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Abstract

Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about
factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15
African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to
identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution.
Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in
the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma
model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-
Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near
many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns
observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory
regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has
occurred in genes expressed during brain development. Overall we find that natural selection has played an important role
in the evolution of candidate cis-regulatory regions throughout hominid evolution.

Citation: Torgerson DG, Boyko AR, Hernandez RD, Indap A, Hu X, et al. (2009) Evolutionary Processes Acting on Candidate cis-Regulatory Regions in Humans Inferred
from Patterns of Polymorphism and Divergence. PLoS Genet 5(8): e1000592. doi:10.1371/journal.pgen.1000592

Editor: David J. Begun, University of California Davis, United States of America

Received December 23, 2008; Accepted July 10, 2009; Published August 7, 2009

Copyright: � 2009 Torgerson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by National Institutes of Health grants HL084706, HG003229, and MH084685 to AGC and CDB; MICORTEX grant P50
GM065509 to AGC; and a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship to DGT. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dara@uchicago.edu

¤a Current address: Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
¤b Current address: Pharmacogenomics, Pfizer Global Research and Development, Groton, Connecticut, United States of America
¤c Current address: Navigenics, Redwood Shores, California, United States of America
¤d Current address: Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America

Introduction

Over 30 years ago it was suggested that evolutionary changes at the

level of gene regulation might have had a greater influence on human

and chimpanzee phenotypic divergence than changes in proteins

themselves [1]. This is exemplified by humans and chimpanzees

being highly similar at the protein level yet manifesting considerable

phenotypic differences. Until recently, the focus of evolutionary

studies has been on changes occurring within the protein-coding

regions of genes, while evidence from Drosophila [2,3], rodents [4,5],

and primates [6–19] have all suggested that Darwinian selection can

be an important driving force of evolutionary change within non-

coding DNA. Microarray studies have identified numerous tran-

scriptional differences between human and chimpanzee [20–25], and

polymorphisms in cis-regulatory regions have been directly associated

with differences in gene expression levels in humans [26,27].

Therefore, single nucleotide polymorphisms (SNPs) in non-coding

DNA can be associated with phenotypic differences, making them

potential targets for natural selection.

A simple model of gene regulation involves the binding of

transcription factors to several short non-coding sequences, which

are generally found upstream of the transcribed regions of genes

(forming a cis-regulatory region). Once a specific combination of

transcription factors has bound to the DNA, the recruitment and

assembly of the general transcriptional machinery will initiate gene

transcription. However, gene regulation can also occur via

additional processes, such as nucleosome positioning, distal

enhancer elements, DNA methylation, and microRNA regulation.

While a variety of computational methods have been developed to

identify specific regulatory elements at the genomic scale, these

methods can be prone to false positives due to the degeneracy and

short size of DNA binding sites [28]. An alternative predictor of

regulatory function at the genomic scale may be the evolutionary

conservation between species [29,30], although conservation

scores can be prone to false negatives as not all functional sites

are expected to be conserved [14,31]. However, the study of

conserved non-coding sites within regions potentially enriched for

cis-acting elements does not a priori specify any particular mode of
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regulation, and may provide a broader glimpse of the evolutionary

processes acting on candidate cis-regulatory regions.

We examined patterns of polymorphism and divergence in

conserved non-coding sites (CNCs) in the flanking regions of 15,061

human genes, and the coding regions of 13,009 genes that were

sequenced by Celera Genomics in 15 African Americans and 20

European Americans. We find evidence for selective constraint and

adaptive evolution within candidate cis-regulatory regions, and find

non-random patterns with respect to functional and transcriptional

profiles of genes with higher probabilities of selection. Moreover, we

find that patterns observed in candidate cis-regulatory regions are

often distinct from those observed in protein-coding regions.

Results/Discussion

Our non-coding dataset included 6.9 Mb of autosomal

conserved non-coding sites (CNCs) resequenced in 15 African

Americans (AAs), 20 European Americans (EAs), and aligned to a

single chimpanzee (PanTro2), while our coding dataset included

17.5 Mb of autosomal sites resequenced across the same panel of

individuals, see [32,33]. Conserved noncoding sites were defined

as strictly non-coding sites that fall within human and mouse

conserved sequences (sequences with at least 70% identity and 100

nucleotides in length). We found at least one human polymor-

phism or fixed difference to the chimpanzee in CNCs flanking a

total of 11,334 autosomal genes (75.4%), with 7,826 genes having

at least one human polymorphism across the 35 individuals

(52.9%). CNCs that are flanking genes tend to have lower

divergence and polymorphism compared to those in intergenic

regions, however all categories of CNCs exhibit lower polymor-

phism and divergence as compared to synonymous sites (Figure 1).

In AAs, CNCs in 59 upstream regions have a smaller ratio of

divergence to polymorphism when compared to synonymous sites,

consistent with the presence of selective constraint in the upstream

regions of genes (p = 0.029, Table 1). However, the overall ratio of

divergence to polymorphism is generally similar between pooled

CNCs and synonymous sites (p.0.05, Table 1), and all categories

of CNCs exhibit a higher ratio of divergence to polymorphism

when compared to nonsynonymous sites.

The site frequency spectra of CNCs in both upstream and

downstream regions of genes show a significant excess of lower

frequency derived alleles (SNPs at a frequency of 1/16) as

compared to both synonymous and intergenic sites (Figure 2 and

Table 2), suggesting an excess of weakly deleterious alleles in

CNCs in the flanking regions of genes. A study by Veyrieras et al.

[34] has found that the majority of eQTLs lie either within or close

to genes, suggesting that the excess of low frequency derived alleles

observed in the flanking regions of genes may reflect the past

action of negative selection on gene regulation. A shift in the

distribution toward more rare alleles in CNCs is consistent with

previous findings [8,10,13,14], and confirmed by significantly

smaller values of Tajima’s D in CNCs as compared to synonymous

sites (D = 20.52 vs. 20.45 in AAs [Mann-Whitney U test,

p,1024], D = 20.31 vs. 20.21 in EAs [Mann-Whitney U test,

p,1026]) (Figure S1). Therefore, patterns in the site frequency

spectrum suggest that CNCs in the flanking regions of genes have

been subject to selective constraint.

Estimates of the population scaled selection coefficient (c= 2Nes)

from the site frequency spectrum were calculated for different

categories of CNCs using the program prfreq [32]. All point

estimates of c were negative for CNCs in the flanking regions of

genes as compared to intergenic CNCs, which share the same

ascertainment scheme and show no evidence for selection when

compared to synonymous sites (Table 3). We find a significantly

better fit for a single estimate of c when compared to a neutral

model for all categories of CNCs, suggesting the presence of

selective constraint that cannot be explained by the ascertainment of

CNCs alone. Furthermore, all but the 59 upstream and 59 UTR

regions of genes show a significantly better fit to a model with a

distribution of c, implying there is variation in the deleterious effects

of mutations in CNCs. We also observe an excess of fixed differences

that cannot be explained by a Gamma model of deleterious fitness

effects, suggesting the presence of positive selection within CNCs in

the flanking regions of genes. We estimate that 4.67% of the human-

chimp fixed differences in CNCs can be attributed to positive

selection, with UTRs showing more adaptive evolution (59: 14.3%,

39: 23.3%) than upstream or downstream regions (59: 12.2%, 39:

12.0%). Intronic CNCs show less evidence for positive selection

(2.22%), but because they make up the majority of sites, pooled

CNCs in the flanking regions of genes show modest evidence for

adaptive divergence relative to intergenic CNCs.

Gene-specific tests of selection
We defined a candidate cis-regulatory region as all CNCs within

the introns, UTRs, or within 5 kb up- or downstream of the

transcription start or stop site of a gene. CNCs were pooled in this

way to increase the power to detect selection, and to capture

signals of selection without regards to a specific mode of cis-

regulation. However, we note there is a significant correlation

between the probability of selection estimated from the 59

upstream regions and the combined set of CNCs (Figure S2). To

identify genes whose candidate cis-regulatory regions may be

under selection, contingency tables were constructed containing

the counts of polymorphic sites and fixed differences to the

chimpanzee in the pooled flanking CNCs of a gene. The total

number of synonymous polymorphisms and fixed differences in

coding regions (without respect to human and mouse sequence

conservation) were pooled to use as a neutral standard as in [35];

the use of pooled vs. local synonymous sites has little effect on our

estimates of selection (Figure S3). In order to identify loci showing

Author Summary

It has been suggested that changes in gene expression
may have played a more important role in the evolution of
modern humans than changes in protein-coding sequenc-
es. In order to identify signatures of natural selection on
candidate cis-regulatory regions, we examined single
nucleotide polymorphisms obtained from the complete
re-sequencing of conserved non-coding sites (CNCs) in the
flanking regions of over 15,000 genes in 35 humans.
Patterns of allele frequencies in CNCs indicate the
presence of both positive and negative selection acting
on standing variation within these candidate cis-regulatory
regions, particularly for the 59 and 39 UTRs of genes. Gene-
specific tests comparing levels of polymorphism and
divergence identify several genes with strong signatures
of selection on candidate cis-regulatory regions and
suggest that the biological characteristics of genes subject
to selection are different between coding and candidate
cis-regulatory regions with respect to gene expression and
function. For example, we find stronger signatures of
positive selection in candidate cis-regulatory regions near
genes expressed in the fetal brain, which we do not
observe in a concurrent analysis on protein-coding
regions. Our results suggest that both positive and
negative selection have acted on candidate cis-regulatory
regions and that the evolution of non-coding DNA has
played an important role throughout hominid evolution.

