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Acute Stress Induces Contrasting Changes in AMPA
Receptor Subunit Phosphorylation within the Prefrontal
Cortex, Amygdala and Hippocampus
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Abstract

Exposure to stress causes differential neural modifications in various limbic regions, namely the prefrontal cortex,
hippocampus and amygdala. We investigated whether a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) phosphorylation is involved with these stress effects. Using an acute inescapable stress protocol with rats, we
found opposite effects on AMPA receptor phosphorylation in the medial prefrontal cortex (mPFC) and dorsal hippocampus
(DH) compared to the amygdala and ventral hippocampus (VH). After stress, the phosphorylation of Ser831-GluA1 was
markedly decreased in the mPFC and DH, whereas the phosphorylation of Ser845-GluA1 was increased in the amygdala and
VH. Stress also modulated the GluA2 subunit with a decrease in the phosphorylation of both Tyr876-GluA2 and Ser880-
GIuA2 residues in the amygdala, and an increase in the phosphorylation of Ser880-GluA2 in the mPFC. These results
demonstrate that exposure to acute stress causes subunit-specific and region-specific changes in glutamatergic
transmission, which likely lead to the reduced synaptic efficacy in the mPFC and DH and augmented activity in the
amygdala and VH. In addition, these findings suggest that modifications of glutamate receptor phosphorylation could
mediate the disruptive effects of stress on cognition. They also provide a means to reconcile the contrasting effects that
stress has on synaptic plasticity in these regions. Taken together, the results provide support for a brain region-oriented
approach to therapeutics.
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Introduction

Acute stress alters memory performance and executive func-
tioning, and it also causes impairments in long-term potentiation
(LTP) in the hippocampus and prefrontal cortex [1-5]. In
contrast, exposure to acute stress facilitates LTP [6], and increases
extracellular glutamate levels in the amygdala [7]. Moreover,
contrasting effects of stress on plasticity have been observed when
comparing the dorsal and ventral regions of the hippocampus [8].
To date, the mechanism underlying these contrasting stress effects
has not been fully delineated. Recently, however, it was shown that
the stress hormone corticosterone triggers increases in the surface
mobility and synaptic surface content of the a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid glutamate receptor subunit 2
(AMPAR GluA2; NC_IUPHAR, [9]) [10] during LTP in
hippocampal neurons [11]. Thus, AMPARs might have an
important role in the effect of acute stress on cognition and
plasticity.

The phosphorylation of AMPARs is an important post-
translational modification that modulates the membrane expres-
sion of these receptors, various channel properties, and synaptic
plasticity [12]. During LTP, site-specific phosphorylation of
AMPARs prompts their recruitment to the postsynaptic mem-
brane, which produces an increase in synaptic AMPAR function
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[13,14]. Here we investigated the impact of acute stress on the
phosphorylation state of different AMPAR subunits in the mPFC,
hippocampus, and amygdala. Specifically, we examined the
phosphorylation of GluAl at the CaMKII and PKA sites
(Ser831-GluAl and Ser845-GluAl) and the phosphorylation of
GIuA2 at the tyrosine kinase and PKC sites (Tyr876-GluA2 and
Ser880-GluA?2) after acute platform stress. We observed opposite
effects of stress on GluAl phosphorylation in the mPFC and DH
when compared to the amygdala and VH. Also, the Tyr876-
GluA2 and Ser880-GluA2 sites were observed to be less
phosphorylated in amygdala, whereas in the mPFC, the Ser880-
GIuA2 site was more phosphorylated compared to controls.

Materials and Methods

Animals

Experiments were performed with adult male Sprague-Dawley
rats (275-300 g) that were housed four per cage. Rats were
maintained on a 12/12 h light/dark schedule (lights on at 7:00
am) in a temperature controlled facility (22°C*1°C) with free
access to food and water. The experiments were performed during
the light phase (between 9:00 and 12:00 am) at least one week
after arrival from the supplier (Charles River, L’Arbresle, France). All
procedures were conducted in conformity with National (JO 887—
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848) and European animal

experimentation.

