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Abstract: Polysaccharide biopolymers are biomacromolecules derived from renewable resources
with versatile functions including thickening, crosslinking, adsorption, etc. Possessing high efficiency
and low cost, they have brought wide applications in all phases of petroleum recovery, from well
drilling to wastewater treatment. The biopolymers are generally utilized as additives of fluids or
plugging agents, to correct the fluid properties that affect the performance and cost of petroleum
recovery. This review focuses on both the characteristics of biopolymers and their utilization in the
petroleum recovery process. Research on the synthesis and characterization of polymers, as well
as controlling their structures through modification, aims to develop novel recipes of biopolymer
treatment with new application realms. The influences of biopolymer in many petroleum recovery
cases were also evaluated to permit establishing the correlations between their physicochemical
properties and performances. As their performance is heavily affected by the local environment,
screening and testing polymers under controlled conditions is the necessary step to guarantee the
efficiency and safety of biopolymer treatments.

Keywords: biopolymer; petroleum; oilfield chemicals; viscosity; drilling fluid; fracking fluid; enhance
oil recovery; microbial plugging; wastewater

1. Introduction

Polysaccharide biopolymers are regarded as biomacromolecules derived from renewable resources,
in a raw or chemical modified form [1]. They are advantageous for a wide range of applications in
the industry of food, pharmaceutics, cosmetics, construction, chemicals, textiles, etc., due to their
versatile physical behaviors, multiple functions, relatively low price, sustainability and environmental
safety [2,3]. The global capital market of biopolymers is expected to reach USD 10 billion by 2021,
with a 17% annual growth rate [4]. Since the inception of the petroleum industry, polysaccharide
polymers have been used in almost every section of the petroleum industry to reduce the recovery
cost and enhance operation efficiency. Besides generally requiring polymer as reliable and effective,
the petroleum industry emphasizes more on the economy of polymers, especially when oil and natural
gas are at a low commodity price. Therefore, instead of ultra-pure polymers, the polymers in their
naturally occurring composite forms, with little or no modification, are preferred by the oil and gas
industry operations [5].
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For operators, understanding the workflow of petroleum recovery, as well as the property
requirements of biopolymers in the process, is the prerequisite for designing efficient polymer
treatments. As shown in Figure 1, petroleum is one kind of hydrocarbon fluid that exists in the
connected pore space of a reservoir, and it is typically extracted through oil wells. To initialize the oil
production, oil wells are drilled from the surface to reservoirs with various deepness between 2500
and 20,000 feet. Once the well is complete, an oil flow occurs due to the pressure difference between
the reservoir and wellbore, which can be expressed as:

Q = −
kA
µL
∇p (1)

where Q is the oil flow rate, k is the permeability, µ is the viscosity of oil, A is the cross-sectional area of
wellbore, L is the reservoir distance, and ∇p is the total pressure drop.

Polymers 2020, 11, x FOR PEER REVIEW 2 of 35 

 

treatments. As shown in Figure 1, petroleum is one kind of hydrocarbon fluid that exists in the 
connected pore space of a reservoir, and it is typically extracted through oil wells. To initialize the oil 
production, oil wells are drilled from the surface to reservoirs with various deepness between 2500 
and 20,000 feet. Once the well is complete, an oil flow occurs due to the pressure difference between 
the reservoir and wellbore, which can be expressed as: 𝑄 = െ 𝑘𝐴𝜇𝐿 ∇𝑝 (1) 

where Q is the oil flow rate, k is the permeability, 𝜇 is the viscosity of oil, A is the cross-sectional area 
of wellbore, L is the reservoir distance, and ∇𝑝 is the total pressure drop.  

 

Figure 1. The scheme of traditional petroleum recovery process with polymer flooding. 

Especially, when the permeability (k) of the reservoir is too low to support a significant rate of 
oil flow, hydraulic fracturing will be a common approach to enhancing the flow rate by increasing 
the cross area of the wellbore. During the early stage of production, the recovery is called primary 
production and it is driven by the reservoir’s natural energy such as fluid and rock expansion, 
solution-gas drive, and gravity drainage. Generally, only ~10% of the original oil in place (OOIP) can 
be recovered through the primary production, along with a gradient descent of reservoir pressure. 
Once the decreasing reservoir pressure cannot afford oil flow, water is injected from injection wells 
into the formation, increasing the reservoir pressure to its initial level, and the oil recovery enters the 
secondary recovery domain. During this period, the water displaces oil from the pore spaces, and is 
produced in the form of oily water associated with the oil production. The water flooding generally 
brings a 15–25% incremental OOIP recovery, and the increment is heavily affected by a series of 
factors including oil viscosity, formation permeability, connate water compatibility, rock wettability, 
etc. To further seize the residue oil, enhanced oil recovery (EOR) may be conducted depending on 
the local geological conditions. Based on the various mechanisms of changing fluid properties, 
prevailing EOR approaches include thermal, chemical (surfactant and polymer) and miscible 
methods. Especially, the polymer method is widely applied to improve the mobility ratio and divert 
injected water from zones that have been swept. The EOR approaches can realize an overall 30–60% 
recovery of OOIP. However, it also significantly increases the cost of development. To ensure a 
successful petroleum recovery project, the economics of the development equation, as well as 
environmental concerns about wastewater recycling, must be considered. In that case, utilizing 
polymers, especially biopolymers, as fluid additives, is an important aspect regarding the efficiency 
and safety of petroleum recovery. For example, Xanthan gum, Scleroglucan and cellulose and their 
derivatives are used as thickness agents in the drilling and production process; Guar gum and Guar 
gum derivatives are applied to form crosslinked gels for proppant transportation in hydraulic facture; 
Chitosan is utilized as oil adsorbent in wastewater treatment, etc. Besides biopolymers, synthetic 

Figure 1. The scheme of traditional petroleum recovery process with polymer flooding.

Especially, when the permeability (k) of the reservoir is too low to support a significant rate of
oil flow, hydraulic fracturing will be a common approach to enhancing the flow rate by increasing
the cross area of the wellbore. During the early stage of production, the recovery is called primary
production and it is driven by the reservoir’s natural energy such as fluid and rock expansion,
solution-gas drive, and gravity drainage. Generally, only ~10% of the original oil in place (OOIP) can
be recovered through the primary production, along with a gradient descent of reservoir pressure.
Once the decreasing reservoir pressure cannot afford oil flow, water is injected from injection wells
into the formation, increasing the reservoir pressure to its initial level, and the oil recovery enters
the secondary recovery domain. During this period, the water displaces oil from the pore spaces,
and is produced in the form of oily water associated with the oil production. The water flooding
generally brings a 15–25% incremental OOIP recovery, and the increment is heavily affected by a series
of factors including oil viscosity, formation permeability, connate water compatibility, rock wettability,
etc. To further seize the residue oil, enhanced oil recovery (EOR) may be conducted depending on the
local geological conditions. Based on the various mechanisms of changing fluid properties, prevailing
EOR approaches include thermal, chemical (surfactant and polymer) and miscible methods. Especially,
the polymer method is widely applied to improve the mobility ratio and divert injected water from
zones that have been swept. The EOR approaches can realize an overall 30–60% recovery of OOIP.
However, it also significantly increases the cost of development. To ensure a successful petroleum
recovery project, the economics of the development equation, as well as environmental concerns about
wastewater recycling, must be considered. In that case, utilizing polymers, especially biopolymers,
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as fluid additives, is an important aspect regarding the efficiency and safety of petroleum recovery.
For example, Xanthan gum, Scleroglucan and cellulose and their derivatives are used as thickness
agents in the drilling and production process; Guar gum and Guar gum derivatives are applied to form
crosslinked gels for proppant transportation in hydraulic facture; Chitosan is utilized as oil adsorbent
in wastewater treatment, etc. Besides biopolymers, synthetic polymers such as polyacrylamide (PAM)
and hydrolyzed polyacrylamide (HPAM) are also used as thickening agents during flooding and
plugging process. These acrylamide-based polymers possess larger viscosity due to the repulsion
forces among their negatively charged linear chains. As a result, the viscosity is negatively affected by
the cations in the environment. While synthetic polymers generally exhibit simple and homogenous
structures, their high cost, complicated synthetic process, and potential toxicity to the environment
limit their application realms in the petroleum recovery process.

Compared with synthetic polymers, biopolymer possess several advantages. Biopolymer can
provide a super thickening effect at a lowest cost. For example, a 1% Guar gum solution can hold the
viscosity of up to 10,000 mPa·s and adequate stability against shear stress and temperature. The price
of Guar gum can be as low as USD 2/kg due to its abundant resource and simple extraction process.
The excellent thickening effect, as well as low price, puts Guar gum in a dominant position on the
market of hydraulic fluid additives. Moreover, as macromolecules, the flexible molecular structure and
active groups of biopolymers provide enough room for property modification, allowing the versatile
functions of biopolymer in the petroleum recovery process. Finally, as natural products, biopolymers
are non-toxic and environmentally friendly, and their residue has less impact on local health and
safety. In contrast, the increasing concerns about the long-term safety of using (H)PAM in fluids
has risen around the world. Although (H)PAM is non-toxic to animals and plants in the form of
polymer, many studies have proven that the degradation of the polymer, caused by mechanical stress
and harsh chemical/thermal conditions, can generate acrylamide monomers, which are neurotoxin
and potential carcinogen [6]. The monomer is highly mobile in the environment regarding its high
solubility in water, and has brought environmental challenges, both in water management and in
contamination of local water supply. To address this issue, many institutions around the world have
established strict regulations on the application of (H)PAM. For instance, the U.S. Environmental
Protection Agency (EPA) and European Commission (EC) have a limit of 0.5 ppb and 0.1 ppb (w/v)
acrylamide in production water, respectively [7].

Along with various useful characteristics, the features of petroleum industry also bring several
challenges to the application of biopolymers. First, the performance of biopolymers is heavily affected
by the geological conditions of reservoirs. Many factors including temperature, pressure, permeability
and mineralogy of the reservoir, as well as the composition and rheology properties of formation
fluids, need to be evaluated for a successful application of polymer. However, the acquisition of these
parameters is unfeasible or too costly sometimes, and therefore the design of polymer treatment may
confront several unknown parameters. Moreover, although laboratory tests can reveal some pieces
of evidence about the positive effort of biopolymers, the limited field data make the actual influence
of polymer on petroleum recovery imperceptible for operators. The lack of data also makes it hard
to adjust the recipe of biopolymer during the treatment for better performance. Finally, even the
benefits of polymer flooding exist, the improvement usually needs several months and even years to
be recognized and evaluated [8], and delayed and undetermined improvement would bring reluctance
and refusals of operators to the polymer treatment.

