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Abstract: We found several blood biomarkers through computational secretome analyses, including
aldo-keto reductase family 1 member B10 (AKR1B10), which reflected the progression of nonalcoholic
fatty liver disease (NAFLD). After confirming that hepatic AKR1B10 reflected the progression of
NAFLD in a subgroup with NAFLD, we evaluated the diagnostic accuracy of plasma AKR1B10 and
other biomarkers for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis in replication
cohort. We enrolled healthy control subjects and patients with biopsy-proven NAFLD (n = 102) and
evaluated the performance of various diagnostic markers. Plasma AKR1B10 performed well in the
diagnosis of NASH with an area under the receiver operating characteristic (AUROC) curve of 0.834
and a cutoff value of 1078.2 pg/mL, as well as advanced fibrosis (AUROC curve value of 0.914 and
cutoff level 1078.2 pg/mL), with further improvement in combination with C3. When we monitored
a subgroup of obese patients who underwent bariatric surgery (n = 35), plasma AKR1B10 decreased
dramatically, and 40.0% of patients with NASH at baseline showed a decrease in plasma AKR1B10
levels to below the cutoff level after the surgery. In an independent validation study, we proved that
plasma AKR1B10 was a specific biomarker of NAFLD progression across varying degrees of renal
dysfunction. Despite perfect correlation between plasma and serum levels of AKR1B10 in paired
sample analysis, its serum level was 1.4-fold higher than that in plasma. Plasma AKR1B10 alone and
in combination with C3 could be a useful noninvasive biomarker for the diagnosis of NASH and
hepatic fibrosis.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is becoming a more prevalent and bur-
densome metabolic disease [1]. The prevalence of NAFLD in obese subjects undergoing
bariatric surgery can be more than 95%, with 20–98% having steatohepatitis (NASH) and
10–94.1% having fibrosis [2–4]. Bariatric surgery can lead to the resolution of NASH in
up to 60–84% of patients [2,5]. However, in the majority of cases, serial liver biopsies are
impractical for longitudinal monitoring of NAFLD.

Several blood markers for NASH have been introduced but are not universally ac-
cepted: aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio, cytoker-
atin 18, and other predictive models using clinical and laboratory values [6–8]. Several
magnetic resonance (MR)-based parameters, including the proton density fat fraction
measured by MR imaging (MRI-PDFF), two-dimensional (2D) or 3D liver stiffness mea-
surement (LSM) by MR elastography (MRE), and iron-corrected T1 relaxation time, have
been introduced for the prediction of NASH and are awaiting further validation [8–11].

To identify blood biomarkers for NASH and related hepatic fibrosis, we profiled secre-
tome genes from public gene expression datasets that included NAFLD and its progressive
hepatic manifestations, such as advanced fibrosis, cirrhosis, and hepatocellular carcinoma
(HCC). We found that aldo-keto reductase family 1 member B10 (AKR1B10) could be
biomarker(s) of NAFLD progression. AKR1B10 catalyzes the reduction of retinaldehyde
to retinol and the detoxification of harmful metabolites, including reactive aldehydes and
ketones [12,13]. Although AKR1B10 is profusely expressed in epithelial tissues of the
digestive tract, with a low level in the liver [12], it has been reported that this enzyme
is upregulated in some cancers, including HCC [14,15]. In addition, recent studies have
reported that this enzyme is also upregulated in NASH with stage 4 fibrosis (F4) [16–19].
However, the diagnostic performance of plasma AKR1B10 for NASH and its changes after
therapeutic intervention for NAFLD need further systematic validation.

Considering the secretory characteristics of AKR1B10 and the spectrum of NAFLD
ranging from NAFL to NASH to cirrhosis and HCC, we aimed to evaluate the feasibility
of AKR1B10 as a blood biomarker of NASH and fibrosis with parallel analyses of other
blood and imaging biomarkers. We also evaluated whether the AKR1B10-based approach
is applicable to the monitoring of NAFLD in obese patients undergoing laparoscopic
sleeve gastrectomy (LSG). Additionally, we performed a validation cohort study to de-
termine whether this blood biomarker had NAFLD-specific performance independent of
renal dysfunction.

2. Results
2.1. Identification of DEGs for Secretory Proteins in NAFLD and HCC

The workflow for searching tentative secretory proteins from public datasets of
NAFLD- and HCC-related human hepatic gene expression is presented in Figure 1A,
and detailed information on the datasets is summarized in Supplementary Table S1. The
NAFLD data were obtained from nine Gene Expression Omnibus (GEO) datasets, including
138 normal samples, 148 NAFL samples, 233 NASH samples, and 98 with NAFLD with
hepatic fibrosis samples (Supplementary Table S1), while the data of 236 HCC samples
were downloaded from UCSC-XENA (Figure 1A). We categorized the NAFLD-related
data into three datasets to identify differentially expressed genes (DEGs) in each dataset:
control, NAFL, and NASH; fibrosis F0-2 and F3-4 grades; and control (nontumor tissue)
and HCC. Then, we identified 1429 common DEGs. We selected genes that encode secretory
proteins and that showed stepwise increasing or decreasing expression patterns according
to disease progression (henceforth, disease progression biomarker candidates [DPBCs]). As
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a result, 4 upregulated secretory DPBCs (AKR1B10, ANXA2P2, CD24, and ZNF468) and
25 downregulated secretory DPBCs (as listed in Figure 1B) were finally obtained.
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described in Section 4 and presented in Supplementary Table S1. (B) Heatmap of putative secretory
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(lower 25 listed genes) according to disease progression. (C) Hepatic AKR1B10 expression according
to the progression of NAFLD was divided into 3 categories of disease progression. ***, p < 0.001.