(86/609/EEC) rules for

Stress protocol

The behavioral stress protocol has been described elsewhere
(Rocher et al., 2004). Briefly, rats were placed on an elevated and
unsteady platform for 30 min. The platform was positioned 1 m
above the ground and illuminated with a high intensity light
source (1500 Lux). While on the platform, animals showed
urination, defecation, grooming and freezing. Immediately after
the stress procedure, rats were anaesthetized with sodium
pentobarbital (60 mg/kg 1.p.) and then returned to their home
cage until being sacrificed. Control rats (non-stressed rats) were
injected while being held inside their home cage. Thirty minutes
after the end of stress session, rats were killed by decapitation.
Body temperature was maintained at 37°C by a homocothermic
warming blanket during this period.

Corticosterone immunoassay

The plasma level of corticosterone was assessed as a biomarker of
stress in all experiments. Blood samples were collected from the
orbital sinus 10 min after anesthesia in control or stressed rats.
Samples were centrifuged at 1000 x g for 15 min, and serum stored
at —20°C. Plasma corticosterone was assessed by immunoassay
(Corticosterone Immunoassay®, DSL, Webster, Texas, USA).

Brain sample preparation

After decapitation, brains were snap-frozen in liquid nitrogen as
previously described [15] and stored at —80°C until processed.
Using hole punchers of either 0.75 mm or 1 mm diameter (Harrs
Unicore, Redding, California, USA), samples from different brain
regions were extracted from 100 micrometer thick brain sections
in a cryostat (CM3050S, Leica, Nanterre, France) at —20°C. The
mPFC was sampled from Bregma 4 mm to 2.7 mm, the amygdala
from Bregma —2 mm to —3.5 mm, the DH from Bregma
—3. mm to —4.6 mm and the VH from Bregma —5 mm to
—6 mm. Samples were immediately sonicated in 1% sodium
dodecyl sulfate (SDS), 10 mM NaF and 1 mM NazVO,, and
boiled for 10 min. Protein concentrations were determined with a
BCA kit using a Nanodrop ND-1000 spectrophotometer (7hermo
Scientific, Ilkirch, France). Each sample was resuspended in
homogenisation buffer (Tris-base 250 mM, glycerol 40%, SDS
8%, B-mercaptoethanol 20%, bromophenol blue 0.1%). In order
to confirm anatomical localization, brain tissue sections that were
neighbouring the brain punch sections were fixed, mounted on
slides, and stained with cresyl violet.

Western blotting

Twenty five micrograms of each sample were separated by SDS-
PAGE using a 10% running gel (Criterion”™" Precast Gel, 10% Tris-
HCI, Bio-Rad, Mames-la-Coquette, France) and transferred to a 0.2 um
PVDF membrane (Biw-Rad, Marnes-la-Coquette, France). The mem-
branes were then incubated for 30 min at room temperature in
blocking buffer (TBS-Tween 20 0.1%, BSA 5%, NaNj3 0.02%).
Immunoblotting was carried out overnight at 4°C with phosphor-
ylation-state-specific antibodies against Ser831-GluAl (Millpore,
Molsheim, France), Ser845-GluA1 (Millipore, Molsheim, France), Tyr876-
GluA2 (Cell Signaling Technology Inc., Danvers, Massachusetts, USA),
Ser880-GIluA2 (Interchim, Montlugon, France). Immunoblotting was
also carried out on the same stripped membranes with antibodies
that were not phosphorylation-state-specific against total GluAl,
GIluA2 (Millipore, Molsheim, France) in blocking buffer. Membranes
were washed three times with TBS-Tween 20 0.1% and incubated
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with secondary HRP anti-rabbit antibody for 1 h at room
temperature. At the end of the incubation, membranes were
washed three times with TBS-Tween 20 and the immunoreactive
bands were detected by chemiluminescence (Immun-Star™™
WesternC™ kit, Bio-Rad, Marnes-la-Coquette, France). A series of
primary, secondary antibody dilutions and exposure times were
used to optimize the experimental conditions for the linear
sensitivity range of the autoradiography films (Santa Cruz Biotechnol-
0gy, Santa Cruz, California, USA). Films were scanned on the GS-800
Imaging Densitometer (Bio-Rad, Marnes-la-Coquette, France) and the
density of each band was quantified using the Quantity One
software (Bio-Rad, Marnes-la-Coquette, France). Levels of the protein -
actin were used as an internal standard in a pilot experiment in our
laboratory. Using a subset of samples, we determined that stress did
not alter total levels of GluA subunits (data not shown).