Evolution of Candidate cis-Regulatory Regions
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Figure 1. Polymorphism and divergence across pooled sites in African and European Americans.
doi:10.1371/journal.pgen.1000592.g001

Table 1. The total number of fixed and segregating sites in 15 African Americans (AA) and 20 European Americans (EA) as
compared to the chimpanzee (PanTro2), along with the ratio of fixed/segregating (F/S) sites, the odds ratio (or neutrality index),
and a chi-square test p-value for the comparison of F/S to synonymous sites.

Pop Sites Fixed Segregating F/S Odds Ratio p-value

AA Synonymous 56124 19070 2.94 - -

Replacement 35195 15288 2.30 0.78 ,161026 **

Pooled CNCs 50249 17152 2.93 1.0 0.71

59 UTR 2355 854 2.76 0.94 0.11

39 UTR 2691 898 3.00 1.0 0.65

59 upstream 8117 2901 2.80 0.95 0.029 *

39 downstream 3891 1299 3.00 1.0 0.59

Intron 24919 8479 2.94 1.0 0.93

Intergenic 14116 4665 3.03 1.0 0.14

EA Synonymous 56690 13704 4.14 - -

Replacement 35554 12040 2.95 0.71 ,161026 **

Pooled CNCs 50649 12564 4.03 0.97 0.061

59 UTR 2366 570 4.15 1.0 0.94

39 UTR 2699 669 4.03 0.97 0.57

59 upstream 8182 2058 3.98 0.96 0.13

39 downstream 3915 922 4.25 1.0 0.49

Intron 25121 6264 4.01 0.97 0.069

Intergenic 14250 3429 4.16 1.0 0.83

*significant at the 5% level.
**significant at the 1% level.
doi:10.1371/journal.pgen.1000592.t001

Evolution of Candidate cis-Regulatory Regions
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signatures of natural selection, we implemented the program

mkprf [36] by conservatively setting no fixed variance on the prior

distribution of the population scaled selection coefficient (c= 2Nes),

which shrinks the estimates of c (Figure S4). For each gene we

quantified the probability that the estimate of c falls within five

bins: c,21 (strong negative selection), 21,c,20.5 (weak

negative selection), 20.5,c,0.5 (nearly neutral), 0.5,c,1 (weak

positive selection), and c.1 (strong positive selection) (Figure 3). In

order to compare different modes of selection, the probability of

negative selection was defined as Pr(c,20.5), and the probability

of positive selection was defined as Pr(c.0.5).

In order to control for population size changes that may affect

our estimates of positive and negative selection, we incorporated

demographic parameters when calculating the likelihood of our

observed data in mkprf, the effect of which can be seen in Figure

S5. A population expansion is expected to increase levels of

polymorphism at neutral sites to varying extents due to differences

in local mutation rates. In a set of neutral loci simulated under a

model of population expansion, failing to correct for demography

results in a neutral locus showing strong signatures of negative

selection with credibility intervals on the mean estimate of c below

0 (Table 4), and a slight inflation in the probability that c,0 at

higher values (Figure S6). Demographic models including a

population expansion in African Americans and a single

population bottleneck in European Americans were fitted to the

complete set of autosomal synonymous SNPs using the program

prfreq [32] and incorporated into mkprf. However, a single

bottleneck model was found to be a poor fit to the European

American sample, and even a complex, multi-bottleneck model

could not account for the excess of high frequency derived alleles

at synonymous sites [32]. Therefore, we focus the majority of our

conclusions on the African American sample. A complete list of

genes including McDonald-Kreitman tables and mkprf results are

available in Table S1, Table S2, Table S3, Table S4, Table S5,

Table S6, Table S7, and Table S8.

In order to evaluate the performance of mkprf, we performed

Wright-Fisher forward simulations under the inferred demograph-

ic model in African Americans using the program SFS_CODE

[37]. We find a significant correlation between simulated and

estimated mean values of c in datasets including various

combinations of loci simulated under positive and negative

selection (Figure S7). However, in a dataset including an equal

number of loci simulated under positive and negative selection, the

correlation is stronger for positively selected loci as compared to

negatively selected loci, most likely reflecting a limited ability to

distinguish between strong vs. weak negative selection. There is

Figure 2. Allele frequency spectra for different classes of sites. Unfolded site frequency spectrum of nonsynonymous, synonymous, and
conserved non-coding sites in 15 African Americans (above) and 20 European Americans (below); the data was re-sampled for 16 chromosomes to
account for missing data. We used the chimpanzee to infer the ancestral state of each polymorphism, and corrected for ancestral misidentification
using the method of Hernandez et al. [64].
doi:10.1371/journal.pgen.1000592.g002

Evolution of Candidate cis-Regulatory Regions
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also a 10-fold increase in the number of genes returned with

credibility intervals (CIs) on the mean estimate of c.0 compared

to CIs,0 (neut+del+pos, Table 4), as genes subject to strong

enough negative selection often have reduced levels of polymor-

phism and divergence. Moreover, of the 11,000 simulated loci in

the neut+del+pos dataset, 96% of loci in the positively selected

class (c.0) had at least 1 informative site, whereas only 94% of

loci in the negatively selected class (c,0) had at least 1 informative

site making an estimate of c even possible in mkprf. We note that

across all datasets, only a limited number of the loci simulated

under positive and negative selection have CIs on the mean

estimate of c above or below 0 (Table 4), suggesting there are likely

additional loci subject to selection than identified by CIs alone.

An important consideration in gene specific tests for selection is

unequal sequence coverage, as genes with a smaller number of

resequenced sites tend to have fewer informative sites (fixed or

polymorphic sites, Figure S8). It is unlikely that we have complete

coverage of all cis-regulatory regions of a gene due to a focus on the 59

upstream regions of genes, which is potentially problematic for our

comparisons if genes with fewer informative sites were to provide less

reliable estimates of c. As discussed in the previous paragraph this may

be particularly relevant for negatively selected loci, as genes subject to

strong negative selection are expected to have fewer informative sites.

Our simulations confirm that a higher percentage of negatively

selected loci have fewer than 4 informative sites (neut+del+pos, 52%)

as compared to either positively selected (16%) or neutral loci (28%).

However, we find no significant difference in the distribution of c
when we compare loci with fewer or at least 4 informative sites when

simulated under neutral, positive, and negative selection (Figure S9),

suggesting that loci with fewer informative sites are unlikely to be

problematic in our comparisons. The distributions of the number of

resequenced sites at a locus in candidate cis-regulatory and protein-

coding regions are shown in Figure S10.

Selection on candidate cis-regulatory regions and gene
expression profiles

We downloaded the Novartis Gene Expression Atlas 2 data

from 72 normal human tissues in order to examine patterns of

Table 3. Maximum likelihood estimates of c under various models of fitness effects for mutations in CNCs in the flanking regions
of genes as compared to intergenic sites.

Sites MLE c DLL MLE c(a,b) DLL Expected Fixed Observed Fixed Excess Fixed

pooled 20.897 131 (0.0415, 640) 66.4 48166.6 50414.5 4.67%

59 upstream 20.961 24.4 (0.172, 11.6) 4.1 7257.2 8143.4 12.2%

59 UTR 20.982 7.32 (0.184, 10.8) 1.2 2065.9 2360.6 14.3%

intronic 21.16 116 (0.0219, 10‘6)* 92.3 24458.1 25001.7 2.22%

39 UTR 22.08 43.1 (0.117, 370) 22.9 2188.0 2698.5 23.3%

39 downstream 21.13 16.2 (0.061, 427) 10.4 3483.5 3902.9 12.1%

Intergenic 0.0315 0.04 - - - - -

The estimate of c for intergenic sites is from a comparison to synonymous sites.
*asymptotes to bR‘.
doi:10.1371/journal.pgen.1000592.t003

Table 2. Fisher’s Exact tests comparing the proportion of low frequency derived alleles between different categories of CNCs
compared to synonymous and intergenic sites.

Pop CNCs Synonymous OR (p-value) Intergenic CNCs OR (p-value)

AA pooled 1.06 (1.561023) 1.03 (0.15)

59 upstream 1.15 (1.561024) 1.12 (7.561023)

59 UTR 1.20 (2.961023) 1.17 (0.014)

intron 1.04 (0.075) 1.01 (0.39)

39 UTR 1.20 (2.461023) 1.17 (0.012)

39 downstream 1.15 (6.961023) 1.12 (0.036)

intergenic 1.03 (0.21) -

EA pooled 1.07 (7.261023) 1.05 (0.11)

59 upstream 1.15 (2.361023) 1.14 (0.015)

59 UTR 1.26 (4.061023) 1.25 (9.461023)

intron 1.07 (0.022) 1.05 (0.13)

39 UTR 1.34 (1.461024) 1.32 (6.361024)

39 downstream 1.16 (0.018) 1.15 (0.040)

intergenic 1.01 (0.39) -

Low frequency derived alleles were defined as the number of SNPs at a frequency of 1/16 (i.e. frequency ,10%) after resampling the data for 16 chromosomes to
account for missing data in both African Americans (AA) and European Americans (EA). OR = odds ratio.
doi:10.1371/journal.pgen.1000592.t002

Evolution of Candidate cis-Regulatory Regions
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selection in candidate cis-regulatory regions with respect to gene

expression signals [38]. Microarray expression profiles were

available for 87% of genes in our tests for natural selection.