Among the four increased targets, as shown in the following results, AKR1B10 gene
and protein showed significant and consistent changes with respect to NAFLD progression.
Thus, we decided to focus more on AKR1B10 in this study. The increasing patterns of
AKR1B10 in each comparison are presented graphically in Figure 1C, and those of the other
genes are presented in Supplementary Figure S1.

2.2. The Relationship between NAFLD Progression and AKR1B10 Expression Levels

We performed RNA-Seq for liver tissues from selected participants with a spectrum of
NAFLD progression based on NAFLD activity score (NAS) and fibrosis stages (n = 12). In
another independent small group, we evaluated AKR1B10 protein expression in liver tissues
with a NAS ranging from 1 to 7 (n = 13). AKR1B10 mRNA and protein showed a consistently
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increasing trend as the NAS increased (Figure 2). Other DPBCs showed variable patterns
(Figure 2 and Supplementary Figure S2). In addition, when we evaluated liver tissues of
five patients with HCC, the protein expression of AKR1B10, ZNF468, annexin A2 (ANXA2),
and CD24 was increased in tumor tissue compared with surrounding nontumor tissues
(Figure 2C).
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(A) RNA sequencing data showing 4 upregulated common DEGs in study subjects with a spectrum
of NAFLD progression based on the NAFLD activity score (NAS) and fibrosis stage (n = 12). TPM,
transcripts per million. (B) Immunoblotting analysis and semiquantification of AKR1B10, ZNF468,
annexin A2 (ANXA2), and CD24 protein expression in liver tissues from independently selected
study subjects with a spectrum of NAFLD progression (n = 13). Note that protein expression levels
normalized by β-actin expression were expressed relative to the corrected intensity values of the
first lanes in each band. (C) Immunoblotting analysis and semiquantification of AKR1B10, ZNF468,
ANXA2, and CD24 protein expression in nontumor and tumor tissues of liver samples from patients
with HCC (n = 5). Band intensities of blots were normalized with respect to the signal intensities of
the loading internal control (β-actin or GAPDH) detected on the same blots. *—p < 0.05; **—p < 0.01.
Note: because commercial antibody to annexin A2P2 (ANXA2P2) was not available, immunoblotting
on ANXA2 protein, a paralogous protein of ANXA2P2, was performed.

2.3. AKR1B10 Expression in Publicly Available scRNA-Seq Datasets of Human Liver

We evaluated the expression level of AKR1B10 in individual cells by analyzing two
human scRNA-Seq datasets, namely, GSE129933 [20], and GSE136103 [21]. The two scRNA-
Seq datasets were for lymphatic endothelial cell-enriched nonparenchymal liver cells from
healthy control subjects and patients with NASH [20] and for CD45-negative cells that
are found in healthy and NAFLD-related cirrhotic livers [21] (Supplementary Table S2;
Supplementary Figure S3A). AKR1B10 was upregulated in hepatocytes from patients
with NASH (GSE129933) or cirrhosis (GSE136103) compared with hepatocytes from their
respective control subjects (Supplementary Figure S3B,C). In addition, its expression was
also increased in hepatic stellate cells in patients with cirrhosis compared with control
subjects (GSE136103) (Supplementary Figure S3C).

2.4. The Discriminative Performance of Plasma AKR1B10 for the Identification of NASH and Fibrosis

In the replication study, we analyzed 102 subjects as patients with NAFL (n = 28) and
with NASH (n = 50) on liver biopsy and healthy control subjects (n = 24) (Table 1), who
were selected from a pooled cohort of 158 subjects (Supplementary Table S3) to evaluate
the diagnostic accuracy of plasma AKR1B10 and other blood biomarkers and imaging
biomarkers, such as MR-measured parameters (PDFF and LSM) and transient elastography
(TE) parameters [controlled attenuation parameter (CAP) and LSM].

Table 1. Demographic and clinical characteristics of the study subjects.

Characteristics Control
(n = 24)

NAFL
(n = 28)

NASH/Cirrhosis
(n = 50) p Values

Age (years) 36 (15.7) 35.1 (7.9) 35.3 (12.0) 0.96
Sex (male/female) 17/7 5/23 †† 12/38 ## <0.001

Weight (kg) 66.7 (11.4) 90.9 (18.3) †† 103.1 (20.7) ##, * <0.001
BMI (kg/m2) 23.0 (3.1) 33.5 (6.2) †† 38.1 (6.5) ##, * <0.001

WC (cm) 80.2 (8.0) 104.0 (14.4) †† 112.3 (13.5) ##, * <0.001
SBP (mmHg) 130.2 (16.9) 121.4 (13.7) † 127.3 (14.8) 0.09
DBP (mmHg) 83.4 (11.9) 84.2 (10.8) 86.3 (10.2) 0.50

AST (U/L) 20.8 (5.6) 28.5 (29.2) 65.4 (49.7) ##, ** <0.001
ALT (U/L) 18.4 (7.1) 44.5 (84.5) 83.7 (59.8) ##, * <0.001
GGT (U/L) 18.6 (8.2) 36.2 (33.1) † 84.4 (118.7) ##, * <0.05

Total cholesterol (mg/dL) 188.2 (36.5) 194.8 (41.5) 210.3 (35.2) # <0.05
HDL cholesterol (mg/dL) 59.3 (15.1) 51.7 (12.9) 49.4 (17.3) # <0.05

Triglycerides (mg/dL) 100.1 (45.9) 152.6 (138.1) 173.9 (66.0) ## <0.05
WBC (× 109/L) 5.2 (1.7) 7.2 (2.2) † 8.2 (1.9) ##, * <0.001

Platelets (× 109/L) 229.0 (52.4) 303.8 (66.0) †† 318.7 (101.5) ## <0.001
HbA1c (%) 5.4 (0.4) 5.9 (1.8) 6.6 (1.7) ## <0.05

Glucose (mg/dL) 89.3 (6.9) 109.8 (50.7) † 122.4 (53.8) ## <0.05
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Table 1. Cont.