Data analysis

For the analysis of the western blotting data, the levels of GluA
phosphorylated subunits were normalized to total GluA levels,
based on a previous method [16]. Phosphorylation data were
analyzed with two-tailed unpaired Student’s T-test to evaluate
statistical differences. Corticosterone measurements data were
analyzed using a Mann-Whitney U test because their distribution
called for a non-parametric analysis. A p-value less than 0.05 was
considered significant (¥). Data are expressed as the mean =*
standard error of mean (SEM).

Results

Acute stress induces an increase in plasma corticosterone
concentration

Rats placed on the elevated platform showed a significant and
dramatic increase in plasma corticosterone levels when compared to
non-stressed rats (n=12; 830.3=112.7 ng/mL and 161.5%45.3 ng/
mL in stressed and non-stressed rats, respectively; U =3, p<<0.001).
The sensitivity of the corticosterone assay was 1.6 ng/mL.

Acute stress exposure decreases phosphorylation of
GluA1 in the mPFC and DH

AMPAR GluAl and GluA2 subunits phosphorylation states were
studied in the mPFC, including both prelimbic and infralimbic
areas, and in the DH. Thirty minutes after the end of stress, a
significant decrease in the phosphorylation level of Ser831-GluAl
was found in mPFC and DH of stressed animals compared to
controls (t (19)=2.438, p<<0.05 and t (19)=2.347, p<<0.05,
respectively; Fig. 1A and 1C), whereas no significant changes were
observed for Ser845-GluAl and Tyr876-GluA2 phosphorylation
states (Fig. 1A and 1C). In contrast, acute stress caused an increase
in Ser880-GluA2 phosphorylation in the mPFC (t (19)=2.196,
p<<0.05; Fig. 1A), but not in the DH (Fig. 1C).

Acute stress exposure increases the phosphorylation of
GluA1 and decreases the phosphorylation of GIuA2 in
the amygdala and VH

AMPAR GluAl and GluA2 subunit phosphorylation states
were studied in the amygdala and VH. Thirty minutes after the
end of stress, changes in the phosphorylation sites of both GluAl
and GluA2 were found, with a decreased phosphorylation level
at the Tyr876-GluA2 and Ser880-GluA2 sites in the amygdala
(t (23)=2.207, p<0.05 and t (23)=2.167, p<<0.05, respectively;
Fig. 1B). A decreased phosphorylation level of Ser880-GluA2 site
in the VH was found, (t (19) = 2.174, p<<0.05; Fig. 1D), as opposed
to the increased phosphorylation level of Ser880-GluA2 site
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Figure 1. Phosphorylation states at multiple AMPAR subunits after acute stress. Inmunoblots and histograms of the ratio between the
phosphorylated form and total amount of the protein (white bars: no stress group, cross hatched bars: stress group). In the mPFC (A), stress
decreased Ser831-GluA1 phosphorylation (p<<0.05) and increased Ser880-GluA2 phosphorylation (p<<0.05). In the amygdala (B), stress increased
Ser845-GluA1 phosphorylation (p<<0.05) and decreased Tyr876-GluA2 and Ser880-GluA2 phosphorylation (p<<0.05. In the DH (C), stress decreased
Ser831-GluA1 phosphorylation (p<<0.05). In the VH (D), stress increased Ser845-GluA1 phosphorylation (p<<0.05) and decreased Ser880-GluA2
phosphorylation (p<<0.05). Immunoblots (100 kDa) illustrate the phosphorylated form of the protein (left: control, right: stress). The number of
animals per group is 10 for controls and 11 for stress. Unpaired, two-tailed, Student’s T-test. *, p<<0.05, compared with the corresponding control

group.
doi:10.1371/journal.pone.0015282.g001

observed in the mPFC (t (19)=2.196, p<<0.05; Fig. 1A). In
contrast to what was observed in the mPFC for Ser831-GluAl,
stress increased the phosphorylation states of Ser845-GluAl in the
amygdala and VH (t (19)=2.891, p<<0.05; Fig. 1B and 1D). All
the phosphorylation changes on GluAl and GluA2 subunits after
stress are summarized in Table 1.