Conflicting studies have shown that expression patterns in tissue-

specific genes evolve more rapidly [39], or more slowly [40] as

compared to broadly expressed genes in comparisons of humans

and mice. More recently, experimentally defined cis-regulatory

regions were found to exhibit stronger degrees of selective

constraint in genes expressed in a smaller number of tissues

[18]. However, we find little correlation between the probability of

negative selection and the absolute number of tissues in which a

gene is expressed (AA: Kendall’s tau = 20.011, p = 0.12; EAs:

tau = 20.0060, p = 0.40), nor with the index of tissue specificity

[41], which includes additional information on the level of

expression in each tissue (AA: Kendall’s tau = 0.0086, p = 0.21;

EAs: tau = 0.0024, p = 0.73). We also find no significant correlation

between probabilities of selection and the mean and the maximum

expression level of a gene across all tissues, suggesting that

expression levels may not have a large impact on patterns of recent

natural selection within candidate cis-regulatory regions. However,

our simulations suggest that we likely have reduced power to

identify significant correlations that are driven by negative rather

than positive selection.

We then assigned genes to each tissue of expression in order to

examine differences across tissues in evidence for selection on

candidate cis-regulatory regions (Table S9, Table S10). Mann-

Whitney U tests did not identify any tissues with a significantly

higher probability of negative selection in either candidate cis-

regulatory regions or nonsynonymous sites, suggesting that weak

selective constraint may be a persistent factor affecting most

human tissues, but likely reflects the limited power we have to

detect negative vs. positive selection. On the other hand, we find

that genes expressed in at least 3 tissues have a significantly higher

probability of positive selection in candidate cis-regulatory regions

(FDR,10%, Table 5), suggesting they may have an excess of

positively selected loci. Notably, genes expressed in the fetal brain

have a higher mean probability of positive selection as compared

to genes expressed in other tissues, suggesting the importance of

adaptive regulatory changes during brain development. Similarly,

genes expressed in certain tissues of the adult brain, including the

cerebellum peduncles and the medulla oblongata, also have a

higher probability of positive selection in candidate cis-regulatory

Figure 3. Gene-specific estimates of selection in mkprf. Distribution of the probability that c falls within 5 categories: strong negative
selection (red, c,21), weak negative selection (brown, 21,c,20.5), nearly neutral (yellow, 20.5,c,0.5), weak positive selection (purple,
0.5,c,1), and strong positive selection (blue, c.1). Data shown is for African Americans from a concurrent analysis including (A) candidate cis-
regulatory regions, (B) nonsynonymous sites, and (C) synonymous sites, and an independent analysis including (D) simulated neutral data under the
inferred demographic model.
doi:10.1371/journal.pgen.1000592.g003

Evolution of Candidate cis-Regulatory Regions
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regions. Curiously, the medulla controls a variety of autonomic

functions and is considered to be the most plesiomorphic structure

of the brain [42], and might be expected to have a high level of

conservation across species. However, the medulla also contains

several motor nuclei important for facial expression, mastication,

tongue movements, and controlling sound amplitudes that reach

the inner ear, which are hypothesized to have played an adaptive

role in the evolution of facial expression, feeding, and speech in

humans [43].

Microarray studies have found that differences in brain

expression patterns are more pronounced between humans and

other primates as compared to other tissues [20], and that the

majority of these differences are likely due to upregulation of

brain-expressed genes in humans as compared to chimpanzees

[21]. However, these findings have been controversial [22], and a

more recent study has found that differences in expression patterns

between humans and chimpanzees are less pronounced in the

brain as compared to heart, kidney, liver and testis [24]. Regional

expression in parts of the brain is generally conserved between

human and the more distantly related mouse [44], raising the

possibility that cognitive differences between species may be more

likely to result from differential gene expression during develop-

ment. While comparative microarray studies have generally

focused on adult brain expression, our findings suggest that

adaptive evolution might have had a larger impact on expression

patterns in the fetal brain.

We applied the same methodology to examine differences in

selection acting on coding regions with regards to gene expression.

In contrast to what we observed for candidate cis-regulatory

regions, we find no evidence for a higher probability of positive

selection on nonsynonymous sites in genes expressed in the fetal

brain in either AAs (Mann-Whitney U-test: p = 0.26) or EAs

(p = 0.78). Our results are similar to a previous finding that positive

selection in protein-coding regions is not elevated in genes

expressed in the fetal brain [45]. In light of our results, it would

seem that adaptive evolution of fetal brain development is

influenced more strongly by changes at the regulatory level rather

than at the protein-coding level. However, we note that genes

expressed in the ‘‘whole brain’’ and cerebellum show a trend

towards higher probabilities of positive selection within nonsynon-

ymous sites in AAs (p = 0.03 and 0.048 respectively, FDRs = 34%),

suggesting that adaptive changes in the human brain may be the

cumulative result of positive selection on regulatory regions during

early development, and possibly on protein-coding regions in the

adult brain.

Previous studies have identified immune response and T cell-

mediated immunity as processes that are enriched for genes

showing signatures of positive selection in protein-coding regions

[46,47], highlight the importance of adaptive evolution in response

to pathogens. We find that genes expressed in natural killer cells

and T-cells both rank high among tissues with higher probabilities

of positive selection in both coding and candidate cis-regulatory

regions as compared to genes expressed in other tissues. Therefore,

while genes expressed in the fetal brain show a different trend in

coding and candidate cis-regulatory regions, positive selection in

genes expressed in various immune cells may have occurred at

both the coding and regulatory level.

Selection on candidate cis-regulatory regions and
functional categories

Evolutionary patterns within candidate cis-regulatory regions

can also provide insight into the relative importance of functional

Table 4. The number of genes showing strong signatures of positive and negative selection in conserved non-coding sites (CNCs),
synonymous, and nonsynonymous sites (Nonsyn) in African Americans (AA) and European Americans (EA), and for simulated data
(Sim) under the inferred AA demographic model (see Methods).

Pop Dataset Total Genes (+/2) Mean c (con) CI.0 (con) CI,0 (con)

AA CNCs 10,760 0.32 (0.09) 8 (7) 7 (12)

Synonymous 11,746 0.31 (0.11) 5 (5) 4 (15)

Nonsyn 9,645 20.70 (20.08) 4 (3) 88 (26)

Nonsyn (cons) 4,889 219.3 0 2,176

EA CNCs 10,593 0.35 (0.07) 6 (6) 4 (14)

Synonymous 11,637 0.46 (0.10) 4 (4) 11 (24)

Nonsyn 9,539 21.1 (20.17) 2 (3) 111 (41)

Sim neut 9,863 (0/0) 0.044 0 0

neut (null demog) 9,863 (0/0) 0.0025 0 1

neut (vs. syn+del) 9,863 (0/0) 0.26 0 0

neut+wkdel 9,707 (0/699) 20.17 0 8

neut+del 9,707 (0/1,485) 20.34 0 15

neut+stdel+pos 9,707 (1,824/4,632) 21.3 267 491

neut+del+pos 9,707 (1,824/1,485) 0.97 203 26

neut+wkdel+pos 9,707 (1,824/699) 1.2 199 12

neut+pos 9,707 (1,824/0) 1.3 206 8

CNCs, synonymous, and nonsynonymous sites were analyzed both independently, and in a single concurrent run of mkprf (con), both with no fixed variance on the
prior distribution of c. Nonsynonymous sites were also analyzed by restricting to sites within human and mouse conserved regions (cons). Neutral loci simulated under
the inferred AA demographic model were analyzed with a demographic correction, without a demographic correction (null demog), and assuming negative selection
on synonymous sites (vs. syn+del). Total genes = genes with at least 1 fixed or polymorphic site, +/2 = number of loci simulated under positive and negative selection
respectively, CI = 95% credibility interval on the estimate of mean c.
doi:10.1371/journal.pgen.1000592.t004
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categories in the evolution of modern humans. We generated a

custom GOslim set containing 129 terms from the Gene Ontology

database [48], and performed Mann-Whitney U-tests to identify

functional categories that have higher than expected probabilities

of selection within candidate cis-regulatory regions (Table S11,

Table S12). In AAs, functional categories with a higher probability

of positive selection in candidate cis-regulatory regions include

regulation of cellular process (GO:0050794, p = 5.661024,

FDR = 4%), protein modification (GO:0006464, p = 4.861023,

FDR = 9%), and cell cycle (GO:0007049, p = 3.761023,

FDR = 9%) (Table 6). In EAs, the most significant terms include

calcium ion binding (GO:0005509, p = 4.961023, FDR = 18%),

organelle organization and biogenesis (GO:0006996,

p = 5.461023, FDR = 22%), cell cycle (GO:0007049,

p = 7.961023, FDR = 22%), and behavior (GO:0007610,

p = 9.361023, FDR = 22%). Functional categories with a higher

probability of negative selection in candidate cis-regulatory regions

in AAs are generally less significant than positive selection, but

include cytosol (GO:0005829, p = 8.661023, FDR = 16%), ribo-

some (GO:0005840, p = 0.02, FDR = 16%), extracellular region

(GO:0005576, p = 0.03, FDR = 16%), and carrier activity

(GO:0005386, p = 5.961023, FDR = 22%), and in EAs include

proteinaceous extracellular matrix (GO:0005578, p = 0.01,

FDR = 19%), and extracellular space (GO:0005615, p = 0.03,

FDR = 19%) (Table 6).