Characteristics Control
(n = 24)

NAFL
(n = 28)

NASH/Cirrhosis
(n = 50) p Values

Insulin (µU/mL) 6.7 (3.9) 24.0 (40.5) † 26.6 (24.3) ## <0.05
HOMA-IR 1.5 (1.0) 6.8 (14.1) 8.9 (8.7) ## <0.05

C3 (mg/dL) 104.7 (16.3) 142.3 (32.5) †† 166.2 (33.0) ##, * <0.001
C4 (mg/dL) 26.5 (5.6) 34.9 (11.9) † 35.9 (11.7) ## <0.05

ANXA2P2 (ng/mL) 57.8 (22.6) 23.5 (20.6) †† 28.1 (24.7) ## <0.001
CD24 (ng/mL) 2.6 (5.4) 2.0 (4.1) 1.3 (1.1) 0.32

ZNF468 (ng/mL) 19.5 (13.8) 13.0 (8.4) 11.5 (8.3) # <0.05
AKR1B10 (pg/mL) 549.8 (235.2) 421.7 (235.8) 7629.7 (7045.1) ##, ** <0.001

Hepatic steatosis index 12.7 (14.7) 75.6 (26.7) †† 91.9 (11.2) ##, * <0.001
FIB-4 0.8 (0.4) 0.6 (0.2) † 1.2 (2.2) * 0.18

ELF score 8.2 (0.8) 8.3 (0.6) 8.8 (1.1) #, * <0.05
CAP (dB/m) 216.5 (37.9) 304.5 (52.1) †† 342.3 (47.6) ##, * <0.001
TE-LSM (kPa) 3.8 (0.9) 6.4 (3.7) † 11.6 (10.3) ##, * <0.001

Liver MRI-PDFF (%) 3.4 (0.8) 11.3 (7.1) †† 21.8 (9.3) ##, ** <0.001
MRE-LSM (kPa) 3.2 (0.6) 2.8 (0.6) † 3.8 (1.5) #, ** <0.05
Liver R2* (s−1) 43.9 (6.4) 51.0 (10.1) † 61.4 (13.0) ##, ** <0.001

DXA total body fat (%) 24.9 (9.8) 46.4 (7.4) †† 49.1 (6.8) ## <0.001
DXA total muscle (kg) 46.7 (13.8) 45.9 (7.3) 47.2 (15.4) 0.91
MRI-VAT area (cm2) 62.7 (35.4) 144.6 (57.8) †† 189.2 (72.0) ##, * <0.001
MRI-SAT area (cm2) 121.0 (51.4) 320.4 (103.7) †† 388.1 (126.1) ##, * <0.001

Data are expressed as the mean (SD) or n (%), unless otherwise specified. Abbreviations: WC—waist circumference;
SBP—systolic blood pressure; DBP—diastolic blood pressure; GGT—γ-glutamyl transpeptidase; HDL—high-
density lipoprotein; HOMA-IR—homoeostatic model assessment of insulin resistance; DXA—dual-energy X-ray
absorptiometry; R2*—apparent transverse relaxation rate; SAT—subcutaneous adipose tissue; VAT—visceral
adipose tissue; †—p < 0.05; ††—p < 0.01; vs. healthy controls; #—p < 0.05; ##—p < 0.01; vs. healthy controls;
*—p < 0.05; **—p < 0.01; vs. NAFL.

The mean plasma level of AKR1B10 was higher in patients with NASH (7629.7 ± 7045.1)
than in patients with NAFL (421.7 ± 235.8 pg/mL, p < 0.01) and healthy control subjects
(549.8 ± 235.2 pg/mL, p < 0.01). Plasma AKR1B10 showed relatively strong correlations
with AST, TE- and MRE-LSM, ALT, enhanced liver fibrosis (ELF) score, FIB-4, and vis-
ceral adipose tissue (VAT) and significant correlations with other parameters (Figure 3A
and Supplementary Table S4). To see whether plasma AKR1B10 is still a good biomarker
of NASH and fibrosis, independent of obesity, insulin resistance, and other parame-
ters, we performed multiple logistic regression analysis against the outcomes, having
age, sex, BMI, HOMA-IR, ALT, MRI-PDFF, and AKR1B10 (log-transformed) as covari-
ates. The results showed that plasma AKR1B10 is an independent predictor of NASH
(Supplementary Table S5) and advanced fibrosis (Supplementary Table S6).

The area under the receiver operating characteristic curve (AUROC) of plasma AKR1B10
for the identification of patients with NASH was 0.834, with an optimal cutoff value of
1078.2 pg/mL (Table 2 and Figure 3B–D). The results of AUROC were 0.850, with an optimal
cutoff value of 1078.2 pg/mL, when we analyzed only subjects with biopsy results (n = 79)
(Supplementary Table S7). For advanced fibrosis, plasma AKR1B10 showed excellent
performance at a much higher cutoff level (AUROC 0.914 and cutoff level 1078.2 pg/mL)
(Table 2). We also calculated AUROCs for other clinically available markers: C3 as a blood
biomarker; combined MR-based parameters (MRI-PDFF and MRE-LSM); and combined TE-
based parameters (CAP and TE-LSM) (Table 2). Plasma AKR1B10 alone did not outperform
MRI-PDFF/MRE-LSM. However, its combination with serum C3 further improved the
AUROC curve value (0.919) (Table 2 and Figure 3B–D).

