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Abstract

From multiple raster datasets to spatial association patterns, the data-mining technique is

divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and

spatial pattern exploration from the mining results. Comparison with the former two subtasks

reveals that the latter remains unresolved. Confronted with the interrelated marine environ-

mental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Pat-

terns with multiple raster datasets called TAXMarSP, which includes two models. One is the

Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighbor-

hood-based CAlculation Model (SNCAM). TCOM designs the “Spatial node!Pattern node”

from top to bottom layers to store the table-formatted frequent patterns. Together with

TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-

matching degree between the specified marine parameters and the table-formatted frequent

patterns and then explores the marine spatial patterns. Using the prevalent quantification

Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014,

a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is

described, and the obtained marine spatial patterns present not only the well-known but

also new patterns to Earth scientists.

1. Introduction

Marine spatial pattern represents abnormal variations in one to several marine environmental

parameters, e.g., sea-surface temperature (SST), sea-surface chlorophyll-a (Chl-a), sea-surface

precipitation (SSP), and sea level anomaly (SLA), that occur or co-occur in a specified spatial

region. Marine spatial patterns have become a hot issue in global climate changes [1] and play an

important role in finding a regional essential climate variable [2,3]. An abnormal variation means

a variation relative to an averaged status during a specified long-term series, e.g., monthly, sea-

sonal, and annual abnormal variations. Long-term remote sensing images constitute the main

source of continuous and consistent information about Earth’s land and oceans and offer new

opportunities to improve our understanding of these marine spatial patterns on a large scale
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[4,5]. As an inductive method, spatiotemporal data mining shows more promise for discovering

spatial patterns among multiple geographic parameters than the traditional statistical analysis [6–

8], especially with the remote sensing images in recent decades [3,9,10].

Frequent pattern mining is a promising step to generate meaningful association knowledge,

and this step accounts for most of the tasks in the mining process. Thus, the present study uses

frequent pattern mining to replace the whole mining process to analyze the exploration from

table-formatted patterns to spatial ones. From the raster datasets generated from remote sens-

ing products to the marine spatial pattern generated from data mining, the whole mining pro-

cess can be divided into three subtasks. The first task preprocesses the remote sensing images

to construct the mining transaction table. The second task designs the mining algorithms to

determine the table-formatted frequent patterns. The third task obtains marine spatial patterns

from the table-formatted frequent patterns of all grid pixels. Regarding the first and second

subtasks, many technologies were developed in the past few decades through extensive studies

on their frameworks [3,11–14] and algorithms [15–17]. However, insufficient work has been

done on the exploration of the spatial association patterns resulting from raster datasets.

Therefore, a large opportunity is open to design more efficient strategies to obtain the spatial

association patterns compared with the image pretreatment and mining algorithm [18].

To obtain the marine spatial patterns from table-formatted frequent patterns, an efficient

structure is needed for storing and representing these table-formatted patterns. The present

work intends to enhance this study. To date, traditional methods that deal with these patterns

have been roughly divided into several types: textual descriptions and table-based views, scatter

and parallel coordinate plots [19,20], mosaic and its variants [21], matrix representation [22],

and graph-based views [23]. These techniques visualize all mined frequent patterns in a single

view and struggle to deal with complex data and large collections of frequent patterns [18]. In

addition, such techniques have only focused on a single-grid pixel and did not consider geos-

patial relationships. For this purpose, Bertolotto et al. (2007) and Compieta et al. (2007) inte-

grated components from Google Earth and Java3D to visualize data, geographical parameters,

and association patterns with multiple panels, i.e., antecedent, consequent, association-rule-

extraction, and other panels [24,25].

Actually, the frequent patterns that arise from remote sensing datasets are complicated, i.e.,

each grid pixel may have several patterns, and each pattern may involve several geographical

parameters. These complicated patterns require sophisticated organization model. Our previ-

ous work designed an interactive framework with three complementary components, namely,

three-dimensional pie charts, two-dimensional variation maps, and triple-layer mosaics, to

visualize marine association patterns [26]. Because only a few geographical parameters were

involved in the data-mining model, implementing the three complementary visualization

components was easy. Once the association patterns involve a large number of geographical

parameters, vividly and intuitively visualizing many groups of triple-layer mosaics in the tri-

ple-layer mosaic component will not be very easy. In the recursive “Dimension–Attributes”

visualization framework [11], a group of spatial thematic maps were used to display the associ-

ation patterns with multiple marine parameters. Because only the association patterns with

maximum confidence are considered, the other association patterns in the same grid pixel are

lost.