We tested the same group of GO terms in our parallel tests for

selection on nonsynonymous sites within coding regions, and find

that different categories are identified as having higher probabil-

ities of selection in nonsynonymous sites as compared to candidate

cis-regulatory regions (Table 6). Terms showing significantly

higher probabilities of positive and negative selection in non-

synonymous sites correspond to previously published results

involving the same dataset with AAs and EAs pooled [35]. For

example, we find that ‘‘transcription’’ has significantly higher

Table 5. Tissues from the Novartis Gene Atlas 2 data with a higher mean probability of positive selection in candidate cis-
regulatory regions (CNCs) and nonsynonymous sites (Nonsyn) in African Americans (AA) and European Americans (EA) (p,0.05,
Mann-Whitney U-tests).

Sites Tissue AA p-value (q-value) EA p-value (q-value)

CNCs Fetal brain** 3.961024 (0.015) 2.261023 (0.15)

Medulla oblongata** 4.161024 (0.015) 0.021 (0.26)

Cerebellum peduncles* 3.061023 (0.073) 0.032 (0.26)

Caudate nucleus 6.861023 (0.12) NT

Pons 0.012 (0.17) NT

Testis seminiferous tubule 0.014 (0.17) NT

Cingulate cortex 0.017 (0.18) 0.036 (0.26)

Amygdala 0.020 (0.18) 0.017 (0.26)

Prefrontal cortex 0.028 (0.18) NT

Subthalamic nucleus 0.029 (0.18) NT

Cerebellum 0.030 (0.18) NT

Thalamus 0.032 (0.18) NT

Occipital lobe 0.036 (0.18) NT

Whole brain 0.039 (0.18) 0.030 (0.26)

CD4+ T cells 0.041 (0.18) 5.961023 (0.15)

CD56+ natural killer cells 0.043 (0.18) NT

Spinal cord 0.043 (0.18) NT

Parietal lobe 0.046 (0.19) 0.043 (0.26)

CD105+ endothelial NT 6.461023 (0.15)

Thyroid NT 0.027 (0.26)

Testis germ cell NT 0.041 (0.26)

Nonsyn CD4+ T cells 0.012 (0.27) NT

CD56+ natural killer cells 0.012 (0.27) NT

CD71+ early erythroid 0.015 (0.27) NT

CD8+ T cells 0.021 (0.27) NT

Thymus 0.021 (0.27) NT

Lung 0.023 (0.27) NT

Whole Brain 0.034 (0.34) NT

CD34+ bone marrow 0.043 (0.34) NT

Cerebellum 0.048 (0.34) NT

Tissues in bold are those that show a similar trend towards a higher probability of positive selection in both coding and candidate cis-regulatory regions. ** = FDR,5%,
* = FDR,10%, NT = no trend with p-value.0.05.
doi:10.1371/journal.pgen.1000592.t005
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probabilities of positive selection in nonsynonymous sites

(GO:0006350; AA: p = 1.161023, FDR = 8%; EA: p = 2.561023,

FDR = 6%), and that ‘‘actin binding’’ has higher probabilities of

negative selection in nonsynonymous sites (GO:0003779:

p = 8.061023, FDR = 25%). Transcription factors have frequently

been reported as having a high degree of positive selection in

protein-coding regions in general [35,45,49,50], however this is

not a trend that we observe in candidate cis-regulatory regions.

Interestingly, in EAs we find that ‘‘calcium ion binding’’ has a

significantly higher probability of negative selection at nonsynon-

ymous sites (GO:0005509, p = 1.561023, FDR = 6%), but within

candidate cis-regulatory regions it shows a higher probability of

positive selection (p = 4.961023, FDR = 18%). Therefore, evolu-

tionary patterns in candidate cis-regulatory regions tend to exhibit

different functional patterns than those found in protein coding

regions of genes.

Noteworthy genes with evidence for selection on
candidate cis-regulatory regions

We identified several genes that are likely to have undergone

adaptive regulatory changes during human evolution (95%

credibility interval on mean c above 0). NUDT16 shows the

strongest evidence for positive selection in candidate cis-regulatory

regions in both AAs (Pr[c.0.5] = 98.5%) and EAs

(Pr[c.0.5] = 97.4%). NUDT16 is a negative regulator of ribosome

biogenesis, and may be involved in RNA decay in the nucleus.

ITPR1 shows the second strongest evidence for positive selection in

EAs (Pr[c.0.5] = 97.3%), however we find much weaker evidence

for positive selection in AAs due to the presence of SNPs that are

exclusive to AAs (Pr[c.0.5] = 70.7%). ITPR1 is essential for brain

function, and is translated in response to synaptic activity in order to

modulate calcium release from the endoplasmic reticulum.

However ITPR1 also modulates calcium entry in the plasma

membrane of B-cells, suggesting it may also have an important role

in immunity. Functional studies have shown that the 39 UTR of

ITPR1 is required for dendritic localization in the mouse, however

the majority of human-chimp fixed differences fall within conserved

intronic sites rather than in the 39 UTR region of this gene,

suggesting that the target of selection is more likely to be an intronic

cis-acting element (or elements). Within nonsynonymous sites,

ITPR1 demonstrates little evidence for either negative or positive

selection in both AAs and EAs, suggesting that positive selection on

ITPR1 likely involved adaptive substitutions within candidate cis-

regulatory regions rather than within protein-coding regions.

Table 6. Gene Ontology terms with higher mean probabilities of positive and negative selection in candidate cis-regulatory
regions (CNCs) and nonsynonymous sites (Nonsyn) in African Americans (AA) and European Americans (EA) (FDR,25%, Mann-
Whitney U test). ** = FDR,5%, * = FDR,10%.

Pop Sites Negative Selection Positive Selection

AA CNCs Carrier activity Regulation of cellular process**

Cytosol Protein modification*

Ribosome Cell cycle*

Extracellular region Cell division*

DNA binding Negative regulation of biological process

Nucleotide binding Enzyme regulator activity

Ligase activity

Calcium ion binding

Nonsyn Actin binding Transcription*

Protein complex Transcription factor activity

Channel or pore class transporter activity Receptor activity

Oxidoreductase activity

Structural molecule activity

EA CNCs Proteinaceous extracellular matrix Calcium ion binding

Extracellular space Organelle organization and biogenesis

Cell cycle

Behavior

Nonsyn Calcium ion binding* Immune system process*

Catabolic process Response to stress*

Nervous system development Transcription*

Positive regulation of transcription, DNA-dependent Defense response*

Regulation of transcription*

Response to stimulus*

Response to external stimulus*

Transcription factor activity

Carbohydrate binding

Phosphorylation

doi:10.1371/journal.pgen.1000592.t006
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Additional genes with strong evidence for positive selection in

candidate cis-regulatory regions in both populations include

CACNA2D3, a calcium channel subunit protein ubiquitously

expressed in fetal tissues; OR2L13, an olfactory receptor; and

RNF167, a gene involved in protein degradation.

We also identified several genes that are likely to have

experienced negative selection on candidate cis-regulatory regions

(95% credibility interval on mean c below 0). The gene with the

highest probability of negative selection in candidate cis-regulatory

regions in AAs is FREM1 (Pr[c,20.5] = 98.4%), a gene involved

in the development of a number of epidermal structures in the

mouse [51], which also shows signatures of negative selection in

EAs (Pr[c,20.5] = 92.9%, but CI includes 0). FREM1 is highly

expressed in the dermis during mouse embryonic development,

and truncation of the FREM1 protein results in blebbing

(blistering) diseases that are similar to phenotypes observed in

Fraser syndrome, and dystrophic epidermolysis bullosa in humans.

The gene with the highest probability of negative selection in

candidate cis-regulatory regions in EAs in KRT40

(Pr[c,20.5] = 99.9%), a hair keratin protein that shows a

similarly high probability of negative selection in AAs

(Pr[c,20.5] = 97.6%). However, positive values of Tajima’s D

in both EAs (D = 1.80) and AAs (D = 1.32) indicate that

polymorphisms at KRT40 tend toward intermediate frequencies,

suggesting that KRT40 may potentially be subject to balancing

rather than negative selection.

Other genes with strong evidence for negative selection in

candidate cis-regulatory regions include SGCZ, a gene that may be

important in the pathogenesis of muscular dystrophy and

cardiomypathy; KIF19, a gene involved in intracellular transport

and a member of a superfamily of proteins important for brain

functioning; DOCK1, a gene thought to play a role in regulating

phagocytosis during apoptosis; and TNNI3K, a cardiac-specific

protein kinase. We also identify C14orf119 and C20orf117 as

having strong evidence of negative selection in candidate cis-

regulatory regions, however these genes have not been fully

characterized.

Selection inferred at disease-associated genes
In order to examine patterns of natural selection on candidate

cis-regulatory regions with respect to human disease, we identified

666 Mendelian disease genes using a hand-curated list of genes

from the Online Mendelian Inheritance in Man database (OMIM)

[52], and 1,072 complex disease genes using the Genetic

Association Database (GAD) [53] that were included in our scans

for selection. We find that disease genes have a higher mean

probability of negative selection within candidate cis-regulatory

regions as compared to non-disease genes, however this trend is

only suggestive in EAs, the population where the majority of

diseases have likely been characterized (Mann-Whitney U-test;

OMIM: p = 0.23 in AAs, p = 0.011 in EAs; GAD: p = 0.29 in AAs,

p = 0.06 in EAs). A link between negative selection and human

disease has also been observed in protein-coding regions of the

genome [35], however genetic diseases can also be regulatory in

nature [54].