When we set the plasma AKR1B10 cutoff level at 1078.2 pg/mL considering the
AUROC of AKR1B10-based model, 4.1% (1/24) of the healthy control subjects, no patients
with NAFL (0/28), and specifically 70% of patients with NASH (35/50) had a plasma
AKR1B10 value above the threshold.
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Table 2. The performance of plasma AKR1B10 and other blood and imaging biomarkers and their
cutoff values for the diagnosis of NASH and advanced fibrosis (F3-4) (n = 102) *.

NASH

Parameters/Applications AUROC (95% CI) Cutoff Sensitivity (%) Specificity (%) PPV (%) NPV(%)

AKR1B10 (pg/mL) 0.834 (0.745–0.923) 1078.2 70.0 98.1 97.2 77.3
C3 (mg/dL) 0.784 (0.685–0.882) 124.1 91.8 56.8 73.8 84.0

ELF score 0.633 (0.520–0.747) 9.0 36.2 91.7 81.0 53.1
MRI-PDFF (%) + MRE-LSM (kPa) 0.942 (0.900–0.984) 11.5/3.3 93.8 82.4 83.3 93.3

CAP (dB/m) + TE-LSM (kPa) 0.871 (0.799–0.942) 268/5.3 100.0 66.7 74.6 100.0
AKR1B10 (pg/mL) + C3 (mg/dL) 0.919 (0.865–0.973) 641.5/174.9 73.5 97.3 97.3 73.5

Advanced hepatic fibrosis (F3-4)

AKR1B10 (pg/mL) 0.914 (0.847–0.981) 1078.2 100.0 71.7 27.8 100
ELF score 0.833 (0.686–0.979) 8.9 77.8 74.4 24.1 97.0

MRE-LSM (kPa) 0.981 (0.955–1.000) 4.0 100.0 90.0 50.0 100.0
TE-LSM (kPa) 0.877 (0.769–0.985) 8.1 90.0 77.6 32.1 98.5

* In a total of 102 subjects in the pooled cohort, 50 patients had NAS ≥ 3, while 10 patients had advanced hepatic
fibrosis (F ≥ 3). Abbreviations: CI—confidence interval; LR—likelihood ratio; NPV—negative predictive value;
PPV—positive predictive value.
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2.5. Changes in Plasma AKR1B10 and Other NAFLD-Related Parameters before and after
Bariatric Surgery

We also analyzed a subgroup of bariatric surgery applicants; among 53 participants
who underwent bariatric surgery (LSG), 35 patients completed prescheduled follow-up
examinations after the surgery while the other subjects were lost during observation or
had not yet completed follow-up examinations yet. The characteristics of this subgroup of
bariatric surgery subjects before and after LSG are provided in Table 3. At enrollment, the
mean age of the LSG cohort was 34.3 ± 7.6 years with a prevalence of females (85.7%). The
preoperative mean body mass index (BMI) was 38.1 ± 5.0 kg/m2, with a mean body weight
of 102.0 ± 15.4 kg. The mean baseline plasma AKR1B10 was 3243.8 ± 5381.0 pg/mL, while
hepatic PDFF and MRE-LSM were 19.1 ± 9.3% and 3.1 ± 0.9 kPa, respectively.

Table 3. Follow-up interval changes in the characteristics of the subgroup of patients who underwent
bariatric surgery (n = 35) *.

Characteristics Before Surgery After Surgery Mean Difference p Values

Age (years) 34.3 (7.6) 34.8 (7.7) −0.5 <0.001
Sex (male/female) 5/30 5/30 NA NA

Weight (kg) 102.0 (15.4) 77.3 (14.5) 24.8 <0.001
BMI (kg/m2) 38.1 (5.0) 28.7 (4.7) 9.4 <0.001

Waist circumference (cm) 111.9 (9.8) 90.5 (9.4) 21.4 <0.001
SBP (mmHg) 126.8 (14.3) 114.2 (13.0) 12.6 <0.001
DBP (mmHg) 88.1 (10.2) 81.8 (9.2) 6.3 <0.05

AST (U/L) 39.0 (26.2) 19.2 (11.7) 19.8 <0.001
ALT (U/L) 56.1 (39.3) 16.9 (9.3) 39.2 <0.001
GGT (U/L) 58.0 (44.0) 21.8 (14.5) 36.2 <0.001

Total cholesterol (mg/dL) 205.4 (37.3) 192.1 (27.1) 13.3 <0.05
HDL-C (mg/dL) 46.8 (7.4) 52.1 (12.6) −5.3 <0.05

Triglycerides (mg/dL) 163.5 (78.0) 103.3 (40.5) 60.1 <0.001
White blood cell (×109/L) 8.1 (2.1) 6.6 (2.1) 1.5 <0.001

Platelets (×109/L) 338.8 (96.9) 292.3 (74.2) 46.6 <0.001
Hemoglobin A1c (%) 6.1 (1.3) 5.5 (1.3) 0.7 <0.001

Glucose (mg/dL) 110.8 (32.7) 96.4 (37.2) 14.4 <0.05
Insulin (µU/mL) 24.5 (15.4) 9.1 (4.1) 15.4 <0.001

HOMA-IR 7.1 (6.0) 2.0 (1.0) 5.1 <0.001
C4 (mg/dL) 37.1 (11.2) 31.7 (9.4) 5.4 <0.001

Hepatic steatosis index 51.6 (5.8) 38.1 (4.6) 13.5 <0.001
FIB-4 0.56 (0.29) 0.61 (0.33) −0.05 0.41

DXA total body fat (%) 49.9 (5.5) 42.1 (8.8) 7.8 <0.001
DXA total muscle (kg) 48.9 (7.9) 42.4 (7.7) 6.6 <0.001