Previous studies were not effective in extracting frequent patterns from sensing images that

have multiple patterns in a pixel. To resolve the grid pixel with both several frequent patterns

and multiple marine parameters, we propose a novel Tree-based Approach for eXploring

Marine Spatial Patterns with multiple raster datasets called TAXMarSP. TAXMarSP consists

of two models to effectively extract frequent patterns from sensing images with multiple pat-

terns in one pixel. One is the Tree-based Cascading Organization Model (TCOM), which
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stores the table-formatted frequent patterns, and the other is the Spatial Neighborhood-based

CAlculation Model (SNCAM), which explores marine spatial patterns from table-formatted

ones by calculating the pattern matching degree between the specified marine parameters and

frequent patterns. The remainder of this paper is organized as follows. Section 2 discusses the

scientific problems of exploring marine spatial patterns from table-formatted frequent patterns

resulting from multiple raster datasets and then proposes an analysis framework for resolving

such problems. Section 3 presents the TCOM for storing table-formatted frequent patterns,

and Section 4 presents the SNCAM for exploring marine spatial patterns from table-formatted

patterns by calculating the pattern match degrees. A case study on exploring marine spatial

patterns in the Pacific Ocean is described in Section 5, whereas Section 6 presents our discus-

sion and conclusions.

2. Framework for exploring marine spatial patterns from the table-

formatted frequent patterns mined with raster datasets

2.1. Problems

In a raster format, each grid pixel has several frequent patterns that link the marine environ-

mental parameters. Each frequent pattern in a specified grid pixel involves several marine

parameters, and each of them possesses quantification levels, which represent their variation

degrees. In other words, each grid pixel has three meanings, namely, pattern, parameter, and

variation information.

Fig 1 shows the problems of exploring marine association patterns resulting from remote

sensing images among multiple marine parameters, and each marine parameter is ranked into

five quantification levels. The mining algorithm is based on the MIQarma [17], and the marine

environmental parameters include monthly SST anomaly (SSTA), Chl-a anomaly (CHLA),

Fig 1. Description of the association patterns resulting from raster datasets.

https://doi.org/10.1371/journal.pone.0177438.g001
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SSP anomaly (SSPA), SLA anomaly (SLAA), U-component sea-surface wind, V-component

sea-surface wind, and one of the signals of global change, i.e., the El Niño Southern Oscillation

(ENSO) phenomenon. The five levels are -2, -1, 0, +1, and +2, indicating severe negative, slight

negative, zero, slight positive, and severe positive changes, respectively. Fig 1(A) and 1(B)

show the number of association patterns and the number of involved marine parameters in

the northwestern Pacific Ocean. Fig 1(C) and 1(D) show the detailed association patterns in

the specified grid pixels, i.e. (1˚N,173˚E) and (2˚N,173˚E). Fig 1 shows that in the equator

region, the number of association patterns is more than five, and the involved parameters are

not less than three. Furthermore, most of the association patterns in the adjacent grid pixels

are similar. Thus, two challenges exist for exploring the marine spatial patterns from the raster

datasets. One is to retrieve any frequent pattern with each parameter and with each level at the

grid pixel locations. The other challenge is to explore the spatial patterns from the table-for-

matted frequent ones.

2.2. Exploration framework for spatial frequent pattern

For the first challenge, we need an organization model to simultaneously store the spatial loca-

tion, parameters, and variation information. For the second one, we need a calculation model

to deal with the similar patterns in the adjacent grid pixels. Thus, from the table-formatted fre-

quent patterns to the marine spatial patterns with multiple raster datasets, this paper proposes

an exploration framework, which includes four counterparts, i.e., input table-formatted fre-

quent patterns, TCOM, SNCAM, and a case study in the Pacific Ocean. Fig 2 shows this explo-

ration framework.

Fig 2. Framework of exploring marine spatial patterns from table-formatted frequent patterns.

https://doi.org/10.1371/journal.pone.0177438.g002
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The input table-formatted frequent patterns are mined using existing algorithms, e.g.,

quantitative Apriori [27] and MIQarma [17]. After being satisfied with the user-specified

thresholds, i.e., the minimum support and minimum confidence, such patterns are approved

to be meaningful. TCOM designs the cascading structure with “Spatial node!Pattern node”

to store the table-formatted frequent patterns. This structure not only helps retrieve the infor-

mation of space, parameters, and variation in grid pixels but also supports SNCAM. SNCAM

explores the marine spatial patterns by considering the contributions of the spatial neighbor-

hoods. Meanwhile, the case study of marine spatial patterns in the Pacific Ocean proves the

effectiveness and efficiency of our proposed framework.