There are several examples of disease-associated genes showing

evidence for negative selection in candidate cis-regulatory regions

in EAs. For example, LDB3, is a gene expressed in skeletal and

cardiac muscle for which several nonsynonymous mutations have

been associated with myofibrillar myopathy (OMIM:609452) and

cardiomyopathy (OMIM:601493). Another gene, PLCE1 shows

evidence for negative selection in both coding and candidate

cis-regulatory regions, and homozygous mutations within the

coding regions have been associated with type 3 nephrotic

syndrome (OMIM:610725). Both LDB3 and PLCE1 show only

moderate signatures of negative selection at candidate cis-

regulatory regions in AAs.

On the other hand, there are several examples of disease genes

that show strong evidence of positive selection in candidate cis-

regulatory regions. For example, CACNA2D3 displays a pattern

where loss of heterozygosity in intronic sequences is associated

with renal cell carcinoma; CENTG3 variants confer protection

against the pathogenesis of polyglutamine disease in the brain; and

ALG3 variants are associated with congenital disorder of

glycosylation type Id, a metabolic disease.

Contrasts of selection on protein-coding and candidate
cis-regulatory regions

Direct comparisons between different classes of sites in mkprf
may be confounded by differences in power to infer selection when

there are varying degrees of selection on background loci in the

dataset, particularly when there is no fixed variance on the prior

distribution of c. Our simulations show that as the proportion of

negatively selected loci is varied, so does the number of genes

showing strong signatures of positive selection due to a broader

exploration of the parameter space (CI.0, Table 4), despite the

actual number of positively selected loci remaining constant. For

example, by increasing the number of negatively selected loci from

0 (neut+pos) to 699 (neut+wkdel+pos), to 1,485 (neut+del+pos),

while keeping the number of positively selected loci constant

(1,824 loci), the number of genes with CIs.0 changes from 206 to

199, to 203 (Table 4). If we increase the strength and the number

of negatively selected loci to 4,632 loci (neut+stdel+pos), we then

identify 267 loci with CIs.0 (Table 4). More importantly, the

distributions of c for positively selected and neutral loci show

visible differences when the number of negatively selected loci is

varied, which may confound direct comparisons when different

classes of sites are analyzed independently (Figure S11). In order to

control for varying levels of selection on background loci, we ran a

combined analysis with nonsynonymous, synonymous, and

candidate cis-regulatory regions in a single run of mkprf. The

effect of analyzing different classes of sites in a concurrent vs.

independent analysis is a shift in the distribution of c towards

smaller values for both candidate cis-regulatory regions and

synonymous sites, and a shift in the distribution of c towards

larger values for nonsynonymous sites, causing the distributions of

c to be more similar, and more closely centered around 0 for

different classes of sites (Figure S12).

First we looked for a correlation between selection acting on

coding and candidate cis-regulatory regions, and observe what

appears to be a complex relationship (Figure 4). In AAs we find a

weak yet significant rank correlation between nonsynonymous and

non-coding regions for both the probability of positive (Kendall’s

tau = 0.055, p = 1.6610211) and negative selection (tau = 0.056,

p = 9.6610212), and between synonymous and non-coding regions

(positive selection: tau = 0.060, p = 2.1610213; negative selection:

tau = 0.060, p = 4.1610213). The correlation between synonymous

and nonsynonymous sites appears to be slightly stronger (positive

selection: tau = 0.098, p,10216; negative selection: tau = 0.096,

p,10216), as expected due to increased linkage disequilibrium

from a closer proximity between sites. Results from the EA sample

are similar. However, given the small values of tau, identifying

genes with evidence for selection in coding regions may be a poor

predictor of whether a gene will show evidence for selection in the

same direction as candidate cis-regulatory regions. A recent study

has found that genes with patterns of expression consistent with

any direction of selection (either positive or negative) exhibit

reduced rates of protein evolution on nonsynonymous sites [25],
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which is consistent with only a weak correlation in the probability

of selection between sites. The lack of a strong correlation in the

mode of selection also suggests that the effect of linkage between

candidate cis-regulatory and protein coding regions may be small,

increasing the probability that we are detecting signatures of

selection that are specific to non-coding regions.

We next compared the overall distributions of the probability of

selection at different classes of sites (Figure 5). Nonsynonymous

sites have a higher mean probability of negative selection as

compared to both candidate cis-regulatory regions and synony-

mous sites (Mann-Whitney U-tests, p-values,10216), and candi-

date cis-regulatory regions have a significantly higher mean

probability of negative selection as compared to synonymous sites

(p = 8.761024). We find that candidate cis-regulatory regions

exhibit a significantly higher mean probability of positive selection

as compared to nonsynonymous sites (p,10216), however this is

also true for synonymous sites (p,10216), and synonymous sites

have a marginally higher mean probability of positive selection as

compared to candidate cis-regulatory regions (p = 0.014). Although

synonymous sites may not evolve under strict neutrality, they may

better represent the distribution expected under neutrality while

taking into consideration local effects of linkage, mutation rates,

and variability in effective population sizes across the genome.

Therefore, differences in the distributions of the probability of

positive selection between nonsynonymous and candidate

cis-regulatory regions may be driven by more neutral, rather than

more adaptive evolution in candidate cis-regulatory regions.

However, it is possible we have limited power to identify

differences in the degree of positive selection in protein-coding and

candidate cis-regulatory regions, as the extent of positive selection

Figure 4. Correlation in estimates of c at different classes of sites within a gene. There is a significant, yet weak positive correlation
between estimates of c in candidate cis-regulatory regions and nonsynonymous sites in both African Americans (top left) (Kendall’s tau = 0.055,
p = 1.8610211), and European Americans (top right) (tau = 0.043, p = 2.961027). There is a slightly stronger correlation between synonymous and
nonsynonymous sites in both African Americans (bottom left) (tau = 0.096, p,10216), and European Americans (bottom right) (tau = 0.087, p,10216).
Candidate cis-regulatory, synonymous, and nonsynonymous sites were run in a single, concurrent run of mkprf.
doi:10.1371/journal.pgen.1000592.g004
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within candidate cis-regulatory regions may be an underestimate

due to their ascertainment. By restricting our analyses to human-

mouse conserved sequences, it may have biased our dataset toward

lower ratios of divergence/polymorphism based on neutral

coalescent simulations (Text S1, Table S13, Table S14, Table

S15, Figure S13, and Figure S14). For example, if we restrict our

analysis of nonsynonymous sites to those within human-mouse

conserved regions (i.e. use the same ascertainment as non-coding

sites), all genes show strong evidence for strong selective constraint

and have 95% credibility intervals below 0 on the mean estimate

of c (Table 4). Moreover, it is likely that only a small proportion of

sites within candidate cis-regulatory regions are truly functional, as

regulatory elements are often small. Therefore, the relative

contribution of adaptive evolution at the level of gene regulation

vs. changes in the actual protein remains an open question.

An important consideration is whether selection on synonymous

sites has affected our estimates of selection. While we observe no

discernable relationship between the probability of positive or

negative selection with GC content (Figure S15), negative selection

may indeed affect a certain proportion of synonymous mutations

Figure 5. A comparison of signatures of selection between different classes of sites. Cumulative distributions of (A) the probability of
negative selection [Pr(c),20.5] and (B) the probability of positive selection [Pr(c).0.5] across different classes of sites, and the distribution of c in (C)
candidate cis-regulatory and nonsynonymous sites, and (D) candidate cis-regulatory and synonymous sites. Data shown is for African Americans from
a single, concurrent analysis in mkprf including all classes of sites.
doi:10.1371/journal.pgen.1000592.g005

Evolution of Candidate cis-Regulatory Regions

PLoS Genetics | www.plosgenetics.org 12 August 2009 | Volume 5 | Issue 8 | e1000592



[55]. Wright-Fisher simulations show that if purifying selection is

acting on synonymous sites, we should expect a shift in the

distribution of c from a mean of 0.044 to 0.26 for a set of neutral

loci (Table 4). On the other hand, selection on closely linked

nonsynonymous sites may cause a reduction in polymorphism at

synonymous sites, and could explain the signatures of positive

selection we observe on synonymous sites (Table 4). Nevertheless,

pooled synonymous sites provide a good fit to a neutral

demographic model of expansion in the African American sample

[32], and were used as a neutral standard in the same way for all

classes of sites. Therefore, any bias is expected to have a similar

affect on candidate cis-regulatory, synonymous, and nonsynon-

ymous sites.

Conclusion
Our analysis of human polymorphism and divergence in

conserved non-coding sites suggests that the evolution of candidate

cis-regulatory regions is often driven by both positive and negative

selection. Our findings reinforce the idea that the non-coding

portion of our genome has an important functional and

evolutionary role, and suggest that patterns of natural selection

in non-coding DNA are often distinct from that of protein-coding

regions. Many of the adaptive changes in candidate cis-regulatory

regions might have occurred near genes expressed in the fetal

brain, supporting the hypothesis that the evolution of the

developing brain may be largely attributable to changes in gene

regulation. Our results add to the increasing evidence that non-

coding DNA is not all selectively neutral, and that selection on

candidate cis-regulatory regions has played an important role

throughout hominid evolution.

Methods

Sequencing and bioinformatics
Sequencing and SNP detection was performed at Celera

Genomics in 19 African Americans, 20 European Americans,

and one chimpanzee as previously described [35]. Primers were

designed to amplify the protein-coding exons of 23,363 genes

according to Celera’s human genome version R26k, which

concurrently amplified non-coding flanking sequences around

each exon. Primers were also designed to target human and mouse

conserved sequences (HMCS) within 5 kb upstream of the first

start codon (for a total of 9,459 genes). HMCS were defined as

sequences .100 bp and .70% identity between human and

mouse, however the majority were between 250–500 bp in length.