Liver R2* (s−1) 59.2 (11.2) 45.8 (9.8) 13.4 <0.001
MRI-VAT area (cm2) 175.2 (68.2) 93.9 (31.3) 81.3 <0.001

MRI-SAT area fat (cm2) 383.8 (111.0) 250.2 (80.4) 133.6 <0.001
Pancreas MRI-PDFF (%) 6.9 (5.3) 3.7 (4.0) 3.2 <0.001

* Among 53 patients who underwent bariatric surgery, 35 patients finished prescheduled follow-up at a me-
dian of 6.5 months after the surgery. Data are expressed as the mean (SD) or n (%), unless otherwise spec-
ified. Abbreviations: WC—waist circumference; SBP—systolic blood pressure; DBP—diastolic blood pres-
sure; GGT—γ-glutamyl transpeptidase; HDL—high-density lipoprotein; HOMA-IR—homoeostatic model assess-
ment of insulin resistance; DXA—dual-energy X-ray absorptiometry; R2*—apparent transverse relaxation rate;
SAT—subcutaneous adipose tissue; VAT—visceral adipose tissue. *—p < 0.05 vs. before surgery.

After a median of 6.5 (interquartile range 6.2–6.8) months after bariatric surgery,
the mean levels of plasma AKR1B10 decreased to 529.0 ± 350.5 pg/mL (mean decrease,
2714.8 pg/mL). These changes were accompanied by a marked decrease in BMI (mean
decrease, 9.4 kg/m2), body weight (mean decrease, 24.8 kg), and MRI-PDFF (mean decrease
13.1% point) as well as a significant improvement in other parameters. However, the ELF
score did not decrease significantly after bariatric surgery (Table 3 and Figure 4).

All of the patients undergoing the surgery had steatosis at baseline and, after LSG in
40.0% of patients, their hepatic PDFF was normalized to a value less than 5%. The fraction
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of patients with NAFLD and a high plasma AKR1B10 level (≥1078.2 pg/mL) was 40.0%
(14 of 35 patients) in this subgroup, in which 71.4% of them (10/14) showed a decrease to
less than the AKR1B10 cutoff level after LSG. A total of 20 out of 35 patients had NAS ≥ 3
on liver biopsy during LSG. Among these 20 patients with NASH on liver biopsy, 8 patients
(40.0%) had plasma AKR1B10 that decreased to below the cutoff level after LSG, while
7 patients (35.0%) had both MRI-PDFF and MRE-LSM values that decreased to below their
respective cutoffs after bariatric surgery.
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2.6. Plasma and Serum AKR1B10 Measurement in the Validation Cohort

To evaluate the circulating AKR1B10 as a biomarker of NAFLD progression relatively
independent of renal dysfunction, we measured plasma AKR1B10 levels in an independent
cohort that included healthy control subjects and patients with type 2 diabetes mellitus
(T2DM) and a spectrum of chronic kidney disease (CKD). A total of 195 subjects were in-
cluded in the validation cohort study in which 30 healthy control subjects (aged 57.0 ± 6.5)
and 165 patients with T2DM (aged 60.6 ± 7.6) were subjected to routine clinical biochem-
istry and the measurement of plasma AKR1B10 levels. The characteristics of the study
subjects are presented in Supplementary Table S8. The mean estimated glomerular filtration
rate (eGFR) of study subjects was 77.0 ± 30.3 mL/min per 1.73 m2, ranging from 6.3 to
119.7 mL/min per 1.73 m2. Because the feasibility of circulating biomarkers can be affected
by renal dysfunction, with AKR1B10 being expressed in renal tissue [22], we intended
to assess the performance of plasma AKR1B10 across CKD stages in the prediction of



Int. J. Mol. Sci. 2022, 23, 5035 10 of 18

hepatic steatosis and advanced fibrosis, which were estimated and categorized by using the
eGFR, hepatic steatosis index (HSI), and FIB-4, respectively. The mean plasma AKR1B10
levels were 283.1 ± 329.1 pg/mL in healthy control subjects and 667.5 ± 1215.2 pg/mL in
patients with T2DM (p = 0.087). Plasma levels of AKR1B10 were not different among the
3 CKD category subgroups (CKD stages 1–2, CKD stage 3, and CKD stages 4–5; Figure 5A),
whereas plasma AKR1B10 levels showed increasing patterns with higher levels of HSI and
FIB-4 categories (Figure 5B,C). In addition, plasma AKR1B10 did not correlate with eGFR
(r = −0.063, p = 0.380). Significantly high levels of plasma AKR1B10 were also observed in
higher grade HSI and FIB-4 categories in our replication study (Supplementary Figure S4).
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with a broad range of eGFRs. (A) Plasma AKR1B10 levels according to CKD status (n = 195). (B) and
(C) Plasma AKR1B10 levels according to the likelihood of hepatic steatosis and advanced fibrosis
based on HSI and FIB-4 score systems (n = 195). (D) Comparison of paired plasma and serum
measurements of AKR1B10 in selected patients across a range of eGFRs. *—p < 0.05; **—p < 0.01; and
n.s.—not significant.