In this review, a bridge between biopolymer chemistry and petroleum recovery process
was established by investigating both the characteristics of biopolymers and the requirements of
physiochemical properties of fluids in the crude oil extraction process. The benefits and limitations
of biopolymer as fluid additives are discussed to provide insight to the potential improvement of
current petroleum recovery process. While the biopolymer treatment is usually on a case-by-case basis,
this work provides general guidelines of biopolymer application in the petroleum recovery process,
aiming at realizing a greener and more efficient energy production.
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2. Polysaccharide Biopolymer

Polysaccharide biopolymer contains monomeric sugars linked together with O-glycosidic linkages
to form a larger structure. The properties of monomers, linkages and potential chemical modifications
collectively determine the characteristics of polymers. Before the beginning of the petroleum industry,
biopolymers had already been applied widely in the food and pharmaceutical industry and emerging
petroleum recovery technologies brought additional opportunities to the development of biopolymers.
Regarding the cost, most biopolymers applied in petroleum engineering are produced from the direct
extraction of raw plant materials or large-scale fermentation, and lots of effort has been done to
increase their production yield. Moreover, as the functions of polymers lie on their molecular structure
and conformation, modifying their molecular structure is a prevailing method to improving their
physicochemical properties. Table 1 summarizes the typical biopolymers involved in petroleum
recovery, and the detail is discussed as follows.

Table 1. Characteristics of biopolymers involved in petroleum recovery.

Biopolymer Source Monomers Molecular
Weight Properties Price

(USD) Modification Ref.

Xanthan gum Fermentation product of
Xanthomonas campestris

D-mannose,
D-glucose,

Pyruvic acid,
D-glucuronic acid

2 × 106 to
2 × 107 Da

Thickening
Crosslinking 12/kg

Carbonate modified
Formaldehyde

modified
Propylene oxide

modified

[9–18]

Scleroglucan Fermentation product of
Sclerotium rolfsii D-glucose 1.3 × 105 to

6 × 106 Da
Thickening 50/kg Hydrophobic

modified [19–24]

Guar gum Endosperm component of
Cyamopsis tetragonolobus

D-mannose,
D-galactose

106 to
2 × 106 Da

Thickening
Crosslinking 2/kg

Hydroxypropyl
modified

Carboxymethyl
modified

Carboxymethyl
hydroxypropyl

modified

[25–34]

Cellulose
Lignocellulose of plants
Fermentation product of

Acetobacter Xylinam
D-glucose 2 × 106 Da

Thickening
Filtration

Adsorption
4/kg

Hydroxyethyl
modified

Carboxymethyl
modified

Amphoteric modified

[35–42]

Chitin/Chitosan
Shells of crustaceans,

exoskeletons of insects
and cell walls of fungi

D-glucosamine,
N-acetyl-D-glucosamine

2 × 103 Da to
106 Da

Adsorption 220/kg Modification of MW [43–56]

2.1. Xanthan Gum

Xanthan gum was named after the Xanthan-producing bacterium Xanthomonas campestris, and it
was discovered at the Northern Regional Research Laboratories of the United States in 1950 [57]. As a
polysaccharide polymer, Xanthan gum has attracted wide attention from the industry due to its high
solubility, thermo-stability, high viscosity yield and gelation capacity, and it plays versatile roles as
thickener, stabilizer, dispersant, fat replacer and coating material. The food industry consumes 60% of
the global production of Xanthan gum, followed by oil industry (15%) and others include Medical,
Personal Care, Cosmetics industries, etc. Due to the high demand, the market capitalization of Xanthan
gum increases at a 5–10% annual rate and reached USD 722 million in 2016 [58]. Nowadays, the major
producers of Xanthan gum include Merck and Pfizer in the United States, Fufeng Group and Deosen
Biochemical in China, Rhône Poulenc and Sanofi-Elf in France, and Jungbunzlauer in Austria, with an
average market price of USD 12/kg [9].

Xanthan gum is an anionic heteropolysaccharide with a linear β-(1–4)-d-glucopyranose glucan
backbone, and the C–3 position of every other glucose links a trisaccharide side chain containing
d-mannose, d-glucuronic acid, and d-mannose in an order (Figure 2). The pyruvic acid residue linked
to the terminal d-mannose and the acetyl group linked to the d-mannose unit collectively bring the
negative charges to Xanthan gum [10]. The molecular weight (MW) of Xanthan gum is around 2 × 106

to 2 × 107 Da, and the stiffness, as well as the intermolecular associations, of its molecules enables
Xanthan gum to exhibit a shear-thinning effect [11]. The viscosity of 1 g/L Xanthan gum is between
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13–35 mPa·s and the viscosity is stable at low pH values (up to pH 3), high salinities (up to 3% salt)
and temperatures (up to 80 ◦C) [10]. However, it may still lose the viscosity because of the denaturing
process occurred at too high temperature coupled with low ionic strength when its structure appears
as disordered and flexible coils. The denature is reversible as the coil structure can be turned back to
be an ordered single or double helix conformation by lowering the temperature or increasing the ionic
strength [12]. The rheology and stability of Xanthan gum are determined by the value and distribution
of the MW, as well as the components of polysaccharides, which are varied based on the producing
bacterium species, fermentation condition and separation process. To increase its velocity, crosslinking
may be implemented in the application of Xanthan gum, which is triggered by adding Ca2+ ions [13],
adipic acidic dihydrazide or sodium trimetaphosphate [14].
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Xanthan gum is usually manufactured through a traditional fermentation–purification process,
shown in Figure 3. Xanthomonas, a genus of Pseudomonadaceae, is fermented with a production
medium in a bioreactor to produce Xanthan gum, which constitutes the bacterial capsule. Numerous
effects have been carried out to optimize the fermentation process to maximize the yield and reduce
the cost. For example, with a 200–300 rpm and 1 L/min air flow rate, the production medium was
optimized with 2–4% glucose or sucrose for carbon source [59] and 15 mM of glutamate [60] for nitrogen
source to maximize the yield. Shu and Yang pointed out that the temperature control improved the
quality and quantity of Xanthan gum production: the highest yield was observed at the temperature
between 31–33 ◦C, but 27–31 ◦C was preferred for producing Xanthan gum with a high pyruvate
content [61]. In contrast, the pH control of the medium only affected the cell growth instead of Xanthan
production [62]. The fermentation usually lasts around 50 h, and the concentrations of Xanthan, cells
and residual nutrients in final fermentation broth are 10–30 g/L, 1–10 g/L and 3–10 g/L, respectively [15].
The high content of impurities and viscosity make the purification process extremely complicated and
time-consuming. The purification step begins with a thermal treatment, with which the broth is kept
at 80–130 ◦C and pH 6.3–6.9 for 20 min to increase the solubility of Xanthan gum. Then, the broth is
diluted with water to reduce the overall viscosity, followed by the first filtration to remove the cell
debris from the broth. Finally, lower alcohol (≥6 vol per broth volume) and salts are added into the
broth to trigger the precipitation of Xanthan gum, which is recovered by the second filtration.
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To meet the rheology and solubility needs of the petroleum industry, chemical modifications
of Xanthan gum are widely applied to improve the thickening effect, solubility, and thermal
stability. The general approaches include carbonate-modified, formaldehyde-modified, and propylene
oxide-modified. Aiming at improving the thickening effect of Xanthan gum, Reddy conducted
the carbonate-modification of Xanthan gum and the results are shown in Table 2 [16].
The carbonate-modified Xanthan gum was synthesized by mixing the Xanthan gum and various organic
carbonates with the mass ratio ranged from 1:0.1 to 1:20. Then, the mixture was heated at 70 to 80 ◦C in
a roller oven for 6 to 24 h to complete the modification. As shown in Table 2, carbonate-modifications
significantly increased the MW, as well as the viscosity, of Xanthan gum. Among them, the modification
with glycerine carbonate exhibited the highest improvement, as doubled viscosity was achieved.
The author also investigated the effect of modification on the stability of Xanthan gum against high
temperatures. When the temperature was shifted from 80 ◦C to 121 ◦C the ethylene carbonate modified
Xanthan gum exhibited an increasing viscosity, different from a decline in viscosity with untreated
Xanthan gum. The thickening effect of Xanthan gum can also be improved with hydroxypropyl
modification, which is achieved by reacting Xanthan gum with propylene oxide under an alkaline
condition. According to the research conducted by Tian et al., the hydroxypropyl modification
possessed a 25% increase in thickening effect without affecting the drag-reducing effect [17]. Besides the
thickening effect, a quick dissolving of Xanthan gum in a fluid is also expected to avoid the plugging
issues during the injection. To address this concern, Su et al. conducted the formaldehyde-modification
of Xanthan gum and decreased the dissolution time of Xanthan gum from 30 min to 8 min. In the
study, Xanthan gum (3 wt%) was mixed with formaldehyde at 100:1 volume ratio under pH 1.6~2.0,
and mechanically stirred at 40 ◦C for 6 h to generate formaldehyde-modified Xanthan gum [18]. Besides
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the modifications mentioned above, deacetylated [63] and hydrophobic modification [64] were also
reported to improve the viscosity Xanthan gum.

Table 2. The viscosity, MW and polydispersity index of various carbonate-modified Xanthan gum
solutions (0.5 wt%) (data from [16]).

Modification Polymer:
Carbonate Ratio

Viscosity
(mPa·s) 1

MW
(Da) Polydispersity Index

Control NA 680 3.98 × 106 1.25
Ethylene Carbonate 1:0.132 1640 5.89 × 106 1.06

Propylene Carbonate 1:0.132 1040 7.0 × 106 1.32
Butylene Carbonate 1:0.122 1040 4.44 × 106 1.26
Diethyl Carbonate 1:0.122 1000 5.67 × 106 1.24

Glycerine Carbonate 1:0.130 2200 6.93 × 106 1.50
1 At 50 s−1 shear rate and room temperature.

2.2. Scleroglucan

Scleroglucan is the extracellular polysaccharide, as a form of restored energy, of the fungus of
the genus Sclerotium. After Halleck discovered Scleroglucan from fungus Sclerotium glucanicum in
the 1960s [65], Scleroglucan has been introduced to the market as a food viscosity agent and texture
modifier under the trade name Polytran by Pillsbury Co. Its great thickening effect and its stability
with wide temperature and pH have attracted the attention of petroleum engineers since the 1970s.
Scleroglucan has been widely used in the section of enhanced oil recovery of the petroleum industry,
where Scleroglucan is added into the injection water to increase the viscosity and improve the oil
recovery. The market price of Scleroglucan is around USD 50/kg and it is produced by many great
global producers such as Cargill, ELICITYL, General Mills, Carbosynth, Shandong Qilu Biotechnology
Group, etc.