The bioinformatic pipeline is depicted in Figure S16. We

downloaded over 525,000 human and mouse conserved sequences

(HMCS) from the UCSC genome browser [56], of which 87,100

were aligned to the trace sequences using BLAST [57]. Sequences

were oriented to hg17 using BLAT [58], of which 85,641 mapped to

a unique position on the human genome. The positions of all but

five HMCS were updated to hg18 using liftOver [59] with a ratio of

remapped bases set to 1. A total of 83,379 HMCS were oriented to

the public chimpanzee genome (PanTro2) using syntenic align-

ments from the UCSC genome browser. HMCS were annotated to

genes according to Refseq 19 with respect to sites 5 kb upstream of

the transcription start site, 5 kb downstream of the transcription

stop site, 59 UTR, 39 UTR, intron, and coding. Sites beyond 5 kb

upstream or downstream from any known transcript were

annotated as intergenic. All sites within HMCS that overlapped

with any known coding exons were masked, leaving strictly

conserved non-coding sites (CNCs). Our resulting dataset included

CNCs flanking a total of 15,061 autosomal genes. For comparisons

to synonymous and nonsynonymous sites, we used the Celera

Genomics exon resequence data from the same set of 35 people

without regard to human and mouse conservation [35]. In the case

of alternatively transcribed genes, we counted the total number of

fixed and polymorphic sites in nonsynonymous sites as the union of

all known transcripts. An analysis of admixture revealed that 4 out

of the 19 African American individuals had high levels of European

ancestry [33], so these individuals were excluded from our study.

Statistical analyses
In order to estimate the distribution of fitness effects on

conserved non-coding sites (CNCs) in the flanking regions of genes

for African Americans, we calculated the likelihood that the

observed site frequency spectrum fits a neutral model, a model

with a single estimate of c, and model with a Gamma distribution

of c using the program prfreq [32]. Estimates of c for intergenic

CNCs were calculated relative to synonymous sites, and yielded no

evidence for natural selection on intergenic CNCs. Estimates of c
for CNCs in the flanking regions of genes were then calculated

relative to intergenic CNCs rather than synonymous sites in order

to control for the effect of ascertainment based on conservation.

Demographic parameters were simultaneously inferred from

intergenic CNCs, which produced a similar model to that inferred

from synonymous sites.

In order to identify candidate cis-regulatory regions subject to

positive and negative selection we implemented the program mkprf
[36,60], which estimates the posterior distribution of the population

scaled selection coefficient (c= 2Nes) for individual loci. For a

neutral comparison we pooled the number of fixed and segregating

synonymous sites from the exon resequencing data, similar to the

approach taken in Bustamante et al. [35]. We updated the mkprf
framework to incorporate the effect of non-stationary demography

using the Poisson Random Field approach [61], and used the

maximum likelihood demographic parameters from Boyko et al.

[32] that were estimated from the frequency information at

synonymous coding sites. In this model, the African population

exhibited a 3-fold expansion approximately 6,800 generations ago

whereas the European population exhibited a bottleneck followed

by a more recent expansion. We implemented mkprf by

conservatively setting no fixed variance on the prior distribution

of c, as the number of genes with credibility intervals (CIs) above or

below 0 has been shown to be positively correlated to the variance

set on the prior distribution of c [62]. For example, by not fixing the

variance we identify 8 genes with CIs.0 and 7 genes with CIs,0 in

our analysis of CNCs, whereas by fixing the variance to 8 we

identify 11 genes with CIs.0 and 60 genes with CIs,0.

Simulations
We performed Wright-Fisher forward simulations under the

inferred demographic model for AAs using the program

SFS_CODE [37] (Table 4). For each scenario a total of 11,000

loci were simulated using the length distribution of resequenced sites

in candidate cis-regulatory regions (or synonymous sites), the

observed mutation rate from pooled synonymous sites

(h= 5.9161024), partial linkage between sites (rho = h), and a

splitting from the chimpanzee ancestor 20*2N generations ago to

match the observed fixed/segregating ratio in pooled synonymous

sites (N = 7,778, the estimated ancestral population size estimated

from synonymous sites [32]). Two sets of loci were simulated under

a neutral demographic model (one for candidate cis-regulatory

regions, one for synonymous sites), and three sets of loci were

simulated under different selective regimes (one for candidate cis-

regulatory regions, one for nonsynonymous, and one for synony-

mous sites). For candidate cis-regulatory regions a distribution of

selective effects were drawn from a mixture of normal distributions
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assuming that most loci were under weak selection or nearly neutral

(N = 10,500, mean = 0, s.d. = 0.5), but with some loci having more

extreme selection coefficients (N = 500, mean = 0, s.d. = 5). This

distribution assumed an equal number of genes exposed to positive

and negative selection, and allowed us to evaluate our method

under a general condition (neut+del+pos, Table 4). Loci with no

informative sites were discarded, leaving a total of 9,863 loci in the

neutral demographic set, and 9,707 loci in the neutral demogra-

phic+selection set that had at least 1 fixed or polymorphic site.

In order to evaluate our method under different conditions, we

randomly substituted half of the negatively selected genes for

neutral loci (neut+wkdel+pos), half of the negatively selected and

all of the positively selected genes for neutral loci (neut+wkdel), all

of the negatively selected loci for neutral loci (neut+pos), and all of

the positively selected loci for neutral loci (neut+del). For

nonsynonymous sites a distribution of selective effects was drawn

from an exponential distribution with rate parameter 0.2, and

truncated to the nearest integer. We then substituted all of the

negatively selected loci that were simulated for nonsynonymous

sites for an equivalent number of neutral loci in the neut+pos

dataset (neut+stdel+pos). For synonymous sites a distribution of

selective effects was drawn from an exponential distribution with

rate parameter 0.8, reflected across the y-axis to be negative, and

truncated to the nearest integer.

Correlations with gene attributes
All correlations with gene attributes were run using the

continuous distribution of the probability of positive and negative

selection (Pr[c.0.5] and Pr[c,20.5]). A Kendall’s tau rank

correlation coefficient was calculated in order to test for

correlations between the probability of positive or negative

selection and continuous biological variables. Mann-Whitney

U-tests were used to test for differences in the mean probability

of selection with discrete data, and multiple testing was considered

using the false discovery rate [63] in the R statistical package using

q.value. We created a custom GOslim including 129 terms, and

annotated genes to the most terminal child to look for functional

categories with higher probabilities of natural selection. In order to

examine patterns of selection with regards to the transcriptional

profiles of genes, we downloaded the Novartis Gene Expression

Atlas 2 data [38] from 72 normal human tissues from the UCSC

genome browser [56]. A gene was considered to be expressed in a

tissue if the signal was .350, and in the case of genes with multiple

transcripts the average expression level for each tissue was

calculated. The index of tissue specificity (t) was estimated for

each gene according to Yanai et al. [41].

Supporting Information

Figure S1 Estimates of Tajima’s D for different categories of

sites; syn = synonymous sites, CNCs = conserved non-coding sites,

repl = nonsynonymous sites. Notches represent the 95% confi-

dence interval for the difference in two medians.

Found at: doi:10.1371/journal.pgen.1000592.s001 (6.22 MB TIF)

Figure S2 Comparison of the probability of negative selection

(above) and the probability of positive selection (below) when only

CNCs in the 59 upstream regions of genes are considered, as

compared to when all CNCs are pooled for African Americans in

mkprf.

Found at: doi:10.1371/journal.pgen.1000592.s002 (4.11 MB TIF)

Figure S3 The effect of using pooled vs local synonymous sites

on estimates of the probability of negative selection (above) and the

probability of positive selection (below) for candidate cis-regulatory

regions in the African American sample. The effect of pooling

synonymous sites on estimates of c is small, as in both cases mkprf
uses only the information from fixed and polymorphic sites at

candidate cis-regulatory regions in order to estimate the strength of

selection.

Found at: doi:10.1371/journal.pgen.1000592.s003 (3.11 MB TIF)

Figure S4 The effect of using a fixed variance of 8 vs. no fixed

variance on the prior distribution of c in candidate cis-regulatory

regions. The probability of negative selection (top) is reduced

above ,20%, while the probability of positive selection (middle) is

reduced above ,50% when the variance is unfixed. Estimates of

mean c (bottom) demonstrate how not fixing the variance shrinks

the estimate of the selection coefficient by restricting the size of the

parameter space being explored.

Found at: doi:10.1371/journal.pgen.1000592.s004 (2.74 MB TIF)

Figure S5 The effects of applying a demographic correction in

mkprf on the inference of selection in candidate cis-regulatory

regions in African Americans. The inclusion of a demographic

model increases the variance in the posterior distribution of c, which

widens the distribution of estimated values of c at a locus, inflating

the probability that c,20.5 (top left) and the probability that

c.0.5 (bottom left). The probability that c,0 is unaffected by a

demographic correction in candidate cis-regulatory regions (bottom

right). Estimates of the population scaled selection coefficient

(c= 2Nes) are scaled by the current effective population size (Nc)

under a model of population expansion, and by the time-averaged

effective population size (N0) under a model of constant population

size. In African Americans Nc.N0, resulting in a wider distribution

of c (top right) when a demographic correction is applied.

