are associated with tumor response to 
cytotoxic therapies. The inverse model predicts that a progressively 
higher RT dose distribution to the GTV is required for hypothetical 
moderate tumor control (moderate ADC and partial suppression of 
contrast enhancement) through hypothetical aggressive tumor control 
(high ADC and no contrast enhancement), indicating that the model has 
“learned” physiologically meaningful relationships between RT dose 
and post-RT changes on mpMRI (Supplementary Fig. 7). 

The forward models predict voxel intensities similar to the pre-RT 
images in low dose regions, a limitation stemming from using blended 
target post-RT images to train the forward models (Fig. 2a inset, details 
in Supplementary Materials). The inverse model predicts non-zero doses 
outside the GTV, and a spatial shift between the GTV and predicted high 
dose regions is observable in some cases. Another limitation is that we 
trained our models on total dose rather than biologically equivalent 
dose, given the limited number of local recurrences in our dataset, which 
misdirected model training at high doses (multiple fractions). In future 
work we will train our models on a greater number and diversity of 
samples, explicitly accounting for the number of fractions and the time 
gaps between MRIs and the start/end of RT. As with DPbN [38,41,52], 
new treatment planning processes may need to be developed to incor-
porate the forward and inverse models into the clinical workflow. Ul-
timately, we anticipate that these novel tools will enable optimal 
targeting of BCMB while avoiding toxic side-effects like radionecrosis. 
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