Discussion

Here we report that exposure to acute stress causes a unique
profile of AMPAR phosphorylation in the mPFC, amygdala
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and hippocampus. Decreases in the phosphorylation of the
CaMKII/PKC Ser831-GluAl site were observed in the mPFC
and DH, whereas increases in Ser845-GluAl phosphoryl-
ation were seen in the amygdala and VH. Acute stress also
modulated the phosphorylation state of the GluA2 subunit with
phosphorylation decreases at both the Tyr876-GluA2 and
Ser880-GluA2 sites in the amygdala, but only Ser880-GluA2 in
the VH, as well as an increase in the phosphorylation of
Ser880-GluA2 in the mPFC. Thus, acute stress differentially
modulates AMPAR phosphorylation in several parts of the
corticolimbic system.
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Table 1. Summary of changes in AMPAR phosphorylation of GIuA1 and GIuA2 subunits after stress in the four regions studied.

GluA1 GluA2

Ser 831 Ser 845 Tyr 876 Ser 880

(CamKiIl/PKC) (PKA) (Tyr kinase) (PKCQ)
Medial prefrontal cortex | (38.6%) > > 1 (70.1%)
Amygdala P 1 (32.8%) | (37.5%) | (40.9%)
Dorsal hippocampus | (26.5%) “ “ “
Ventral hippocampus > T (57.2%) > 1 (32.2%)

doi:10.1371/journal.pone.0015282.t001

Previous work from many labs indicates that GluAl AMPAR
subunit phosphorylation at the Ser831-GluA1l and Ser845-GluAl
sites can mediate the generation of LTP [14]. The phosphoryla-
tion on Ser831-GluAl is thought to affect plasticity by increasing
the AMPAR channel conductance [17] and potentiating GluAl-
mediated current [18,19], whereas the phosphorylation of Ser845-
GluAl accompanies surface insertion of AMPARS receptors at in
extra synaptic sites, which provides a pool of receptors available
for LTP induction [20,21]. Furthermore, other research has
demonstrated the acute stress prevents the induction of LTP in
DH and mPFC [4,22-24]. In light of these previous findings, our
present results suggest that the mechanism by which acute stress
disrupts LTP in these regions involves the reduction of Ser831-
GluAl phosphorylation. Using similar reasoning, the increase in
Ser845-GluAl phosphorylation observed within the amygdala
might explain how acute stress enhances L'TP in that region [6].
Thus, our results provide a framework for explaining the
contrasting effects that stress has on LTP in different brain
regions. Namely, these effects occur because acute stress
differentially modulates GluA1 AMPAR subunit phosphorylation,
with decreased phosphorylation seen in the DH and mPFC and
increased phosphorylation seen in the amygdala. Moreover, the
contrasting results we obtained for the GluAl phosphorylation in
the DH and the VH, which were manifested as a decrease of
Ser831-GluAl phosphorylation and an increase of Ser845-GluAl
phosphorylation, respectively, provide support for the recent
hypothesis that stress differentially regulates ventral and dorsal
routing within the hippocampus [8,25]. Such a functional
segmentation, with the VH being involved with emotion and the
DH regulating information processing, is supported by evidence
from numerous anatomical, behavioral and physiological studies
[26,27].

In addition to affecting GluAl subunits, we observed that acute
stress modulates the phosphorylation state of the GIuA2 subunit in
amygdala, mPFC and VH. Exposure to stress decreased
phosphorylation at both the Tyr876-GluA2 and Ser880-GluA2
sites in the amygdala, and at the Ser880-GluA2 site in the VH.
Phosphorylation of the Tyr876-GluA2 residue is known to control
the surface expression and the synaptic targeting of the GluA2
subunit by causing its internalization [28], whereas Ser880-GluA2
phosphorylation decreases the affinity of GluA2 for GRIP and
then triggers its internalization [29]. Each of these effects is
thought to contribute to the reduced synaptic strength observed in
long-term depression [30-32]. Thus, acute stress likely reduces
GluA2 AMPAR internalization in the amygdala and in the VH,
which predicts that acute stress would impede the generation of
LTD in these regions. In contrast, the increased phosphorylation
of the Ser880-GluA2 residue in the mPFC that we observed
suggests acute stress increases AMPAR internalization and
facilitates the generation of LTD in that region.
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Previous work has shown that corticosterone facilitates the
recruitment of GluA2-AMPARs by enhancing lateral diffusion,
and increases both GluA2-AMPAR synaptic surface content and
surface mobility in cultured hippocampal neurons [10,11]. A
recent report has also demonstrated that a short treatment of
corticosterone increases AMPAR-mediated synaptic transmission
and AMPAR trafficking in cultured PFC neurons [33]. In
contrast, while the elevated platform stress protocol causes a
dramatic increase in plasma corticosterone levels, we observed a
decrease in phosphorylation of AMPA receptors in the PFC,
which would be expected to have the opposite effect on
glutamatergic processes. Additionally, we have observed that the
blockade of glucocorticosteroid receptors protects against the
stress-induced disruption of LTP in the mPFC synapses after stress
[34]. It may be that a massive influx of corticosterone at PFC
neurons perturbs that conditions in which the induction of LTP is
possible. This hypothesis is consistent with the finding that
exposure to stress can prevent the induction of LTP and favour
the induction of long-term depression [24]. Future studies are
needed to clarify the influence of glucocorticoids on site-specific
phosphorylation of AMPARs in the different brain regions.