Considering the clinical application in patients with NAFLD, we measured AKR1B10
levels in paired plasma and serum samples simultaneously in 32 selected subjects after
stratification according to eGFR. Plasma and serum levels of AKR1B10 showed a perfect
correlation (r = 0.988, p < 0.001). However, the serum level of AKR1B10 was 1.39-fold higher
than that of plasma (868.7 ± 1477.0 pg/mL vs. 625.7 ± 1191.5 pg/mL, p < 0.01) (Figure 5D).
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3. Discussion

In the present study, by analyzing publicly available datasets of NAFLD-related genes,
we searched tentative secretory proteins that reflect the progression of NAFLD with a
consistent and stepwise increasing pattern for the diagnosis of NASH. We found four
secretory proteins (AKR1B10, annexin A2P2, ZNF468, and CD24) and we showed through
our own cohort study that plasma AKR1B10 could be a clinically applicable biomarker
for NASH (AUROC 0.834) and for advanced fibrosis (AUROC 0.914) at a cutoff level
(≥1078.2 pg/mL). We applied our protocol to monitor NAFLD in patients undergoing
bariatric surgery, showing that plasma AKR1B10 levels decreased markedly after surgery.
In the independent validation study, we also proved that plasma AKR1B10 was a specific
biomarker of NAFLD progression that was not influenced by renal function. Furthermore,
we also showed that by measuring AKR1B10 in paired plasma and serum samples of
selected patients with a broad range of eGFRs, there was a perfect correlation between
plasma and serum levels of AKR1B10; however, there were approximately 1.4-fold higher
levels in serum than in plasma.

AKR1B10 has been reported to be increased in some cancers, including HCC [12,14,15,19,23]
as well as chronic liver diseases including NASH [17–19,24,25] and fibrosis/cirrhosis [16].
AKR1B10 is a retinaldehyde reductase and is also involved in the regulation of fatty acid
synthesis by stabilizing acetyl-CoA carboxylase-α [12,26]. Interestingly, hepatic stellate
cells store 50–80% of body retinol in the form of retinyl esters [12]. Thus, AKR1B10
seems to have important pathophysiological implications in NAFLD and its progression
and complications.

Independent of previous studies on AKR1B10 and liver diseases [14–18,27], we found
AKR1B10 via computational secretome analysis based on the DEGs according to NAFLD
progression, and then showed that its gene and protein expression in the liver increased
consistently and gradually according to disease progression via multiple approaches in our
replication and validation cohorts.

It has yet to be clarified how and at what stage AKR1B10 is involved in the pro-
gression of NAFLD. There may be several pathways by which this subtype of enzyme
of the AKR subfamily affects NAFLD progression: (i) reduced protection against oxida-
tive stress due to increased aldose reductase activity and increased advanced glycation
end-products [28]; (ii) low intracellular level of retinoic acid due to AKR1B10-mediated
reduction of retinaldehyde to retinol [12,29]; and (iii) reduced production of natural per-
oxisome proliferator-activated receptor-γ ligands via the diversion of prostaglandin (PG)
D2 toward PG F2α and away from PG J2 [30]. In line with our results, a recent study
showed that AKR1B10 and SPP1 were closely related to progression and prognosis in
normal-NAFL-NASH-HCC progression [18]. However, we did not observe a consistent
and stepwise increase in SPP1 expression in liver samples from our study subjects (data
not shown). There have also been some studies that showed an increase in serum AKR1B10
in fibrosing NASH [16,17]. However, there is no study showing a marked decrease in
plasma AKR1B10 values after bariatric surgery in patients with NAFLD. Normal ranges
of plasma/serum AKR1B10 have been different between studies, including the present
study and cutoff levels of AKR1B10 for the prediction of NASH and/or advanced fibrosis
and HCC varied and overlapped between different studies [14,16]. Kanno et al. reported
that serum AKR1B10 at a cutoff level of 1003 pg/mL was predictive of stage 4 fibrosis in
NASH [16]. Thus, although AKR1B10 may be a molecular marker reflecting the progression
of NAFLD ranging from steatohepatitis to HCC, further clinical studies are required to
standardize the measurement of plasma/serum AKR1B10. In the present study, we showed
that the diagnostic threshold values of plasma AKR1B10 for NASH and advanced fibrosis
were similar and showed that the serum AKR1B10 level was consistently higher than
the plasma level of AKR1B10, which needs to be considered in the clinical application of
this biomarker. Furthermore, serial measurements of circulating AKR1B10 after various
therapeutic interventions, including lifestyle modification, in patients with NAFLD can be
more informative.
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Plasma AKR1B10 can be used in combination with other blood biomarkers, depend-
ing on the clinical context. Complement activation and C3 deposition in the liver were
shown to be associated with excessive fat accumulation, hepatocyte apoptosis, and hepatic
neutrophil sequestration and increased with NAFLD severity [31,32]. In this study, when
AKR1B10 was combined with C3, the AUROC value for NASH differential diagnosis was
significantly improved.

Various MR techniques and parameters can be applied in diagnosing and monitoring
the spectrum of NAFLD [33,34]. Additionally, a multiparametric MR-based approach
enabled us to assess NAFLD as well as other body factors (VAT, subcutaneous adipose
tissue [SAT], and pancreatic fat). MRI-PDFF is expressed as a percentage and an accurate
and precise method for the measurement of fat across the entire biological range of hepatic
steatosis [35,36]. A significant proportion of patients with NASH have hepatic fibrosis and
the fibrosis stage correlates significantly with NASH activity [21,37–39]. Thus, several stud-
ies have shown the performance of MRE in the discrimination between isolated steatosis
and NASH with an AUROC ranging from 0.70 to 0.93 [37,40–42]. A recent study showed
that a protocol combining 3D-MRE measuring LSM at 60 Hz, the damping ratio at 40 Hz,
and MRI-PDFF could detect NASH with an AUROC of 0.73 [10]. In the present study,
reflecting those previous reports, the MRI-PDFF and MRE-LSM combination performed
well in predicting NASH and advanced fibrosis (Table 2). However, cost and availability of
MR are major limitations.