Found at: doi:10.1371/journal.pgen.1000592.s005 (8.96 MB TIF)

Figure S6 The effects of applying a demographic correction in

mkprf on the inference of selection on neutral loci simulated under a

model of population expansion inferred from synonymous sites in

African Americans. The inclusion of a demographic model increases

the variance in the posterior distribution of c, which widens the

distribution of estimated values of c at a locus, inflating the probability

that c,20.5 (top left) and the probability that c.0.5 (bottom left).

The overall probability that c,0 on neutral loci is slightly reduced at

higher probabilities after correcting for demography.

Found at: doi:10.1371/journal.pgen.1000592.s006 (6.22 MB TIF)

Figure S7 Correlations between simulated and estimated mean

c obtained from mkprf (see Table 4 in the main text). Kendall’s

tau rank correlation tests all have p-values,10216 (except for

neut). Loci simulated under positive selection show a stronger

correlation than loci simulated under negative selection in the

neut+del+pos dataset: tau = 0.38 for positively selected loci

(p,10216), and tau = 0.071 for negatively selected loci

(p = 6.661023). However, in the neut+stdel+pos tau = 0.27 for

positively selected loci (p,10216), and tau = 0.33 for negatively

selected loci (p,10216).

Found at: doi:10.1371/journal.pgen.1000592.s007 (7.47 MB TIF)

Figure S8 The relationship between the total number of sites

resequenced in candidate cis-regulatory regions (total sites), and the

total number of fixed and polymorphic sites (informative sites). We

find a significant correlation between estimates of c and total sites

when all genes are considered (Kendall’s tau = 0.043,

p = 3.3610211). The correlation disappears if we condition on

genes having at least 4 informative sites (tau = 20.0048, p = 0.60).

Found at: doi:10.1371/journal.pgen.1000592.s008 (3.98 MB TIF)

Figure S9 Distribution of mean c estimated with mkprf for loci

simulated under negative (top), positive (middle), and neutral
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evolution (bottom) in the neut+del+pos dataset (see Table 4 in the

main text). ‘‘Informative’’ genes are those with at least 4 fixed or

polymorphic sites, and ‘‘noninformative’’ genes are those with ,4

fixed or polymorphic sites. Most of the distributions are not

significantly different (Mann-Whitney U-tests, p.0.05), with the

exception of neutral loci where informative genes have a slightly

higher mean c (0.69 vs 0.61, p = 0.02). We obtain similar results for

the neut+stdel+pos dataset. We note that genes simulated under

smaller values of c are less likely to be in the informative class.

Found at: doi:10.1371/journal.pgen.1000592.s009 (5.82 MB TIF)

Figure S10 Distribution of the number of sites resequenced in

candidate cis-regulatory and nonsynonymous sites.

Found at: doi:10.1371/journal.pgen.1000592.s010 (3.98 MB TIF)

Figure S11 Distribution of estimated mean c for simulated

neutral and positively selected loci analyzed in mkprf with an

increasing number of loci simulated under negative selection (see

Table 4 in the main text) when there is no fixed variance on the

prior distribution of c. The distributions are significantly different

between the neut+pos and the neut+stdel+pos for positively selected

loci (Mann-Whitney U-test, p -values,10216), and are significantly

different between all datasets for neutral loci (p -values,10216).

Found at: doi:10.1371/journal.pgen.1000592.s011 (5.97 MB TIF)

Figure S12 The effect of analyzing different classes of sites in a

separate, independent run of mkprf vs. a concurrent run including

all classes of sites. Simulations suggest that the difference across

runs is due to the effects of varying degrees of selection in the

background loci, which if not controlled for may be a confounding

factor when comparing the extent of natural selection between

different runs of mkprf.

Found at: doi:10.1371/journal.pgen.1000592.s012 (6.87 MB TIF)

Figure S13 Boxplots showing the log of the ratio of the number

of polymorphisms to the number of human-chimpanzee fixed

differences for unfiltered and HMCS simulated data.

Found at: doi:10.1371/journal.pgen.1000592.s013 (2.24 MB TIF)

Figure S14 The distribution of LI for the simulated HMCS and

unfiltered datasets.

Found at: doi:10.1371/journal.pgen.1000592.s014 (2.24 MB TIF)

Figure S15 The relationship between GC content and the

probability of positive and negative selection in candidate cis-

regulatory regions, nonsynonymous, and synonymous sites in AAs.

GC content in candidate cis-regulatory regions shows a weak, but

significant negative rank correlation with the probability of

negative selection (Kendall’s tau = 20.014, p = 0.029), and a weak,

but significant positive rank correlation with the probability of

positive selection (tau = 0.013, p = 0.043). The correlation between

GC content and selection on nonsynonymous sites also appears to

be weak (negative selection: tau = 20.024, p = 4.861024; positive

selection: tau = 0.025, p = 1.961024), similarly for synonymous

sites (negative selection: tau = 20.021, p = 0.0033; positive selec-

tion: tau = 0.016, p = 0.024). Results are similar in EAs.

Found at: doi:10.1371/journal.pgen.1000592.s015 (9.33 MB TIF)

Figure S16 Flowchart of the bioinformatic pipeline.

Found at: doi:10.1371/journal.pgen.1000592.s016 (9.44 MB TIF)

Table S1 McDonald-Kreitman tables for candidate cis-regula-

tory regions in AAs.

Found at: doi:10.1371/journal.pgen.1000592.s017 (0.24 MB

TXT)

Table S2 McDonald-Kreitman tables for candidate cis-regula-

tory regions in EAs.

Found at: doi:10.1371/journal.pgen.1000592.s018 (0.24 MB

TXT)

Table S3 McDonald-Kreitman tables for protein-coding regions

in AAs.

Found at: doi:10.1371/journal.pgen.1000592.s019 (0.33 MB

TXT)

Table S4 McDonald-Kreitman tables for protein-coding regions

in EAs.

Found at: doi:10.1371/journal.pgen.1000592.s020 (0.33 MB

TXT)

Table S5 mkprf results for candidate cis-regulatory regions in

AAs.

Found at: doi:10.1371/journal.pgen.1000592.s021 (1.08 MB

TXT)

Table S6 mkprf results for candidate cis-regulatory regions in

EAs.

Found at: doi:10.1371/journal.pgen.1000592.s022 (1.07 MB

TXT)

Table S7 mkprf results for nonsynonymous sites in AAs.

Found at: doi:10.1371/journal.pgen.1000592.s023 (0.98 MB

TXT)

Table S8 mkprf results for nonsynonymous sites in EAs.

Found at: doi:10.1371/journal.pgen.1000592.s024 (0.97 MB

TXT)

Table S9 GeneAtlas2 results for candidate cis-regulatory regions.

Found at: doi:10.1371/journal.pgen.1000592.s025 (0.05 MB

XLS)

Table S10 GeneAtlas2 results for protein coding regions.

Found at: doi:10.1371/journal.pgen.1000592.s026 (0.05 MB

XLS)

Table S11 Gene Ontology data for candidate cis-regulatory

regions.

Found at: doi:10.1371/journal.pgen.1000592.s027 (0.12 MB

XLS)

Table S12 Gene Ontology data for nonsynonymous sites.

Found at: doi:10.1371/journal.pgen.1000592.s028 (0.12 MB

XLS)

Table S13 Summary statistics for the log of the ratio of

polymorphism/divergence in simulated human-mouse conserved

sequences versus unfiltered sequences.

Found at: doi:10.1371/journal.pgen.1000592.s029 (0.04 MB PDF)

Table S14 Summary statistics for the distribution of the log of

the neutrality index for simulated human-mouse conserved

sequences versus unfiltered sequences.

Found at: doi:10.1371/journal.pgen.1000592.s030 (0.04 MB PDF)

Table S15 Proportion of simulations with no polymorphisms or

human-chimpanzee fixed differences in simulated human-mouse

conserved sequences and unfiltered sequences.

Found at: doi:10.1371/journal.pgen.1000592.s031 (0.04 MB PDF)

Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pgen.1000592.s032 (0.11 MB PDF)

Acknowledgments

We would like to thank the Celera Genomics sequencing centre for

generating the data, and David Lawrie, Rasmus Nielsen, Sarah Stockwell,

and members of the Clark and Bustamante labs for many helpful

discussions and technical assistance. We are also extremely grateful to three

anonymous reviewers for their invaluable comments.

Evolution of Candidate cis-Regulatory Regions

PLoS Genetics | www.plosgenetics.org 15 August 2009 | Volume 5 | Issue 8 | e1000592



Author Contributions

Conceived and designed the experiments: DGT ARB RDH TJW JJS MC

MDA CDB AGC. Performed the experiments: DGT ARB RDH AI XH.

Analyzed the data: DGT ARB RDH AI XH. Contributed reagents/

materials/analysis tools: DGT ARB RDH AI XH CDB. Wrote the paper:

DGT ARB RDH CDB AGC.

References

1. King MC, Wilson AC (1975) Evolution at two levels in humans and

chimpanzees. Science 188: 107–116.

2. Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila.

Nature 437: 1149–1152.

3. Haddrill PR, Bachtrog D, Andolfatto P (2008) Positive and negative selection on

noncoding DNA in Drosophila simulans. Mol Biol Evol 25: 1825–1834.

4. Gaffney DJ, Keightley PD (2005) The scale of mutational variation in the murid

genome. Genome Res 15: 1086–1094.

5. Taylor MS, Kai C, Kawai J, Carninci P, Hayashizaki Y, et al. (2006)

Heterotachy in mammalian promoter evolution. PLoS Genet 2: e30.

doi:10.1371/journal.pgen.0020030.