Scleroglucan has a main linear chain of β-d-(1–3)-glucopyranosyl units and a (1–6)-linked
β-d-glucopyranosyl side unit is linked at every third main chain unit (Figure 4). The MW of Scleroglucan
is ranged from 1.3 × 105 to 6.0 × 106 Da, varied from different producing strains and fermentation
conditions [19]. Scleroglucan disperses easily in the water due to the presence of glucopyranosyl
group [66], and 35 mg/L of Scleroglucan can give 10 mPa·s of viscosity. Under low concentration,
Scleroglucan solution can be treated as a Newtonian fluid, while the solution exhibits a pseudoplasticity
behavior when Scleroglucan is more than 0.2 wt%. The excellent thermo-stability of Scleroglucan comes
from its rigid triple-strand helix conformation, yet the large fluctuates of temperature or pH can still
denature the polymer through interrupting the hydrogen bonds between the strands of polysaccharides.
Self-supporting sliceable gels were observed in a 1.2–1.5 wt% Scleroglucan solution at 25 ◦C and
adding 0.15 wt% bentonite can generate viscous gel with the viscosity more than 4000 mPa·s [20].
Generally, Scleroglucan possesses better stability than Xanthan under extreme environments, which
is a common concern in petroleum production. Kalpakci et al. studied the thermal stability of
Scleroglucan at realistic reservoir conditions and found only 10–20 percent of the original viscosity
was lost at 105 ◦C after 460 days. Moreover, the Scleroglucan solution can retain all of its viscosity
at 100 ◦C during the two years research period [21]. Scleroglucan is recommended to be applied at
temperature of up to 135 ◦C while the loss of viscosity occurs in a short time beyond this threshold [22].
Besides the ideal thermostability, Scleroglucan also manifested high tolerance of alkali condition;
as indicated by Kashiwagi et al., Scleroglucan can keep stable in the 0.02 M NaOH (pH 12.3) at
25 ◦C [23]. The outstanding rheology and stable properties make Scleroglucan the second-largest
utilized biopolymer in the petroleum industry, following Xanthan gum.
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Aerobic fermentation of Sclerotium rolfsii is the commercial approach to producing Scleroglucan.
The production is favorable with a high carbon to nitrogen ratio, and Valdez et al. recommended
30 g/L sucrose and 3 g/L NaNO3 for the carbon and nitrogen source, respectively [67]. The addition of
phosphorus, sugar nucleotides and amino acids enhanced the metabolism pathway of Scleroglucan
synthesis and had a positive impact on the production yield. The optimum fermentation temperature
is 28 ◦C and the optimum pHs for cell growth and polymer production are 3.5 and 4.5, respectively.
The limited oxygen supply was proven to improve the production of polymer while inhibiting the
cell growth [68]. After 72 h of fermentation, the concentration of Scleroglucan in the broth can reach
10–20 g/L. To purify Scleroglucan, alkali and water are added to the broth for neutralization and
dilution, then the broth is heated at 80 ◦C for 30 min, homogenized and centrifuged to remove cell
debris and residue substrate. Finally, Scleroglucan is precipitated and recovered from the broth by
adding alcohol, CaCl2 and adjusting the pH [69].

The study of hydrophobic modification of Scleroglucan has been conducted in pilot-scales, aiming
to reduce the interfacial tension between oil and water, which can enhance the oil recovery [24].
To obtain amphiphilic Scleroglucans, various densities of hydrophobic stearate groups were grafted
onto the triple-helix conformation of Scleroglucans. After that, ionic-sulfonic groups were also attached
to the polysaccharide to generate polyelectrolyte. With 0.3 w/v% of StCl(0.3)– Scleroglucans–SO3–,
the interfacial tension was decreased from 0.105 to 0.035 N/m. The hydrophobicity of the polymer
was also helpful in reducing the adsorption of the polymer during oil displacement. While chemical
modifications bring some new characteristics to Scleroglucan, the treatments are considered as
economically infeasible for most petroleum projects due to the high cost.

2.3. Guar Gum

Guar gum is a natural non-ionic polymer obtained from the annual agricultural crop Cyamopsis
tetragonolobus, belonging to family leguminosae. As a component of endosperm, Guar gum comprises
35–42% of the dry weight of seed [25]. India, Pakistan, Sudan and the USA are the biggest Guar
producing countries. Especially, India grows more than 80% of the world’s Guar, most in Rajasthan
state, due to its arid and prevalent monsoon climate, as well as cheap labor [70]. Guar gum has been
utilized as emulsifier, thickener, and stabilizer in the food and beverage industry and pharmaceutical
chemicals in the pharmaceutical and cosmetics industry for a long time. Nowadays, the petroleum
industry is the biggest consumer of Guar gum and more than 40% of the world’s Guar is used as
additives in hydrofracking fluid. It is approximated that a traditional hydrofracking project consumes
80 acres’ annual yield of Guar (200–500 kg/acre). The high demand of Guar in the petroleum industry
results in a big export volume of Guar from India to the USA. In 2013, around 800 thousand tons of
Guar gum was produced globally, out of which 300 thousand tons were exported from India to the
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USA [70]. As one kind of commodity closely related to oil production activity, the price of Guar gum
exhibits big fluctuations corresponding to the oil price. The price of Guar gum was up to USD 20/kg in
October 2012, when the oil price was USD 90 per barrel. After that, the price suddenly dropped to less
than USD 2/kg in November 2014 with a USD 40 oil. The price of Guar has maintained around USD
2/kg for five years since then, making the culture of Guar not economically attractive outside India.

The Guar gum molecule consists of linear backbone chains of (1–4)-β-d-mannopyranosyl units
and the branch points of α-d-galactopyranosyl units attach the backbone by (1–6) linkages, shown in
Figure 5a. The average MW of Guar gum is in a range of 106 to 2 × 106 Da and the ratio of mannose
to galactose units is varied from 1.6:1 to 2:1 [26,27]. The Guar gum solution reveals extremely high
viscosity, as 1% of the polymer can increase the viscosity of water to 10,000 mPa·s. Its supreme
thickening effect lies on the hydration of galactomannans and the inter-molecular chain entanglements
between side chains and backbone [28]. A shear-thinning phenomenon is observed with Guar gum
solution and the viscosity is also affected by the pH and temperature: Guar gum solution reaches its
highest and lowest viscosity at pH 6–9 and pH 3.5, respectively [29]; the elevation of temperature causes
the decrease in viscosity, as the high temperature inhibits the interaction between the water and polymer
molecules. The gelation capacity of Guar gum enables it as an essential additive of hydrofracturing
fluid and the gelation can be triggered by a wide type of chemicals and the common crosslinking agents
include derivatives of methylene-bis-acrylamide, derivatives of ethylene-glycol-di(meth)acrylate,
glutaraldehyde, Borate, and chemicals contain Ti4+, Zr4+ and Al3+ ions. During the gelation, the Guar
gum molecules reveal a closed loop-like structure and bonds between the crosslinkers and the hydroxyl
groups of polymer chains are formed. The cross-linked network captures the free water molecules in
the solution, increasing the water absorption and holding capacity of the hydrogel system [30].

Guar gum is directly extracted from the plant material, making it cheaper than polysaccharide
biopolymers obtained from the fermentation process. Sabahelkheir et al. have summarized the
prevail protocol as follows [71]: First, the harvested Guar seed is dried, and heated at 100 ◦C for
30 min to deactivate the enzymes which catalyze the hydrolysis Guar gum during extraction. Then,
the endosperm of seed is separated from the hull and embryo, followed by multistage grinding
and sieving operations. The powdered Guar gum comprises 75–86% water-soluble galactomannan,
8–14% moisture, 5–6% protein, 2–3% fiber and 0.5–1% ash [72], and additional separation treatments
may be required to further purify the gum as the impurity will cause the formation damages in
hydrofracking process.

A range of chemical derivatives of Guar gum has been synthesized [73], and the modifications
improve the solubility, rheology properties and reduce the number of undissolved residues of polymer
in hydrofracking fluid after the breaking process. Hydroxypropyl Guar (HPG), Carboxymethyl
Guar (CMG) and Carboxymethyl hydroxypropyl Guar (CMHPG) are three types of derivatives
comprehensively studied and evaluated in the petroleum industry. HPG is synthesized in isopropyl
alcohol with Guar gum and propylene oxide as substrates, and the process is catalyzed with sodium
hydroxide at 60 ◦C [31]. The carboxymethylation of Guar gum is employed with two-step reaction
proceeding with a strong base (sodium hydroxide) that deprotonates the free hydroxyl groups in Guar
gum to form alkoxides, then carboxymethyl groups are formed in a reaction with Guar alkoxides
and chloroacetic acid [32]. CMHPG is generated with a two-step process that involves both the
carboxymethylation and hydroxypropylation reactions, which was described by Pasha and Ngn [33].
The introduction of the hydroxypropyl and carboxymethyl group brings negative charges to the
polymer, increasing its hydration rate and thermo-stability. According to their study, CMHPG can
maintain its viscosity at temperatures up to 60 ◦C under a high salinity environment, compared with
a 90% viscosity loss of natural Guar gum under the same condition. The modification also changes
the crosslinking behavior of Guar gum, and Lei et al. figured out the order of critical crosslinking
concentration was CMG< CMHPG< Guar< HPG [34].
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2.4. Cellulose

Cellulose is the most abundant biopolymer derived from biomass, as the form of lignocellulose
of plants. For example, cotton fiber and wood contain 90–95% and 40–50% cellulose, respectively.
It is physically and chemically bonded with lignin and hemicelluloses, contributing to the shape and
structure of plant cells. Besides extracting from plants, cellulose can also be obtained through the
fermentation of bacterial species such as Acetobacter Xylinam, and the yield is between 5–15 g/L [35].
The MW and dispersion index of microbial cellulose are more homogenous than plant-originated
cellulose, making them a better material for pharmaceutical applications. When cellulose was first
isolated from plant by Anselme Payen in 1839, people were surprised that cellulose and starch exhibited
the same molecular formula as (C6H10O5)n, while obvious differences in the solubility and textile
between them were recognized. Since then, intensive research has been done to investigate the
molecular conformation of cellulose and the links between the conformation and its chemical and
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physical properties. Cellulose and its derivatives are widely utilized to manufacture paper and fibers.
Moreover, the high degree of crystallinity and polymerization, as well as the high specific surface area
of cellulose makes it an indispensable material for the fine chemistry industry. It is estimated that
the annual yield of cellulose is between 1010–1011 tons around the world, and about 6 × 109 tons are
utilized in the pulp, textile, materials and chemical industries [74]. There is a growing interest in the
application of cellulose, especially microcrystalline cellulose (purified and partially depolymerized
cellulose), as a thickening agent for EOR, filtration control agent for drilling and wastewater treatment
sections in the petroleum industry.