Many studies have shown that bariatric surgery, including LSG, causes a significant
improvement in NASH and fibrosis [5,43]. A recent elegant study involving 71 patients
with Child-A NASH-related cirrhosis showed that fibrosis regressed in 67.7% of the patients
after LSG, while NASH improved in 60.6% of the patients [5]. In the present study, a BMI
reduction of 9.4 kg/m2 could be achieved at 6.5 months after LSG. It was reported that a
mean BMI reduction of 12 kg/m2 or more after bariatric surgery was more likely to be asso-
ciated with the resolution of NASH without progression of fibrosis [2]. In the present study,
we did not perform follow-up liver biopsy after bariatric surgery. Among 20 patients with
baseline NAS ≥ 3 at the time of LSG, 40.0% had decreased plasma AKR1B10 levels to below
1078.2 pg/mL and 35.0% had decreased MR-parameters (PDFF and LSM) to below their cut-
off levels after LSG, indicating that NASH can be improved significantly in approximately
35–67% of patients who received LSG depending on the assessment protocol.

Our study has several limitations. First, our study is a single-centre study in Korea
and AUROCs may be affected by the disease spectrum of the study cohort. However, we
systematically proved the feasibility of AKR1B10 as a biomarker of NAFLD progression
through diverse experimental approaches and validation cohort study. Second, the val-
idation study was not based on liver biopsy results. However, HSI and FIB-4 are useful
scoring systems for steatosis and advanced hepatic fibrosis [44,45]. In the validation cohort
study, we showed that plasma AKR1B10 levels were a specific NAFLD progression marker
across a wide range of eGFRs. Third, follow-up liver biopsy was not performed in patients
with biopsy-proven NAFLD because of practical reasons.

In conclusion, plasma AKR1B10 alone and in combination with C3, as a noninvasive
biomarker, performed well in the identification of NASH and advanced fibrosis, and is
helpful for the longitudinal monitoring of the progression of or improvement in NAFLD.
Further validation studies and the standardization of plasma AKR1B10 measurement
would be important for its clinical application.

4. Materials and Methods
4.1. Data Acquisition and the Selection of Genes Encoding Secretory Proteins

We obtained and processed publicly available gene expression datasets of liver tissues
for NAFLD [46] and HCC [47] (Figure 1A and Supplementary Table S1). Please see the
Supplementary Method S1 for more details on the datasets and their processing. We identi-
fied common differentially expressed genes (DEGs) in the following three comparisons for
disease progression: (i) NAFLD progression (control, NAFL and NASH); (ii) hepatic fibrosis
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progression (F0-2 and F3-4); and (iii) control and HCC. For each comparison, statistical
significance for a DEG was set to a Benjamini-Hochberg false discovery rate of less than
0.1. Subsequently, common DEGs among all three comparisons were obtained. Then, we
further narrowed the common DEGs down by visual inspection, such that each DEG had
a gradually increasing or decreasing pattern of expression according to disease progres-
sion in all three comparisons. These DPBC genes, were considered for the subsequent
computational secretome analysis, in which The Human Protein Atlas, MetazSecKB, and
VerSeDa databases were used to identify genes, encoding secretory proteins, from the
DPBCs [48–51].

4.2. Single-Cell RNA-Seq (scRNA-Seq) Data Analysis Using Publicly Available Datasets

To inspect the expression levels of the upregulated DPBCs at the single-cell level in
liver tissue samples from control subjects and patients with NAFLD, we analyzed two
scRNA-Seq datasets (GSE129933 [20] and GSE136103 [21]) from GEO, which included data
on nonparenchymal cells and CD45-negative cells from liver tissue samples, respectively
(Supplementary Table S2), as detailed in the Supplementary Method S2.

4.3. Study Subjects and Design

We evaluated the diagnostic accuracy of plasma AKR1B10 and other blood biomarkers
and imaging biomarkers, such as MR-measured parameters (PDFF and LSM) and TE
parameters (CAP and LSM), to detect NASH (NAS ≥ 3) on histology with a subscore of 1 or
higher for each subcomponent (steatosis, hepatocyte ballooning, and lobular inflammation)
and advanced fibrosis (F3-4) [52] in this replication cohort study, which included healthy
control subjects with or without liver biopsy results and patients with NAFLD with liver
biopsy results within 3 months prior to enrollment. Those subjects were eligible from a
pooled cohort of 4 parent studies: (1) a study involving healthy control subjects; (2) a study
involving patients with NAFLD who volunteered for an MR-based NAFLD study, with
some having liver biopsy data; (3) a study involving a bariatric surgery cohort with liver
biopsy results; and (4) a study of living liver transplant donors with liver biopsy results.
A flow chart of the cohort study is presented in Supplementary Figure S5.

The age of the study subjects was required to be between 19 and 70 years of age.
The healthy controls were required to have no evidence of NAFLD on liver biopsy or
an MRI-PDFF less than 5% and normal results of liver function and other biochemical
tests even without liver biopsy: in males, AST < 40 U/L, and ALT < 35 U/L; in females,
AST < 40 U/L, and ALT < 25 U/L. Exclusion criteria were excessive alcohol consump-
tion (alcohol intake >20 g/day for women and >30 g/day for men), evidence of another
coexistent liver or biliary disease except for NAFLD, use of medications known to cause sec-
ondary hepatic steatosis within 1 year, contraindications for MR studies, or any conditions
that might affect patient competence or participation as determined by the opinion of the
principal investigator. We analyzed a subgroup of bariatric surgery applicants who com-
pleted baseline and follow-up examinations 6–12 months after metabolic surgery between
March 2018 and April 2021. The study protocols were in accordance with the Declaration of
Helsinki and were approved by the institutional review board at the Gil Medical Center. All
participants provided written informed consent and all parent studies were registered at
https://cris.nih.go.kr (last accessed on 22 March 2022) in accordance with the International
Clinical Trials Registry Platform.