6. Bush EC, Lahn BT (2005) Selective constraint on noncoding regions of hominid

genomes. PLoS Comput Biol 1: e73. doi:10.1371/journal.pcbi.0010073.

7. Hughes AL, Packer B, Welch R, Bergen AW, Chanock SJ, et al. (2005) Effects of

natural selection on interpopulation divergence at polymorphic sites in human

protein-coding Loci. Genetics 170: 1181–1187.

8. Keightley PD, Kryukov GV, Sunyaev S, Halligan DL, Gaffney DJ (2005)

Evolutionary constraints in conserved nongenic sequences of mammals. Genome

Res 15: 1373–1378.

9. Osada N, Hirata M, Tanuma R, Kusuda J, Hida M, et al. (2005) Substitution

rate and structural divergence of 59UTR evolution: comparative analysis

between human and cynomolgus monkey cDNAs. Mol Biol Evol 22:

1976–1982.

10. Drake JA, Bird C, Nemesh J, Thomas DJ, Newton-Cheh C, et al. (2006)

Conserved noncoding sequences are selectively constrained and not mutation

cold spots. Nat Genet 38: 223–227.

11. Pollard KS, Salama SR, King B, Kern AD, Dreszer T, et al. (2006) Forces

shaping the fastest evolving regions in the human genome. PLoS Genet 2: e168.

doi:10.1371/journal.pgen.0020168.

12. Prabhakar S, Noonan JP, Paabo S, Rubin EM (2006) Accelerated evolution of

conserved noncoding sequences in humans. Science 314: 786.

13. Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE, et al. (2007) Fast-evolving

non-coding sequences in the human genome. Genome Biol 8: R118.

14. Asthana S, Noble WS, Kryukov G, Grant CE, Sunyaev S, et al. (2007) Widely

distributed noncoding purifying selection in the human genome. Proc Natl Acad

Sci U S A 104: 12410–12415.

15. Kim SY, Pritchard JK (2007) Adaptive Evolution of Conserved Noncoding

Elements in Mammals. PLoS Genet 3: e147. doi:10.1371/journal.

pgen.0030147.

16. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA (2007) Promoter

regions of many neural- and nutrition-related genes have experienced positive

selection during human evolution. Nat Genet 39: 1140–1144.

17. Sethupathy P, Giang H, Plotkin JB, Hannenhalli S (2008) Genome-wide analysis

of natural selection on human cis-elements. PLoS ONE 3: e3137. doi:10.1371/

journal.pone.0003137.

18. Gaffney DJ, Blekhman R, Majewski J (2008) Selective constraints in

experimentally defined primate regulatory regions. PLoS Genet 4: e1000157.

doi:10.1371/journal.pgen.1000157.

19. Kudaravalli S, Veyrieras JB, Stranger BE, Dermitzakis ET, Pritchard JK (2009)

Gene expression levels are a target of recent natural selection in the human

genome. Mol Biol Evol 26: 649–658.

20. Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, et al. (2002) Intra- and

interspecific variation in primate gene expression patterns. Science 296:

340–343.

21. Caceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, et al. (2003) Elevated

gene expression levels distinguish human from non-human primate brains. Proc

Natl Acad Sci U S A 100: 13030–13035.

22. Hsieh WP, Chu TM, Wolfinger RD, Gibson G (2003) Mixed-model reanalysis

of primate data suggests tissue and species biases in oligonucleotide-based gene

expression profiles. Genetics 165: 747–757.

23. Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, et al. (2004)

Regional patterns of gene expression in human and chimpanzee brains. Genome

Res 14: 1462–1473.

24. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, et al. (2005)

Parallel patterns of evolution in the genomes and transcriptomes of humans and

chimpanzees. Science 309: 1850–1854.

25. Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y (2008) Gene

regulation in primates evolves under tissue-specific selection pressures. PLoS

Genet 4: e1000271. doi:10.1371/journal.pgen.1000271.

26. Rockman MV, Wray GA (2002) Abundant raw material for cis-regulatory

evolution in humans. Mol Biol Evol 19: 1991–2004.

27. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, et al. (2005)

Genome-Wide Associations of Gene Expression Variation in Humans. PLoS

Genet 1: e78. doi:10.1371/journal.pgen.0010078.

28. Tompa M, Li N, Bailey TL, Church GM, De Moor B, et al. (2005) Assessing

computational tools for the discovery of transcription factor binding sites. Nat

Biotechnol 23: 137–144.

29. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, et al. (2006)

In vivo enhancer analysis of human conserved non-coding sequences. Nature

444: 499–502.

30. Prabhakar S, Poulin F, Shoukry M, Afzal V, Rubin EM, et al. (2006) Close

sequence comparisons are sufficient to identify human cis-regulatory elements.

Genome Res 16: 855–863.

31. The ENCODE Project Consortium (2007) Identification and analysis of

functional elements in 1% of the human genome by the ENCODE pilot

project. Nature 447: 799–816.

32. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, et al.

(2008) Assessing the evolutionary impact of amino acid mutations in the human

genome. PLoS Genet 4: e1000083. doi:10.1371/journal.pgen.1000083.

33. Lohmueller KE, Indap A, Schmidt S, Boyko AR, Hernandez RH, et al. (2008)

Proportionally more deleterious genetic variation in European than in African
populations. Nature 451: 994–998.

34. Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, et al. (2008)

High-resolution mapping of expression-QTLs yields insight into human gene
regulation. PLoS Genet 4: e1000214. doi:10.1371/journal.pgen.1000214.

35. Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, et al.

(2005) Natural selection on protein-coding genes in the human genome. Nature
437: 1153–1157.

36. Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, et al.

(2002) The cost of inbreeding in Arabidopsis. Nature 416: 531–534.

37. Hernandez RD (2008) A flexible forward simulator for populations subject to
selection and demography. Bioinformatics 24: 2786–2787.

38. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad
Sci U S A 101: 6062–6067.

39. Yang J, Su AI, Li WH (2005) Gene expression evolves faster in narrowly than in

broadly expressed mammalian genes. Mol Biol Evol 22: 2113–2118.

40. Liao BY, Zhang J (2006) Low rates of expression profile divergence in highly

expressed genes and tissue-specific genes during Mammalian evolution. Mol Biol

Evol 23: 1119–1128.

41. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, et al. (2005)

Genome-wide midrange transcription profiles reveal expression level relation-

ships in human tissue specification. Bioinformatics 21: 650–659.

42. Finlay BL, Darlington RB (1995) Linked regularities in the development and

evolution of mammalian brains. Science 268: 1578–1584.

43. Sherwood CC (2005) Comparative anatomy of the facial motor nucleus in
mammals, with an analysis of neuron numbers in primates. Anat Rec A Discov

Mol Cell Evol Biol 287: 1067–1079.

44. Strand AD, Aragaki AK, Baquet ZC, Hodges A, Cunningham P, et al. (2007)
Conservation of regional gene expression in mouse and human brain. PLoS

Genet 3: e59. doi:10.1371/journal.pgen.0030059.

45. Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, et al. (2005) A
scan for positively selected genes in the genomes of humans and chimpanzees.

PLoS Biol 3: e170. doi:10.1371/journal.pbio.0030170.

46. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. (2007)
Evolutionary and biomedical insights from the rhesus macaque genome. Science

316: 222–234.

47. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG (2007) Recent and
ongoing selection in the human genome. Nat Rev Genet 8: 857–868.

48. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat Genet 25: 25–29.

49. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive

selection in the human genome. PLoS Biol 4: e72. doi:10.1371/journal.-
pbio.0040072.

50. Wang ET, Kodama G, Baldi P, Moyzis RK (2006) Global landscape of recent

inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci U S A 103:
135–140.

51. Smyth I, Du X, Taylor MS, Justice MJ, Beutler B, et al. (2004) The extracellular

matrix gene Frem1 is essential for the normal adhesion of the embryonic
epidermis. Proc Natl Acad Sci U S A 101: 13560–13565.

52. Blekhman R, Man O, Herrmann L, Boyko AR, Indap A, et al. (2008) Natural

selection on genes that underlie human disease susceptibility. Curr Biol 18:
883–889.

53. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association

database. Nat Genet 36(5): 431–432.

54. Knight JC (2005) Regulatory polymorphisms underlying complex disease traits.

J Mol Med 83: 97–109.

55. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet 7: 98–108.

Evolution of Candidate cis-Regulatory Regions

PLoS Genetics | www.plosgenetics.org 16 August 2009 | Volume 5 | Issue 8 | e1000592



56. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12: 996–1006.

57. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

58. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:

656–664.

59. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, et al. (2003) The

UCSC Genome Browser Database. Nucleic Acids Res 31: 51–54.

60. Barrier M, Bustamante CD, Yu J, Purugganan MD (2003) Selection on rapidly

evolving proteins in the Arabidopsis genome. Genetics 163: 723–733.

61. Williamson SH, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R, et al. (2005)

Simultaneous inference of selection and population growth from patterns of
variation in the human genome. Proc Natl Acad Sci U S A 102: 7882–7887.

62. Li YF, Costello JC, Holloway AK, Hahn MW (2008) ‘‘Reverse ecology’’ and the

power of population genomics. Evolution 62: 2984–2994.
63. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B 57: 289–300.

64. Hernandez RD, Williamson SH, Bustamante CD (2007) Context dependence,

ancestral misidentification, and spurious signatures of natural selection. Mol Biol
Evol 24: 1792–1800.

Evolution of Candidate cis-Regulatory Regions

PLoS Genetics | www.plosgenetics.org 17 August 2009 | Volume 5 | Issue 8 | e1000592