The MW of native cellulose is around 2 × 106 Da with the degree of polymerization approximately
10,000 [36]. It consists of d-glucopyranose ring units linked in a (1–4)-β fashion with the chair
configuration and three hydroxyl groups exist in each anhydroglucose unit, bringing degradability
and chemical variability (Figure 6). Cellulose exhibits a crystalline fiber structure due to the hydrogen
bonds between the hydroxyl groups on one chain and the oxygen atoms on the same or on a neighbor
chain [37]. The hydrogen bonds cause a limited solubility of cellulose in most solvents and the tendency
of self-aggregation. Interestingly, the location of hydrogen bonds between and within strands is
different between plant originated (Iα), microbial (Iβ) and regenerated cellulose (II), leading to different
stability. The hydrophobic areas around the carbon atoms of cellulose, as well as the high surface
weight ratio (400–900 m2/g), bring an excellent adsorption capacity of oily contamination [38].
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The commercial cellulose in the microcrystalline structure and the manufacturing process was
shown in Figure 7. First, pure cellulose is separated from plants with physical or chemical processes [56].
Then, acid hydrolysis of cellulose is conducted with 1–2.5 M HCl or H2SO4 solution at 80–105 ◦C
aiming to selectively remove the amorphous region of cellulose fiber, but retain the microcrystalline
region [75]. Finally, the microcrystalline cellulose (MCC) is neutralized, washed and spray-dried to
generate the product with various particle size distribution, moisture content, and binding ability [76].
The average price of microcrystalline cellulose on the market is around USD 4/kg, and the utilization
of cellulose is considered feasible due to its abundance and economics.

To meet the requirements of solubility, rheology in the petroleum industry, chemical modification
of cellulose is a prevailing approach. Hydroxyethyl cellulose (HEC), Carboxymethyl cellulose (CMC)
and amphoteric cellulose are common cellulose derivatives. HEC is a nonionic soluble cellulose
derivative and it can easily dissolve in either hot or cold water and produce solutions with a wide
range of viscosities. To synthesize HEC, pure cellulose is treated with a sodium hydroxide solution
to swell the cellulose and form active alkali cellulose. Then, ethylene oxide is added to trigger a
series of etherification reactions to form HEC [39]. Carboxymethylation is a chemical approach to
introducing carboxyl groups on the surface of cellulose and the medication renders the cellulose
soluble and chemically reactive. Moreover, CMC is also recognized as an inexpensive, nontoxic, highly
biocompatible and biodegradable material. To make it, cellulose, sodium hydroxide and urea are mixed
and stirred continuously until a slurry mixture appears. Then the mixture is cooled in a refrigerator to
−12.5 ◦C, followed by being stirred vigorously at ambient temperature to obtain the transparent cellulose
solution. The carboxymethylation of cellulose is triggered by adding sodium monochloroacetate in the
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cellulose solution with vigorous stirring at 55 ◦C for 5 h. Finally, CMC is precipitated with methanol
and neutralized with dilute acetic acid [40]. Amphoteric cellulose contains both anionic and cationic
groups, leading to a remarkable solubility across the entire pH range and flocculation effect [41].
Amphoteric cellulose can be synthesized by adding 3-chloro-2-hydroxyl-propyltrimethyl ammonium
chloride and 3-chloro-2-hydroxypropanesulfonic acid sodium salt into the cellulose solution orderly
with a 2500 rpm at 25–45 ◦C [42], and the degree of substitution values for positively and negatively
charged groups can be controlled by manipulating the reaction rate and dosages of cationic and
anionic reagents.
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2.5. Chitin and Chitosan

Chitin is a ubiquitous natural polysaccharide that exists in the shells of crustaceans, exoskeletons
of insects, and cell walls of fungi, providing the strength for the structures. Most of the commercial
Chitin comes from crustacean shells, a cheap and abundant byproduct in the food industry and it
comprises up to 30% of the dry weight of shells. As the shells also contain a high-value pigment called
carotenoids, the integration of the production of Chitin and carotenoids guarantees the profits of the
business. Exhibiting the similar molecular structure, Chitosan is the partially deacetylated derivative
of Chitin obtained via the alkaline treatment. Both Chitin and Chitosan are biodegradable with low
toxicity and they are widely used in the biomedical and pharmaceutical industry as an ideal material
for immobilizing enzyme, creating affinity chromatography column, manufacturing wound-dressing
material, controlling drug release, etc. [43]. In the petroleum industry, there is increasing interest in
applying Chitin and Chitosan in the management of oily water and industrial pollutants, regarding
their high adsorption capacity [44]. Due to the increasing demand for Chitin, the global market size of
Chitin/Chitosan reached USD 2 billion in 2016 with a 15–20% annual growth rate. Japan and the USA
are the two biggest producers which collectively comprise two-thirds of the global yield.

Chitin is composed of β (1–4)-linked 2-acetamido-2-deoxy-β- d-glucose (N-acetylglucosamine)
and it is converted to Chitosan when more than half of the d-glucosamine is N-deacetylated (Figure 8)
with an increase in solubility in acidic solution. The MW of Chitosan is in the range of 2 × 103 to
106 Da, and the wide range brings versatile applications. For example, Tsaih and Chen observed that
Chitosan with MW less than 8.6 kDa had a better aggregation effect and lower gelation temperature in
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the pharmaceutical application [45], as the Chitosan molecules possessed a more rigid and extended
stiffness [46,47]. To obtain the required texture, the gelation of Chitosan can be triggered with both
physical and chemical cross-linking agents. Physical cross-links are formed with weak interactions such
as hydrogen and ionic bonds and the prevailing physical crosslinkers include citric acid, dextran sulfate
and phosphoric acid. Compared with physical crosslinks, chemical crosslinks lie on the covalent bonds
with stronger interaction, and chemicals such as glutaraldehyde, formaldehyde, tripolyphosphate
and polyaspartic acid sodium salt are all common crosslinking agents [48]. Chitosan is widely used
in the petroleum industry for wastewater treatment through the charge neutralization mechanism.
According to this mechanism, Chitosan possesses high charge density due to the amine group of its
structure, and these charged sites can bind anionic substrate on its surface, causing the destabilization
of the colloids of waste oil and emulsion [49].
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The production of Chitin mainly involves the removal of proteins and calcium carbonate from
shells of crustaceans. To realize it, the shells are first reacted with NaOH or KOH at 95 ◦C for 16 to 48 h
to dissolve the protein, followed by HCl treatment for 1 to 24 h to remove the calcium carbonate [78].
The isolated Chitin can be further deacetylated in 40% NaOH at 120 ◦C for 1 to 3 h to generate the
Chitosan with 70% deacetylation. The market price of Chitosan is around USD 220/kg, much higher
than cellulose and Xanthan gum due to its time-consuming and expensive purification process [50].

Modifying the MW of Chitosan is a prevailing approach to improving its rheology, gelation
and aggregation property, and the decrease in MW can be achieved through chemical, enzymatic
and mechanic methods [51]. For the chemical method, Chitosan weathers chemical degradation
with acid or alkali treatment at high temperature. Although the chemical approach is suitable for
industrial-scale production due to its high reaction intensity, precisely controlling the MW is difficult
and the product exhibits a wide distribution of MW [52]. The enzymatic degradation is realized by
hydrolyzing Chitin/Chitosan with Chitinase/Chitosanase. The high reaction selectivity is helpful
to maintain the integral structure of the product, resulting in a more homogeneous distribution of
MW. However, the enzymatic treatment is only feasible for the production in lab-scale due to its
high cost [53]. The principle of mechanical methods lies in the physical force to break the chemical
bonds between units of Chitin or Chitosan and the physical force can be generated from shearing,
ultrasonication, and micro fluidization flow [54–56]. The mechanical method is environmentally
friendly, energy effective, and effects are focused on increasing its process rate.

3. Evaluation of Biopolymer

Before utilizing biopolymers as various fluid additives in the oil field, the evaluation of their
performance is the necessary step to ensure the safety and efficiency of the treatment. The common
interesting characteristics of polymer in the petroleum recovery include viscosity, filterability,
adsorption, gelation, and stability. Since these characteristics are strongly affected by the working
condition, the evaluations are conducted in a lab with the parameters, such as flow rate, temperature,
pressure, etc., carefully controlled to mimic the working condition.
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3.1. Rheological Analysis

The rheology properties of fluids with additives are commonly evaluated with various rotational
viscometers and rheometers. During the analysis, the torques necessary to rotate the fluid with prepaid
angular velocities were recorded to reveal the relationship between the shear stress and shear rate,
based on the known dimension parameters. In practice, several mathematical models have been
developed to describe the shear stress/shear rate relationship as described below:

Bingham Plastic Model:
τ = YP + PVγ (2)

where τ is shear stress; γ is shear rate; YP is yield point (stress); PV is plastic viscosity.
Power Law Model:

τ = Kγn (3)

where K is consistent index; n is flow behavior index.
Herschel–Bulkley Model:

τ = τ0 + Kγn (4)

where τ0 is the yield stress.
Gasson Model:

√
τ = τ0 + µp

√
γ (5)

where µp is Casson plastic viscosity coefficient.
As two-parameters models, Bingham Plastic and Power Law Models are applied as simple yet

useful tools for viscosity description in the petroleum industry of the past half-century. According to
Equation (2), the shear stress of fluids exhibits a linear dependence on shear rate as it is beyond the
yield point in the Bingham Plastic Model. In contrast, the Power Law Model neglects the yield point
and reveals a non-linear behavior of shear stress with rate, which is preferred in the low-shear-rate
condition. These facile models, however, only provide a rough description of the viscosity profile.
To achieve a better delineation of the viscosity profile in petroleum recovery, the research community
has established more complex models such as Herschel–Bulkley and Gasson models, accommodating
both the existence of the yield point and the non-linearity relationship [79].