Our laboratory has also previously demonstrated that post-stress
treatment with the antidepressant drug tianeptine protects against
the stress-induced disruption of neural plasticity [4]. Recent work
with phosphomutant GluAl mice, which have point mutations at
both the Ser831-GluAl and Ser845-GluAl sites, suggests that this
antidepressant-like drug effect might be related to AMPAR GluAl
subunit phosphorylation. Specifically, fluoxetine administration
was seen to increase GluAl phosphorylation at the Ser845-GluAl
site, whereas tianeptine treatment increased GluAl phosphoryla-
tion at the Ser831-GluAl site in the frontal cortex and
hippocampus, as well as at the Ser845-GluAl site in the
hippocampus [16,35]. Therefore, tianeptine’s ability to protect
LTP from stress-induced disruption might be related to its capacity
to augment AMPAR GluAl phosphorylation [16,35]. Given the
robust clinical relationship between stress and major depression,
the present data further emphasize a potential beneficial role of
AMPA receptor modulators in the treatment of mood disorders.

Our results might also have implications for the impact of stress
on learning and memory. As has been discussed, various stressors
modulate the induction of synaptic plasticity in the hippocampus
and PFC [23,24,36,37], and tianeptine treatment increases
phosphorylation at the Ser831 site of the GluAl receptor subunit
[16,35]. It is also true that exposure to stress disrupts working
memory [1,38], and knock-out mice that lack the GluAl subunit
show dramatic impairments in spatial working memory [39].
These results support the hypothesis that the phosphorylation state
of GluAl receptor subunits at the Ser831 site is a key characteristic
of the stress-induced dysregulation in synaptic plasticity that may
lead to the disruption of working memory. Classically, the PFC has
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been treated as a key brain region for working memory [40,41],
yet this view has been challenged more recently with evidence
supporting the hippocampus’ predominant role [39]. It might be
that GluAl subunits within the VH-to-mPFC pathway have an
important role for the integration of stress effects on working
memory and on plasticity.

In a recent paper, Fumagalli and colleagues provided evidence
that GluA1 subunits are necessary for stress to cause an increase in
the phosphorylation of the NMDARs [42]. The classical
mechanism that is thought to govern the interaction between
NMDARs and AMPARs during synaptic plasticity, however,
involves a sequence where the activation of NMDARSs leads to the
modification of AMPARs [43-46]. Here we have reported that
stress induces a decrease in Ser831-GluAl phosphorylation.
Previous work from hippocampal slice physiology indicates that
NMDAR blockade can cause a similar decrease in Ser831-GluAl
phosphorylation [47]. Based on this observation we hypothesize
that stress may have a direct effect on NMDARSs, which then leads
to downstream modification of AMPARs phosphorylation. In
contrast, Fumagalli et al. reported that exposure to acute restraint
stress increased the phosphorylation of both the GIluNl and
GIuN2B subunits of NMDARs in the hippocampus of wild-type
mice, but not in mutant mice [42]. This finding implies that
AMPARSs may have an unappreciated role in governing NMDARs
during stress [48]. It might also be that the absence of AMPAR
GluAl subunit resulted in a compensatory regulation mechanism
for NMDARs because AMPARs and NMDARs are tightly
coregulated by activity at the synapses.

We have previously reported that elevated platform stress does
not lead to a general modulation of GluAl phosphorylation in
brain tissue sampled from the entire frontal cortices [35]. The
present methodology targeted a more-specific brain region and we
observed that exposure to elevated platform stress decreased the
phosphorylation of Ser831 on the GluAl subunit in the mPFC.
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