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ABSTRACT Investigation of the Hudson Valley watershed reveals many violacein-
producing bacteria. These are of interest for their biotherapeutic potential in treating
chytrid infections of amphibians. The draft whole-genome sequences for seven Jan-
thinobacterium isolates with a variety of phenotypes are provided in this study.

The Hudson Valley watershed is home to a large number of vibrantly colored
bacterial isolates (1). Many of these Gram-negative Bacillus species produce viola-

cein. Production is mediated via a five-gene operon, vioA–E (2). Violacein production
was first described in Chromobacterium violaceum in 1927 (3), and violacein has been
widely investigated for its potential biotherapeutic properties; studies have demon-
strated bacterial killing (4), fungal killing (5, 6), antiviral activity (7), tumoral cytotoxicity
(8, 9), and antinematodal action (10).

Strains BJB1, BJB301, BJB303, BJB304, BJB312, BJB426, and BJB446 were obtained by
plating Hudson Valley freshwater sources on R2A agar and incubating at 22 to 25°C for
48 h. All strains initially presented as violet-pigmented colonies and were cultured on
R2A, LB, and 1% tryptone agar media. All strains have been characterized for pheno-
typic behaviors related to growth, motility, quorum sensing, biofilm production, and
violacein expression (our unpublished data). Density-dependent phenotypes, in-
cluding biofilm production and violacein expression, may provide the microorganism
with the ability to persist and thrive in a freshwater environment (11).

Genomic DNA extraction was completed with the Qiagen Gentra Puregene Yeast/
Bact. kit according to the manufacturer’s protocol. Paired-end Illumina libraries
(150 bp) were prepared and HiSeq sequencing was completed using the Illumina
HiSeq 4000 instrument (Wright Labs, Huntington, PA). Reads were assembled with a
modified version of a previously published local pipeline (12). Adapters and contami-
nants were scanned for and removed when present. Reads were subsequently quality
filtered using BBDuk from the BBMap package version 37.50, keeping to a Q score
cutoff of 10 (https://sourceforge.net/projects/bbmap). A draft whole-genome assembly
was built using SPAdes version 3.11.0 (13) using k-mer sizes of 21, 33, 55, 77, 99, and
127. Contigs shorter than 500 bp or those composed of fewer than four reads were
subsequently filtered out of the assembly.

The draft whole-genome assemblies ranged from a high of 70 contigs for BJB426 to
a low of 22 contigs for BJB446 (Table 1). The average N50 value for all seven optimal
assemblies was 940,382 bp, with two genomes, those of BJB301 and BJB446, resulting
in high N50 values of 1,349,355 bp and 3,551,037 bp, respectively (Table 1). The average
genome size is predicted to be 6.36 Mbp in length, with an average G�C content
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of 62.85%, comparable to those of published Janthinobacterium species (Table 1)
(14, 15).

The assembled contigs were annotated using three methods, a local pipeline
running the Prokka genome annotation software (16), the RASTtk annotation software,
via the PATRIC pipeline (17, 18), and the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) (19). The 16S rRNA BLAST results for all seven strains aligned most closely with
other Janthinobacterium species. Annotations across platforms yielded an average of
5,686 coding sequences (CDSs). As expected, a violacein biosynthesis operon (vioA–E)
was present in all strains. Additionally, all genomes contained genes involved in the
bacterial quorum sensing cascade, jqsA, qseC, and qseS (10, 15), as well as twitching
motility (pilT, pilJ, pilH, and pilG), correlating with the phenotypes observed on media.

Further investigation of this large population of related strains may lead to insights
into the therapeutic potential of violacein-producing strains.

Accession number(s). The whole-genome assemblies have been deposited at
DDBJ/ENA/GenBank under the accession numbers listed in Table 1.
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