3.2. Filtration Test

The filtration test is specially designed to obtain the filtration property of polymer solutions
regarding the reservoir formation, which is a critical parameter of drilling and polymer flooding fluids.
In the drilling process, the invasion of drilling fluid into the formation is unwanted as it can cause
formation damage, as well as increase the drilling cost. In contrast, the flow of polymer solution
through the formation is necessary for the polymer flooding process. In the filtration test, the polymer
solution is filtered through filter paper at constant pressure and the filtered volume versus time is
measured [80]. Alternately, the pressure drop across the filter paper versus filtered volume is recorded
with a constant filtration rate [81]. Any increased pressure drops, or decreased filtration rates, indicate
the plugging of the filter and removal of components from the polymer solutions and the flow rate
through the cake can be expressed as:

dV f

dt
=

kA∆p
µhc

(6)

where V f t, k, A, ∆p, µ, hc are the filtrate volume, time, permeability, cross-section area, pressure drop
across the filter cake, viscosity of solution and thickness of filter cake, respectively.

3.3. Surfactant–Polymer Compatibility Test

To achieve a higher recovery rate, surfactant–polymer flooding or alkaline–surfactant–polymer
flooding is widely applied when polymer and surfactant co-exist in the aqueous phase. In that case,
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the surfactant–polymer compatibility needs to be tested to deliver the efficiency of flooding. The test is
typically conducted in glass test tubes with an aqueous solution of surfactant, and temperature, pH,
as well as the salinity, are carefully controlled at the prepared levels. The compatibility can be exhibited
if the aqueous solution remains clear and stable when the polymer is added to the solution. In contrast,
if the polymer causes a three-phase microemulsion to form a separate, polymer-rich aqueous phase,
the polymer and surfactant are considered as incompatible. In practice, co-solvents may be added to
improve the surfactant–polymer compatibility.

3.4. Core Flooding

Core flooding is a laboratory test that involves placing a core sample in a pressured cell and
injecting a fluid or a combination of fluids through the sample, aiming at evaluating the performance of
fluid flooding (Figure 9). The conditions may be either ambient temperature and low confining pressure
or high temperature and pressure of a subject reservoir. During the experiment, the core sample is
initially saturated with a combination of brine and oil to mimic the initial oil saturation condition.
Then the fluid is injected through the sample with a prepared flow rate or pressure. By monitoring the
pressures and flow rates at both ends of the core, the permeability of core and the replacement rate
of the fluid can be determined. The formation damage caused by the fluid injection, or interactions
between the fluid and the rock can also be investigated after the test or be simultaneously revealed
during the test by other measurements such as nuclear magnetic resonance (NMR).
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4. Application of Polysaccharide Biopolymer in Petroleum Recovery

The petroleum recovery process is composed of many operations including drilling, hydraulic
fracture, production, plugging, and treatment of wastewater. During these operations, biopolymer
additives are added to meet the special requirement of fluids’ rheology, compatibility, and stability.
As the reserve of conventional reservoir decreases annually, more concerns have been attracted to
exploit and extract petroleum from unconventional reservoirs, such as shale and heavy oil. In 2019,
7.7 million barrels per day of shale oil were produced from shale oil resources in the United States,
which equals 63% of total national crude oil production. Generally speaking, the oil production
from unconventional reservoirs requires more participation of (bio)polymers due to its complicated
extraction process and the increasing activity related to unconventional resources stimulates the study
of biopolymers in the petroleum industry.
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4.1. Drilling Fluid

At the first stage of the petroleum recovery, drilling means generating a pathway between the
surface to the petroleum reservoir by fracturing the rock. During the process, drilling fluid (mud) is
used to deliver the fractured debris from the drilling bite to the surface, and the mud also plays a role
in the stabilization of borehole walls by maintaining the hydrostatic pressure and sealing the well wall
to reduce the fluid loss to the formation, shown in Figure 10. Based on the composition, drilling fluid
can be classified as water-based and oil-based fluids, and the former is preferred by the industry due
to its low cost and environmental impact. A traditional water-based drill fluid contains clay (gel for
sealing), barite (weight material) and (bio)polymers with various functions. For example, Xanthan
gum is added to improve the rheological properties of drilling fluids; polyanionic cellulose (PAC),
Carboxymethyl cellulose (CMC) and starch are utilized as fluid loss control agents. The performance
of drilling fluid can be evaluated based on its rheological properties, fluid loss prevention capacity
and stability.
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4.1.1. Rheological Properties of Drilling Fluid

Viscosity is a critical parameter of drilling fluid to deliver the drilling cutting and clean the drilling
hole. A common drilling fluid has a viscosity between 5 mPa·s and 25 mPa·s, and more viscous fluid
is required for a deep drilling well. In practice, adding (bio)polymer is a prevailing approach to
increasing the viscosity of drilling fluid and the Herschel–Bulkley and Gasson models are preferred in
the delineation of viscosity profile of drilling fluid, as they accommodate both the existence of the yield
point and the non-linearity relationship [79]. Table 3 summarized examples of rheology properties of
drilling fluids with biopolymer. As shown in Table 3, the yield stress (τ0) of fluid is commonly adjusted
between 1 and 10 Pa, which needs to be high enough to carry cuttings, but not too high to generate
pump pressure for starting mudflow. The consistent index (K) and Casson plastic viscosity coefficient
(µp), both related to the shear-thinning or thickening effect, were also carefully controlled to prevent
the malfunction of drilling fluids with an inconstant shear rate.
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Table 3. The rheology properties of drilling fluids with biopolymer.

Recipe Model Parameters Ref.

Xanthan gum, starch and bactericide and
clay were 5.75, 11.5, and 1.72 g/L,

respectively, then 10 wt% clay was added.
Herschel–Bulkley

τ0: 3.78 (Pa)
K: 3.22 (Pa·s n)

n: 0.31
[83]

Scleroglucan, starch and bactericide were
5.75, 11.5, and 1.72 g/L, respectively, then

10 w/w % clay was added.
Herschel–Bulkley

τ0: 3.36 (Pa)
K: 0.79 (Pa·s n)

n: 0.72
[83]

Xanthan gum, starch, NaCl,
paraformaldehyde and clay were 0.5, 1.5,

0.75, 0.125 and 2.5 wt%, respectively.
Herschel–Bulkley

τ0: 3.88 (Pa)
K: 0.46 (Pa·s n)

n: 0.64
[84]

Cellulose nanoparticles, bentonite and
polyanionic cellulose were 3.05, 10.15,

and 0.87 g/L, respectively.
Herschel–Bulkley

τ0: 0.41 (Pa)
K: 0.44 (Pa·s n)

n: 0.53
[85]

Water contains 5 g/L of Xanthan gum. Casson τ0: 6.32 (Pa)
µp: 0.58 (10−3 mPa·s) [86]

Cellulose nanoparticles, bentonite and
polyanionic cellulose were 0.5, 4.5,

and 0.05 g/L, respectively.
Casson τ0: 3.43 (Pa)

µp: 0.13 (10−3 mPa·s) [87]

Water contains 1 g/L Lepidium perfoliatum
seed gum. Casson τ0: 10.31 (Pa)

µp: 0.23 (10−3 mPa·s) [88]

As an economic and feasible biopolymer, Xanthan gum has been widely used as an additive in
drilling fluid since the 1930s. Its high MW, strong bonding between the chain, and elastic structure
bring an excellent thickening effect and transportation capacity. By now, Xanthan gum has become the
most prevailing bio-thickening agent in drilling fluid [89]. Scleroglucan exhibits a similar thickening
effect and better stability at high salinity conditions, which make it preferred in harsh drilling
environments [83]. Besides refined biopolymer, various biopolymers in the form of raw material were
also used in drilling fluid. For example, SaharKafashi et al. succeeded in applying bagasse as one kind
of economic and feasible biopolymer, Xanthan gum has been widely used as an additive in drilling fluid
since the 1930s. Its high MW, strong bonding between the chain, and elastic structure bring an excellent
thickening effect and transportation capacity. By now, Xanthan gum has become the most prevailing
bio-thickening agent in drilling fluid [89]. Scleroglucan exhibits a similar thickening effect and better
stability at high salinity conditions, which make it preferred in harsh drilling environments [83].
Besides refined biopolymer, various biopolymers in the form of raw material were also used in drilling
fluid. For example, SaharKafashi et al. succeeded in applying bagasse as a thickening agent in
drilling fluid to increase the viscosity of fluid almost two times [90]. Taiwo also invented a recipe of
drilling fluid with cassava starches, substituting the imported expensive thickening agent, aiming
to reduce the cost [91]. The thickening effect of biopolymer is greatly influenced by environmental
parameters including temperature, pressure, ionic concentration and pH, as well as the interactions
between polymers and other components of drilling fluid such as clay, salt, bactericide, shale inhibitor,
etc. [83,92–94]. For instance, the existence of weighting material significantly increases the yield stress
and consistent index of fluid due to the aggregation between polymer and weighting material [95],
and the influence was varied based on the category of added polymer [83].

4.1.2. Fluid Loss Prevention

During the drilling process, the fluid loss occurs when fluid is invading into the formation
near the drilling well. The fluid loss is unfavorable as it increases the process cost and causes the
potential formation damage. To minimize the fluid loss, drilling fluid is expected to exhibit high
viscosity and the capacity to form a thick filter cake with low permeability. To address this concern,
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biopolymer can be helpful through four basic mechanisms that affect filtration including bridging,
bonding, deflocculation and viscosity [96]. Although Xanthan gum can increase the fluid viscosity,
the utilization of it as a filtration control agent usually failed because its chains can easily pass through
the small pores of the formation, instead of forming thick filtering cake [89]. Moreover, the later
research proved that Xanthan gum can interact with the swollen clay of the drilling fluid, resulting in a
porosity and permeability increase in filtration cake, and therefore increase the fluid loss [87]. Instead
of Xanthan gum, polyanionic cellulose (PAC), especially Carboxymethylcellulose (CMC), is a common
filtration control agent in drilling fluid. The negative molecular chain of CMC attaches the positively
charged edges of clay platelets. Therefore, CMC extends like fingers into the cake pores, increasing
the compactness and the stability of the filter cake against electrolytes disturbing and temperature
aging [97]. Based on the results of the filtration test, a 50% reduction in fluid loss can be achieved
with 10 g/L PAC in drilling fluid. Moreover, the improvement can be further enhanced by tailoring
the size distributions of PAC: reducing the size diameter from 3000 nm to 91 nm, Fereydouni et al.
realized an additional 12% reduction in fluid loss [98]. Song also indicated that small and compacted
polymer structures were more favorable for forming ideal filter cakes with low permeability, based on
his study on the nanofiber and nanocrystal of cellulose [85]. The capacity of raw agriculture residue
such as date, grass, and grass-ash, soybean isolation, rice husk, etc. as fluid loss agents are also widely
mentioned in recent studies. For example, Li et al. added soybean isolation (6 wt%) into drilling fluid
and reduced the filtration rate from 7.5 mL/s to 2.5 mL/s due to the permeability decrease in filter
cake [99]. Through another mechanism, the function of rice husk as fluid loss agents lies in its ability
to increase the thickness of filter cake [100].