3. TCOM

Because a grid pixel is uniform in representing spatial information, TCOM considers it as a

root node, the one-dimensional frequent patterns as the second-layer node, the two-dimen-

sional frequent patterns as the third-layer nodes, and so on. All layer nodes are denoted as pat-

tern nodes. A TCOM with “Spatial node!Pattern node” is shown in Fig 3.

The spatial node stores the spatial information of frequent patterns in a form of (row, col),
which has one-to-one correspondence with the row and column of the remote sensing image.

Each spatial node has zero to m pattern nodes sorted in alphabetical order from left to right

when m is not larger than the number of evolved marine parameters. Each pattern node has

Fig 3. Structure of TCOM.

https://doi.org/10.1371/journal.pone.0177438.g003
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two leaves. From left to right, the two leaves store the variation type that represents the varia-

tion degree and a support that represents the occurrence probability of this frequent pattern.

According to the frequent m patterns, the pattern nodes are classified into m layers. From top

to bottom, one- to m-dimensional pattern nodes exist. The one-dimensional pattern node has

zero to m pattern nodes, the two-dimensional pattern node has zero to m-1 pattern nodes, and

so on. In this structure, we can easily obtain the spatial information and parameters of the fre-

quent patterns.

Given a specified spatial location (row, col), the detailed steps to construct the pattern node

are described as follows:

Step 1: Construct the one-dimensional pattern nodes

For all one-dimensional frequent patterns, extract their parameters, variation types, and

supports. Sort their parameters in an increasing alphabetical order, and store them from left to

right as one-dimensional pattern nodes. For each pattern node, first, determine its parameter

and then the corresponding variation type and support. Finally store them from left to right as

node leaves.

Step 2: Construct the (m + 1)-dimensional pattern nodes from the m-dimensional ones

(where m is not less than one).

The pseudo-codes are based on one property, i.e., antimonotonicity, which means that all

nonempty subsets of a frequent pattern must also be frequent, as proven in Ref. [28]. The con-

struction process is described in Algorithm 1 with the pseudo-codes.
Algorithm1. An algorithmof constructingtree nodes
Algorithmname:ConstructingTreeNodesAlgorithm
Algorithmdescription:Constructthe (m+1)-dimensionalpatternnodes

from 2 m-dimensionalones (m is not less than one).
Inputparameters:m-dimensionalpatternnodes,i.e.,m-N, frequent(m+1)

patterns,i.e., (m+1)-F.
Outputparameters:(m+1)-dimensionalpatternnodesi.e.,(m+1)-N.
ConstructingTreeNodesAlgorithm(m-N),(m+1)-F,(m+1)-N)
FOR each frequent(m+1)-pattern(m+1)-f,(m+1)-f2(m+1)-F
Extractits parametersand reorganizethem into a set in the form (A1[k1]

A2[k2]. . .Am[km]Am+1[km+1]), which is sortedin an increasingalphabetical
order

Extractthe nodesfrom left to rightside one by one at the m-dimensional
patternnode layer,denotedas (Node1, Node2, . . ., NodeN), NODEN is the total
numberof frequentm-patterns

FOR the ith node in NODE,denotedas ith-Node,ith-Node2NODE, wherei is
not less than one and not greaterthan N

Find the parentnodesof ith-Nodestep by step from (m-1)-dimensional
patternnode layerto the one-dimensionalnode layer and reorganizethem
into a set in the form of (Node1 Node2. . . Nodem)

IF (Node1Node2. . . Nodem) is a subsetof (A1[k1]A2[k2]. . .Am[km] Am+1[km+1])
Calculatetheirdifferenceset, one item,denotedas Node, by Node =

(A1[k1]A2[k2]. . .Am[km]Am+1[km+1]) -(Node1Node2. . . Nodem)
Node is takenas a new node, Nodem+1, at the m-dimensionalpatternnode

layer,and the tree (Node1!Node2!. . .!Nodem) is appended,forminga new tree
with (Node1!Node2!. . .!Nodem!Nodem+1)

Updatethe tree
Break

ELSE
i = i+1

END IF
END FOR

END FOR
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Line 182 is a discriminant criterion to determine where to add a new node. If it is true, a

new node is appended and forms a new tree with (Node1!Node2!. . .!Nodem!Nodem+1)

(Lines 183–188). Then, the next frequent (m+1) pattern is completed (go to Line 172). If not,

the process goes to Line 191, and the next node in NODE will be completed. From Lines 177

to 193, a loop is completed until the frequent (m+1) patterns are appended into the tree. Lines

172–194 are repeated to go through all frequent (m+1) patterns.