In addition, we retrospectively evaluated the expression of some secretory proteins in
tumor and nontumor liver tissues from patients with HCC (n = 5; 4 NAFLD-related cases
and one HCV-related case). The biospecimen and data used in this study were provided by
Gachon University Gil Medical Center Bio Bank (No. GBB2020-02). The study protocols
were in accordance with the Declaration of Helsinki and were approved by the institutional
review board at the Gil Medical Center. All participants provided written informed consent
to deposit and use their tissues in the biobank for research purposes.

https://cris.nih.go.kr
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4.4. Clinical and Laboratory Evaluation

An array of clinical and laboratory data were collected in the replication study, as
detailed previously [31]. After an overnight fast, blood samples were collected on the same
day or within days of the imaging studies or several days before liver biopsy for various
markers and routine biochemical tests, which included liver function tests, glucose, insulin,
a complete blood count with a platelet count, albumin, haemoglobin A1c (HbA1c), lipid
panel, AKR1B10, zinc finger protein (ZNF) 468, CD24, complement factors C3 and C4,
and the ELF test [31]. Sample processing and measurement details are available in the
Supplementary Method S3. Body fat and lean body mass were measured using the dual
energy X-ray absorptiometry (DXA) technique (GE Healthcare, Wauwatosa, WI, USA) on
the same day as the imaging studies. Other clinical indices and scores were calculated as
previously described [31].

4.5. Imaging Biomarker Studies

The hepatic and pancreatic MRI-PDFF, hepatic R2* relaxation rate of the water protons
representing liver iron content, the VAT and SAT areas, and MRE-LSM were measured
with a 3-T scanner (MAGNETOM Skyra; Siemens Healthineers, Erlangen, Germany) using
an 18-channel body matrix coil and table-mounted 32-channel spine matrix coil [31], as
detailed in the Supplementary Method S4. TE was performed using FibroScan 502 (Echo-
sens, Paris, France) by a trained technician blinded to the clinical and histological data, as
previously described [31].

4.6. Liver Tissue Sampling and Analyses

Liver biopsy and tissue sampling were performed during bariatric surgery, donor liver
resection for living liver transplantation, and percutaneous liver biopsy procedures due to
abnormal liver function. The liver tissues were analyzed as described in more detail in the
Supplementary Method S5. Histological scoring, including NAS and fibrosis staging, was
performed using the Nonalcoholic Steatohepatitis Clinical Research Network histologic
scoring system [52]. RNA sequencing analyses were performed for 12 liver samples from
study subjects with a spectrum of NAFLD. Transcripts per million mapped reads were
used for mRNA expression. The RNA-Seq data were deposited to the NCBI BioProject
(accession: PRJNA716432) available at https://www.ncbi.nlm.nih.gov/sra/PRJNA716432
(accessed on 22 March 2022). Additionally, liver tissues from study participants with a
spectrum of NAFLD (n = 13) and those from the biobank of the hospital were processed for
immunoblotting analyses of AKR1B10 and other proteins as described in more detail in the
Supplementary Method S5.

4.7. Validation of Plasma AKR1B10 as a Biomarker in an Independent Cohort

We measured plasma AKR1B10 levels in an independent cohort that included healthy
control subjects and patients with T2DM and a spectrum of CKD. Detailed information
about this cohort study is described in the Supplementary Method S6. We intended (1) to
validate plasma AKR1B10 as a NAFLD progression biomarker that is clinically useful; (2) to
compare AKR1B10 levels in paired plasma and serum samples in stratified subgroups; and
(3) to prove that plasma AKR1B10 is elevated independent of renal impairment in patients
with progressive NAFLD. In this validation cohort, we divided study participants into
subgroups in each of three separate analyses, according to CKD stages by the eGFR, the risk
of steatosis by the HIS, and the risk of liver fibrosis by the FIB-4 index. Based on previously
known low and high cutoff values for the prediction of steatosis and advanced fibrosis [31],
we divided participants into 3 groups each: low, intermediate, and high likelihood for
steatosis (HSI values <30, 30–36, and >36, respectively) [44] and for advanced fibrosis
(FIB-4 indices <1.3, 1.3–2.67, and >2.67, respectively) [45]. We followed the same ethical
rules, and the study was registered as stated for the replication study in Section 4.3.

https://www.ncbi.nlm.nih.gov/sra/PRJNA716432
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4.8. Statistics

Categorical variables were compared as counts and percentages and associations were
tested using the chi-squared or Fisher’s exact test. Continuous variables were reported as
the mean ± standard deviation (SD) or medians with 25th–75th percentiles when appropri-
ate, and differences between groups were analyzed using Student’s t-test (two-tailed) or the
Mann–Whitney U test, paired t-test, or one-way ANOVA followed by Tukey–Kramer’s mul-
tiple comparisons post hoc test as appropriate. Univariate and multiple logistic regression
analyses to assess for the potential predicting factors of NASH and advanced liver fibrosis
were performed. Correlations were evaluated using Pearson’s correlation coefficients. The
performance of diagnostic markers was assessed by AUROC, sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value (NPV). For each AUROC, 95%
confidence intervals (CIs) were measured using its standard error. The AUROC and the
optimal thresholds were obtained by the multipleROC package in R. Paired-sample t-tests
or Wilcoxon rank-sum tests were used to compare the data before and after surgery and
the differences between plasma and serum samples. All reported p values are two-sided
and considered statistically significant at <0.05. Statistical analyses were performed using
R software/environment (R version 2.9.1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095035/s1.
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