4.1.3. Drilling Fluid Stability

The stability of drilling fluid is considered as another important factor to determine the efficiency
and safety of the drilling process, especially when drilling at high temperature or extreme pH is
required. At high temperature, biopolymers will weather a degradation through the thermo-oxidation
mechanism and the degradation can be accelerated with a high concentration of hydroxide. As a
result, biopolymers are not recommended as drilling fluid additive when the temperature of wellbore
is higher than 100 ◦C and the pH is higher than 8 [101]. Aiming to increase the application scope of
the biopolymer in the drilling section, recent research focuses on screening chemical additives that
help the biopolymer against harsh environments. According to the research conducted by Zou et al.,
collectively applying crosslinkers and deoxidants can improve the thermostability of Xanthan gum.
The former can limit the conformation change of polymer molecules caused by heating, and the latter
can prevent unwanted oxidation-reduction reactions. After adding borax and sodium sulfite, Xanthan
gum solution can retain 40% of its viscosity at 120 ◦C, compared with a total loss of viscosity without
treatment [102]. Formate salts, another kind of deoxidants, were also applied to inhibit the thermal
degradation of biopolymer up to 150 ◦C [103]. The improvement of thermostability was also achieved
with additional polyethylene glycol as a sacrificial scavenger, which moped up free radicals before
they could attack the biopolymer [104].

4.2. Hydraulic Fluid

To deal with low and ultra-low permeability reservoir formations, such as shale, hydraulic
fracturing along the horizontally drilled well is a well-established practice to improve the productivity.
By injecting the hydraulic fluid into the formation with high pressure (30 to 200 atm) and flow
rate (200 L/min), hydraulic fractures can be triggered and propagated, leading to a superior inflow
performance of the well mainly due to the increase in the cross-sectional area of fluid motion. The first
hydrofracturing process was conducted by Clark in the 1940s [105], and the stress on petroleum
recovery from shale in this century provides a continuous driving force for the quick development of
this process. To ensure a successful and efficient hydraulic fracturing operation, selection and screening
of the ideal hydraulic fluid are critical. At the early stage, oil-based fluids such as kerosene, crude oil,
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or gasoline were used as hydraulic fluid and fatty acids were added to increase the fluid viscosity [106].
Later, water-based fluids with biopolymer as thickening agent have replaced oil-based fluids and have
become the preferred choice for most hydraulic operations due to the concerns of process safety and
environmental regulations. Based on the various status of hydraulic fluid, the hydrofracturing process
can be divided into three stages, and the viscosity of fluid needs to be carefully controlled to meet the
different requirements on each stage.

The first stage: hydraulic fluid is pumped into the downhole with high pressure to trigger and
propagate the fractures, aiming to increase the drainage volume of the reservoir. However, the increased
drainage volume also causes a significant amount of hydraulic fluid leakage into the neighboring
formation. To minimize it, a linear polymer is added into the fluid to increase the viscosity up to
100 mPa·s.

The second stage: after the propagation, a cross-linker is pumped and mixed with hydraulic fluid
containing the linear gel, resulting in a significant increase in the viscosity of hydraulic fluid up to
1000 mPa·s. Such high viscosity is critical to the transportation and distribution of the proppants,
small and solid particles designed to keep the fracture open, through the fracture.

The third stage: at the end of hydraulic fracturing process, the hydraulic fluid quickly leaks to
the formation, releasing the pressure and allowing hydrocarbon to flow into the fractures. To realize
it, the viscosity of hydraulic fluid needs to be decreased by injecting breaker solutions. The breaker
can cause the degradation of polymer, which is essential as the remaining polymer may cause the
permeability damage of the formation.

To meet the requirements above, the ideal biopolymer additive must access versatile properties
including a proper viscosity, ability of quick and reversible crosslinking, and feasibility of controlled
degradation. In the petroleum industry, Guar gum, as well as its derivates such as Carboxymethyl
hydroxypropyl Guar (CMHPG), dominate the market due to their excellent thickening effect and
low cost.

4.2.1. Rheology Properties of Linear Biopolymer

The viscosity of hydraulic fluid containing linear biopolymer is affected by various parameters
including polymer category and concentration, shear rate, environment temperature, salinity, and pH.
While controlling the environmental factors is limited in the petroleum recovery, the manipulation of
polymer concentration can still provide enough room for obtaining the targeted viscosity [107]. Table 4
summarizes examples of the viscosity profile of biopolymer under various condition.

Table 4. The viscosity of biopolymer under various condition.

Polymer Type Concentration
(wt%)

Temperature
(◦C)

Shear Rate
(s−1)

Viscosity
(mPa·s) Ref.

Guar gum 0.24 25 511 10 [108]
0.54 25 511 42
0.95 25 511 103
0.48 25 10 250 [109]
0.48 25 100 88
0.48 25 1000 24

1 25 15 225 [110]
1 40 15 160
1 60 15 120
1 80 15 80

CMHPG 0.48 25 170 58 [111]
0.48 25 511 35

As shown in Table 4, a higher content of biopolymer commonly results in a more viscous fluid,
and the prevailing working concentration of polymer is between 0.1 and 1 wt% in hydraulic fluid.
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For Guar gum solution, one order difference of viscosity, from 10 mPa·s to 103 mPa·s, can be achieved
by elevating the content of polymer from 0.24% to 0.95 wt%. The utilization of Guar gum on high
centration may confront a dissolving difficulty due to the insoluble poly-mannose backbone of Guar.
Unwanted fisheyes, agglomerates of partially hydrated powders, may be observed in the injection well
when the Guar gum concentration is higher than 1 wt% [112]. While the Guar gum solution reveals
some kind of resistance against the effect of salinity fluctuation on viscosity, its thickening effect was
still reported to be inhibited at extremely high salinity conditions [109].

Besides polymer content, injection rate and temperature also determine the recipe of a biopolymer
solution. Compared with synthetic polymers, the poor thermostability is the most disadvantaged in
Guar gum, which makes it unsuitable at higher temperatures than 83 ◦C. Holding better thermostability,
modified Guar such as Carboxymethyl Guar gum (CMG), Carboxymethyl Hydroxypropyl Guar
(CMHPG) and cellulose-based polymers such as Carboxymethyl cellulose (CMC), Hydroxyethyl
cellulose (HEC), and Carboxymethyl hydroxyethyl cellulose (CMHEC) are alternative biopolymers
applied at high temperature [113,114]. The modification brought excellent stability that maintains the
viscosity at temperatures up to 160 ◦C [115]. However, due to the higher cost yet worse thickening
effect, utilization of these alternatives is not as economic as native Guar gum. In some cases, Guar gum
and synthetic polymer are collectively utilized to improve the performance of hydraulic fluid at high
temperature and shear rate [111,116].

4.2.2. Biopolymer Crosslinking

To improve the capacity of transporting proppants, a crosslinker is added to react with cis-OH
pairs on the galactose side chains of Guar gum, resulting in a dramatic increase in the viscosity. Borate,
Ti4+, Zr4+, and Al3+ ions are all common crosslinkers of Guar gum solution, and their application
scopes are restricted by pH, temperature, as shown in Table 5.

Table 5. The crosslinkers of Guar gum solution.

Type Form Bond pH Temperature (◦C)

Borate Borax; Boric acid Hydrogen; Ionic 8–11 38–107

Ti4+
Titanium acetylacetonate

Titanium mono-
triethanolamine chelate

Covalent bond 3–11 38–163

Zr4+ Zirconium ammonium lactate
Zirconium tetra-acetate Covalent bond 3–11 38–177

Al3+ Aluminum phosphate Covalent bond 3–5 38–94

The borate can react with the cis–OH groups of Guar gum to form inter-and intra-molecular
crosslinking with hydrogen and ionic bonds. As the degree of crosslinking is controlled by the reaction
equilibrium, the higher concentration of borate is required at low temperatures and high pH [117].
The working concentration of Borate is around 0.024–0.09 wt%, and it is not recommended at high
temperatures due to its stability. Different from Borate, the variety of organic ligands or chelating
agents containing Ti4+ and Zr4+ ions can trigger crosslinking with covalent bonding, which is more
favorable at high temperatures. At low pH, Al3+ ion is more effective than Borate and it is preferred
in acid fracturing application where CO2 compatibility is needed. However, metal crosslinkers
may cause formation damage and loss of fracture conductivity, which make them not as popular
as borate [118]. Recent research is focusing on designing novel crosslinkers with better stability
and efficiency. For example, Sun and Qu have invented the new borate crosslinkers including
thiophenediboronic acid, benzenediboronic acid, and biphenyldiboronic acid. Compared with Borax,
the novel crosslinkers can bring a higher viscosity due to their bigger molecule size [119]. Geetanjali
Chauhan also found a novel Zr-Karaya gum crosslinked gel, which can maintain the stability up to
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150 ◦C with fewer polymer residues [120]. In some cases, the delay of crosslinking is necessary to
reduce friction during the delivery. To realize it, Legemah et al. succeeded in chelating Zr4+ complexes
with a mixture of alcohol, carboxylic acid and amine functional groups [121]. Kalgaonkar and Patil also
reported that increasing the pH with adding carbonate can cause a delay of Zr4+ crosslinked gels [122].

4.2.3. Biopolymer Breaking

In the last stage of the hydraulic process, breaker is added and reacts with the polymer, reducing
the viscosity of fluid and enabling the hydrocarbon flow. Based on the mechanism, the breaker can be
categorized as enzymes and oxidizers, as shown in Table 6.

Table 6. The breakers of hydraulic fluid.

Category Form Disadvantages Advantages

Enzymes Hemicellulose Unstable when
T > 135 ◦C or pH > 10.5

Environmentally benign
Reaction specific

Effective
Leave less residue

Oxidizers Ammonium, potassium
sodium peroxydisulfate

Slow when T < 52 ◦C
Harm to equipment Tolerance of high temperature

The oxidizer defragments the polymer into shorter molecules through generating radicals from
the decomposition of persulfates, which is more effective at high temperatures. However, the generated
radicals can cause damage to the pump equipment. Compared with oxidizers, enzyme exhibits
better substrate-selectivity. The hemicelluloses can specifically cleave the ether bonds in the mannose
backbone, without the influence of the process equipment. Moreover, as one kind of catalysis,
the enzyme itself will not be consumed during the breaking process, bringing extremely high efficiency
at low cost. However, the enzyme requires a proper environment to achieve full activity and it can
totally lose its activity when the temperature is higher than 135 ◦C or pH is higher than 10.5. Screening
enzymes with higher thermo-stability [123] and immobilizing enzymes with nanoparticles to help
against harming the environment [124] are promising approaches to enlarging the application of
enzyme as breakers. After the breaking treatment, some residues of polymer retain in the fracture,
causing formation damage. Regarding that, the enzyme is preferred to oxidizer as it can provide a
more homogeneous breaking, leaving less residue [125]. Using modified gums, such as CMHPG and
HPG, are another way to prevent formation damage as they only leave 2–4% of residues, much fewer
than native Guar gum (6–10%).

4.3. Enhance Oil Recovery

The pressure of the reservoir decreases gradually with the progress of oil production and finally
fails to drive more oil to the production well. To continue the production, water is injected into the
formation from the injection well, building up the pressure of the reservoir and maintaining the oil
flow. However, the performance of water flooding is deleteriously affected by viscous fingering,
which happens with an unstable displacement of a more viscous fluid by a less viscous fluid (shown in
Figure 11). The severity of viscous fingering is highly related to the mobility ratio (M), which is
given by:

M =
kw/µw

ko/µo
(7)

where kw and ko are the permeability of water and oil, respectively; µw and µo are the viscosity of water
and oil, respectively.
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According to empirical data, the injected water tends to bypass oil and an early breakthrough
is expected when the mobility ratio is greater than one, resulting in an unfavorable water flooding.
The correlation between mobility ratio and area sweep efficiency, the fraction of the pattern area from
which the reservoir fluid is displaced by the injected phase at the time of breakthrough, is shown
in Figure 12.
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In most water flooding cases, the mobility ratio should have a value equal to or less than 10 and
it can be reduced by increasing the water viscosity by adding polymers. The early pioneering work
on polymer flooding can be tracked as early as 1960 with Pye and Sandiford [126,127]. The first large
commercial application of polymer flooding was conducted in the United States in the 1970s, but the
number of projects abruptly decreased in the 1980s due to the low oil prices. Interestingly, the polymer
flooding has regained the attention of the oil fields around the world, especially China, since the 1990s.
For example, the polymer flooding in the Shengli and Daqing oilfields of China increased the oil
recovery rate by 6 to 12%, contributing to 250,000 barrels per day in 2004 [128].

As the polymer flooding may continue for years, the long-time interaction between the polymer
and reservoir makes the screening and optimizing of polymer recipe extremely critical and complicated.
To achieve successful polymer flooding, the operator faces a series of challenges such as polymer
viscosity manipulation, formation damage, flooding compatibility, and polymer stability.
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4.3.1. Rheology Properties of Polymer Flooding Solution

The most imperative property of polymer solution is its ability to generate viscosity at a minimum
concentration. Typical polymers for water flooding include synthetic polymers such as partially
hydrolyzed polyacrylamide (HPAM), and various biopolymer such as Xanthan gum, Scleroglucan,
cellulose and Carboxymethyl cellulose (CMC) and their rheology parameters of the power–law model
were shown in Table 7.

Table 7. Rheology parameters of biopolymers and HPAM.

Polymer Type Concentration (%) n K (m Pa·s n) Ref.

HPAM 1 0.28 1080 [129]
2 0.26 2050
5 0.25 5770

Xanthan gum 0.5 0.58 1190 [130]
1 0.65 3163
2 0.71 6526

Scleroglucan 0.5 0.49 55 [19]
1 0.31 272
2 0.20 1073

CMC 1 0.95 50 [131]
2 0.85 450
4 0.61 830

The biopolymers exhibit the same order of thickening effect as HPAM and the desired viscosity
can be achieved by applying various concentrations. Among them, Xanthan gum possesses the highest
thickening effect, making it the preferred polymer for the operation. Interestingly, all the polymers
hold a shear-thinning behavior [132–134] as the apparent viscosity decreases with the elevated shear
rate, and the severity of the behavior defines the flow behavior index (n). Actually, the shear-thinning
behavior is favored in polymer flooding. When the polymer is injected through the well, the high
shear rate thins the viscosity, reducing the pressure for pumping. In contrast, when the polymer
solution contacts the formation, the decreased shear rate results in higher viscosity, benefiting the oil
displacement. Besides allowing an increase in the viscosity, the ideal biopolymer should also be in
abundance, feasible, degradable and environmentally friendly [135]. Aiming to reduce the cost, several
raw biopolymers such as Okra [136], Gum Arabic, Exudate gum [137], Irvingia gabonensis [138],
Kidney beans [139], etc., were investigated on their thickening effect.

4.3.2. Filtration Properties

During the polymer flooding, filtration tests are designed to evaluate the pretreatment of polymers
to prevent the injection well plugging and formation damage [140]. The plugging is due to the
ineffective hydration of polymer caused by the poor agitation and slower addition rate, and the
formation damage is caused by cellular debris or crosslinking of polymers catalyzed by the impurities
in the polymer or in the makeup water. During the filtration tests, the filtration rate must be carefully
controlled to mimic the injection rate as the deformed microgels may pass filtration tests but still cause
the plugging problem later due to the lower shear rate in the real process [141]. Filtration tests also
provide information about potential gelation issues triggered by the environmental factors and the
necessity of controlling water quality. For example, Philips et al. applied the filtration tests to check
the tolerance of high-pyruvate Xanthan to various ions and found the presence of ferric ion caused
severe filterability deterioration [142].
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4.3.3. Polymer Flooding Compatibility

The performance of polymer flooding heavily depends on its compatibility on the oil viscosity,
reservoir mineralogy, permeability, presence of clay, etc. According to the research conducted by
Jewett and Schurz, biopolymer flooding commonly has promising results with an oil viscosity less
than 126 mPa·s [143]. Moreover, the blending of Xanthan gum and polyacrylamide solution was
used to deal with more viscous oil with a viscosity of up to 200 mPa·s. However, for viscous oil,
the working concentration of polymer is extremely high, bringing expensive operation costs and
high risk of failure [144]. The sandstone reservoirs are better candidates for polymer flooding than
carbonate reservoirs, which lie in the fact that calcium ion of carbonate can increase the polymer
adsorption on the formation, thereby reducing the effectiveness of flooding [145]. Based on the data of
46 polymer flooding projects, most of the 40 successful cases are sandstone reservoirs [146]. Du and
Guan claimed that the polymer flooding was not recommended for the reservoir with permeability
lower than 0.05 µm2 [147]. According to their observation, the injection of polymer solution under low
permeability required an expensive pressure control and the high shear rate also damages the polymer
viscosity due to both the shear-thinning phenomenon and polymer degradation. The presence of
clay in the reservoir also deteriorates the performance of flooding as it may swell after contacting the
injection fluid, resulting in a reduction in permeability.

Surfactant compatibility is another concern on designing polymer flooding, as polymer flooding
is widely integrated with surfactant flooding to achieve better recovery rate. The combined effect
of chemical and polymer flooding on oil recovery can be evaluated with the capillary number (Nca),
which is given by:

Nca =
µwνw

σow
(8)

where µw is the viscosity of water phase, νw is the volumetric fluid flux of water phase, and σow is the
oil–water interfacial tension.

According to an empirical formula, a 1000-fold increase in the capillary number is expected to
generate a reliable enhanced oil recovery process [148]. The polymer and surfactant bring a synergic
effect as the former increase µw and the latter reduces the σow. However, an improper mixing of
polymer and surfactant could cause surfactant polymer incompatibility (SPI), which depends upon
several factors such as the nature of head group of surfactant and the polar groups of polymer, as well
as the polymer hydrophobicity [149]. SPI is detrimental to the efficiency of the oil recovery process as it
causes the phase separation of surfactant and polymer molecules, increasing the surfactant loss due to
colloidal aggregation and formation surface adsorption [148]. To avoid that, the polymer and surfactant
screening needs to be conducted with various salinity to obtain a clear and stable aqueous solution.

4.3.4. Polymer Flooding Stability

Various factors include salinity, temperature, shear rate, biodegradation and polymer retaining,
which collectively affect the viscosity of polymer solution during the months, and even years, of water
flooding. Compared with HPAM, biopolymers exhibit a higher tolerance of salinity, and additional
chemicals can further improve their stability against salinity. For instance, Lachke found that the
viscosity of low concentration Xanthan solution was stimulated by an additional 0.1% sodium or
potassium chloride, as the ions can help polymer form a compact coiled structure with intermolecular
association [150]. However, Xanthan solution is not stable at high salinity and loses 20–50% of viscosity
in 20% salinity brine in days [151]. Temperature is another factor that affects the stability of biopolymer.
Due to its strong intermolecular associations, Xanthan gum solution is believed to be stable at the
temperature up to 80 ◦C. Alquraishi conducted the long-term stability study of Xanthan gum and
found it can retain 50% of viscosity at 80 ◦C for more than five years [151]. The decrease in viscosity
occurs when its double helix structure converts to a disordered coil, which happens extremely quickly
at a temperature higher than 100 ◦C [152]. Interestingly, proper salt concentration can improve
the thermostability of Xanthan. The absorption of salt ions on the polymer surface brings charges
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to the polymer, resulting in a repel force between molecules and inhibiting the structure collapse.
Lund et al. reported Xanthan kept most of the viscosity at 90 ◦C with an additional 50 g/L NaCl [153].
When the polymer flooding is unavoidable at high temperatures and salinity, diutan and Scleroglucan
are better candidates based on their supreme stability. For example, at 130 ◦C and 223 g/L salinity,
injection of diutan gum solution realized a 19.34% oil recovery, compared with 14.15% of Xanthan
gum flooding [154]. Quadri et al. also reported Scleroglucan can keep its entire viscosity at 135 ◦C
and 220 g/L salinity over eight months [155]. The oxygen and bacterium fed on biopolymer are
all unfavorable agents that affect the performance of flooding. The oxygen generates the hydroxyl
radical (OH·) with the reaction of Fe2+, which can remove the acetate group in polymers and cause the
degradation of polymers [101]. The growth of bacterium is also believed to cause both the degradation
of polymers and unexpectable bio-plugging and formation damage. To address that, 25 to 100 ppm of
formaldehyde is recommended to inhibit the growth of microbiology [156].

Besides degradation, the loss of biopolymer during the displacement is another aspect of
polymer stability. The mechanisms of the loss include surface adsorption and mechanical entrapment.
The surface adsorption is governed by the fluid pH and formation mineralogy. When the pH of fluid
is below the isoelectric point of the mineral, a positive charge is expected on the surface of the rock,
resulting in a high level of adsorption of anionic polymers. By controlling the fluid pH, the polymer
adsorption can be less than 1 mg/g rock and the pH manipulation of flooding targeted to sandstone
and carbonate reservoirs are different due to their varied isoelectric point (4.73 for kaolinite and 8.2 for
limestone) [157]. Mechanical entrapment occurs when large molecules of the polymer are trapped in
narrow flow channels, which can be reduced by utilizing biopolymer with smaller molecules.

4.4. Bio-Plugging

The initial application of biopolymer plugging was to deal with soil remediation. By the
introduction of biopolymers as plugging agents, a large range of impervious barriers can be constructed
to prevent the migration of environmental contaminations [158]. Biopolymers were also observed
to react with soil particles to form cross-linking interpenetrating networks that can encapsulate the
contaminants [159]. Inspiring from this concept, the plugging effect of polymer in petroleum production
has been widely investigated since the 1990s [160–162]. The reservoir is comprised of several formation
layers with various permeability, and the performance of water flooding is strongly affected by the
permeability heterogeneity. When the layers are highly heterogenous in permeability, the injected
water tends to flow only through the high-permeability “thief” zones, therefore failing to recover the
oil that remains in the low-permeability zones [163]. To deal with it, the permeability of “thief” zones
needs to be reduced to increase the water replacement in the low-permeability zones and the approach
can be realized by using (bio)polymer gels, which is shown in Figure 13. Through accumulating in
the microchannel of the formation, polymer plugs the pores of formation, reducing the permeability
dramatically. The permeability reduction should be phase selective and water-based polymers reduce
the water permeability more than the oil permeability. Based on the source of biopolymers, the plugging
can be categorized as polymer-based and microbial-based.

4.4.1. Gelled Biopolymer

Injecting linear polymer solution with crosslinker is a simple yet effective way to reduce the
permeability of layers. By controlling the concentrations of polymer and crosslinker precisely,
the gelation of biopolymer occurs. The gelled biopolymer can be deliberately triggered and accumulated
in the target location with minimized friction during transportation. The Xanthan gum with Cr3+

system has been extensively applied in the plugging process due to its cost and efficiency [162].
The performance is highly affected by swelling and syneresis phenomenon. The former means
the Xanthan can significantly increase its volume by absorbing water, and the latter describes the
phenomenon that the swelled gel decreases its volume due to aging or continued crosslinking,
resulting in a higher crosslink level and stiffness of the gel. As governed by chemical equilibrium [164],
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the severity of swelling and syneresis can be controlled by manipulating the concentration of crosslinker.
For instance, Eggert et al. observed a 45% volume increase in Xanthan gel with 25 ppm of Cr3+,
but a 68% volume decrease with 200 ppm of Cr3+. He also claimed that Xanthan gel should be
controlled between 45% of swelling and 71% syneresis in order to achieve the best plugging effect
and long-term stability [162]. The concentration of crosslinker was also believed to affect the selective
penetration of biopolymer in the formation as weak gel commonly exhibited low retention and high
mobility [165]. Besides the delayed gelation systems, pre-gels were also investigated on their plugging
effect. Khachatoorian et al. studied the effect of various pre-gelled biopolymer on the permeability of
sand park and reported decreases of 74.8%, 99.78%, 96.3%, 92.3% and 96.5% of permeability with 1 g/L
of Xanthan gum, polyhydroxy butyrate, Guar gum, polyglutamic acid and Chitosan, respectively [166].
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4.4.2. Microbial Plugging

Due to the low cost, microbial plugging has been proposed as an economic method to manipulate
the permeability. Through injecting nutrients, the bacterium can grow and block the pores of formation,
resulting in a reduction in permeability. The reduction is selective to the thief zone as the growth
rate of bacterium is higher there because of the sufficient nutrient supply. Both the applications of
exogenous and indigenous bacterium species have been reported, and each species has its own optimal
growth condition. Exhibiting a better plugging effect, exogenous species are preferred in the microbial
plugging once the reservoir temperature fits its growth. In contrast, when the temperature is not
suitable for exogenous species, injecting substrate to stimulate the indigenous targeted bacteria may
also be helpful [167]. Microbial plugging has been successfully reported around the world. To reduce
the unwanted water production during oil recovery, Reksidler et al. injected the microorganism as a
slug, followed by 16-months of nutrient/electron acceptor injection. After the treatment, 4 out of 6 of the
wells’ productions were improved and the reductions in water flow were between 10% and 60% [168].
In Daqing oilfield of North China, Le et al. conducted 518 wells of microbial huff-and-puff plugging
and realized a cumulative oil increment of 1.2 × 105 tons from 1998 to 2012 [169]. The plugging agent
produced by bacterium includes bio-gel, biomass, biofilm, spore, or a combination, as shown in Table 8.

Before the field application, the performance of microbial plugging needs to be evaluated at the
lab-scale to determine the best process strategy. The microbiology is cultured in the flask bottles at the
reservoir temperature, and the growth of bacterium, as well as the production of the plugging agent,
with various nutrition concentration is recorded and compared to determine the nutrition recipe. Then,
the microbial plugging is conducted in a reservoir core or artificial micromodel to predict its effect of
permeability reducing. Once the lab-scale results are promising, a single-well field test is executed,
followed by a large-scale field application.
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Table 8. Examples of permeability manipulation with microbial plugging.

Microbial Species Plugging Agents Results Ref.

Leuconostoc mesenteroides Bacterial dextran

Permeability decreased from
4.08 µm2 to 0.17µm2 and a 36.7%

improvement of the oil recovery in
lab scale

[170]

Bacillus licheniformis
BNP29

Biomass, Extracellular
polymer

A 9.3–22.1% additional recovery of
the residual oil after water flooding [171]

Enterobacter sp. CJF002 Insoluble biopolymer A 260% increase in oil production in
field test [172]

B. licheniformis 421 Spore

Additional 1.0–2.3% and 6.9–8.8%
oil recovery in homogenous and

heterogeneous reservoir chalk
cores, respectively

[173]

Pseudomonas sp. Exopolysaccharides,
biofilm

A more than 99% decrease in
core permeability [174]

Bacillus licheniformis TT33 Biofilm, Biopolymer A 20–30% additional oil recovery in
a sand pack column [175]

B3 bacterium isolated
from reservoirs of
Carmopólis field

Biopolymer A 20% additional oil recovery in the
laboratory test [176]

Shewanella oneidensis
MR-1 Biofilm

A 7.1% additional oil recovery after
water flooding in

microfluidic channels
[177]

Acinetobacter RAG-1 Biofilm
A 18% additional oil recovery after a

41% oil recovery from water
flooding in micromodel

[178]

4.5. Wastewater Treatment

Oily water is considered as one of the serious public concerns during petroleum recovery due
to its high volumes and toxic nature to the environment. Most countries have established strict
regulations about the release of oily water and the discharge limit of oily wastewater is around
15–50 mg/L [179]. The oil is normally in the emulsified form, which makes the traditional phase
separation method ineffective. Several advanced methods including liquid extraction, adsorption,
hydrocyclones, air flotation, gravitational separators and filtration have been developed to deal with
oily water [180]. Among these methods, the biopolymer-based approach attracts wide attention due to
its reduced environmental impact. Chitosan and Guar gum are the main kinds of biopolymer dealing
with oily water through adsorption and flocculation mechanism. Adsorption occurs when the oil
passes through a microcrystalline or resinous of the polymer, remaining fixed at these sites due to
the action of physical or chemical forces. As a partially deacetylated derivative, the amine groups of
Chitosan have a high potential for adsorbing oil due to their high positive charge density. Ahmad
and Sumathi achieved a 97–99% removal rate of oil from 2000 mg/L oily water in 5 min with 0.5 g/L
of Chitosan and the performance was affected by the mixing rate, solution pH and sedimentation
time [181]. Dai et al. applied a Guar gum coated stainless steel mesh for oil and water separation
and got separate efficiency as high as 99.6% in a water flux of 2850 Lm−2h−1 [182]. To improve the
adsorption capacity, the biopolymer can integrate with polar materials. For example, Wiltonet al.
coated the biopolymer on the surface of polypropylene foam and exhibited a 94% removal of heavy
hydrocarbon in a half-hour [183]. Flocculation occurs when the interaction of oil and polymer causes
the aggregation of oil, and the charge neutralization is the main driving force [184]. Flocculation
usually follows the adsorption process, making the removal easier and more effective. Paixão and
Balaban designed a Guar gum-based approach to dealing with oily water: the oil was first adsorbed
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by the Guar gum, and then salt was added to trigger the flocculation. After the treatment, the oil
concentration was reduced from 500 ppm to 11 ppm [185]. The synergy effect of biopolymer and
surfactant on oil removal was also investigated by Calderón et al. In his work, sodium dodecyl sulfate
(SDS) was added to surround the oil droplets, conferring negative charge, and bringing the binds
between SDS and the polymer in the form of aggregates. The flocculation occurred in 3 h, resulting in
very low turbidity values and a total hydrocarbon removal of 98.61% [186].

5. Conclusions

As the oil and gas will still be the dominant form of energy to support the development of the
society, realizing an efficient and environmentally friendly petroleum recovery process is always a
long-term goal of scientists and engineers. To address that, applying biopolymer as various fluid
additives is helpful as it can improve the oil recovery, as well as reduce the cost of drilling, hydrofracking,
and wastewater treatment. Compared with synthetic polymers, biopolymer exhibits more efficiency at
a lower cost. However, the performance of biopolymer is strongly affected by the geological conditions
and operation process. To deliver a successful biopolymer treatment, the recipe of biopolymer needs
to be developed based on the special requirement of petroleum operation. As the functions of these
biomacromolecules lie in their molecular conformations, characterizing and therefore modifying their
structure is a promising approach to improving their thickening, crosslinking, and adsorption effects.
Moreover, with the development of the modern fermentation process and biotechnology, the production
cost of biopolymer is expected to decrease, increasing the economic feasibility of biopolymer in the
petroleum recovery process.
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