To clearly show the process of constructing the TCOM, we provide an example based on

the simulated data.

Example 1: We provide a specified spatial location (row, col), which has six marine parame-

ters (A1,A2,. . .,A6) with quantitative changes during a time series of 10 timestamps. The quan-

titative data are listed in Table 1. The +1, 0, and −1 marine parameters mean positive, zero,

and negative changes, respectively.

To simplify the process flow, the support threshold is set to 30%, and the frequent patterns

are listed in Tables 2–4. According to the Algorithm 1, the frequent pattern tree is shown in

Fig 4, and the detailed steps in constructing this tree are described as follows:

Step 1: Take the spatial node (row, col) as a root node.

Step 2: According to the number of frequent one-dimensional patterns in Table 2, design

eight pattern nodes, which store parameter names A1, A1, A2, A3, A4, A5, A6, and A6 from left

to right.

Step 3: For each pattern node, design its two leaves, which store the parameter variation

type and support from left to right.

Step 4: Organize the one-dimensional pattern nodes into a new set from left to right and

denote as NODE, i.e., A1[+1]A1[–1]A2[–1]A3[+1]A4[–1]A5[+1]A6[+1]A6[–1]. Within NODE,

a parameter and its variation type form its element, i.e., node. Eight nodes exist.

Table 1. Quantitative data in the database for Example 1.

A1 A2 A3 A4 A5 A6

0 +1 -1 +1 0 -1 +1

1 -1 0 +1 0 +1 +1

2 -1 +1 0 -1 0 0

3 +1 -1 +1 -1 +1 0

4 -1 -1 +1 0 0 +1

5 +1 -1 -1 +1 +1 -1

6 +1 0 +1 0 +1 -1

7 0 -1 -1 -1 0 0

8 +1 -1 0 0 +1 0

9 0 -1 +1 -1 0 -1

https://doi.org/10.1371/journal.pone.0177438.t001

Table 2. Frequent one-dimensional patterns from Table 1.

Pattern Support (%)

0 A1[+1] 50

1 A1[–1] 30

2 A2[–1] 70

3 A3[+1] 60

4 A4[–1] 40

5 A5[+1] 50

6 A6[+1] 30

7 A6[–1] 30

https://doi.org/10.1371/journal.pone.0177438.t002
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Step 5: For each frequent two-dimensional pattern listed in Table 3, extract its parameters

and its variation types, reorganize them into a new set in an increasing alphabetical order, and

denote them as AppendingPattern, e.g., the first frequent two-dimensional pattern is A1[+1]

A2[–1].

Step 6: For each node in NODE, find its parent pattern nodes one by one from the top to

the bottom layers and reorganize these nodes into a new set, denoted as RawPattern. Because

the one-dimensional pattern node has no parent nodes, the new set represents itself, e.g., the

new set of the first node in NODE is A1[+1].

Step 7: Go through all RawPatterns until RawPattern is found, which is a subset of Appen-
dingPattern. Then, calculate their difference set, which is one parameter, e.g., the difference set

between the first frequent two-dimensional pattern and the first node in NODE is A2[–1],

denoted as a new node. Append RawPattern to the new node and form a new tree, i.e., A1[+1]

! A2[–1]. Then, update it.

Step 8: Repeat Steps 5 to 7 until all frequent two-dimensional patterns are appended.

Step 9: Perform similar operation as in Step 4 to reorganize the two-dimensional pattern

nodes into a new NODE, i.e., A2[–1] A3[+1] A5[+1] A3[+1] A4[–1] A5[+1] A5[+1]A6[+1].

Step 10: Perform similar operations as in Steps 5 to 8 to construct the three-dimensional

pattern nodes.

Among the above steps, Steps 1–3 construct the one-dimensional pattern nodes, Steps 4–8

construct the two-dimensional ones, and Steps 9 and 10 construct the three-dimensional ones.

4. SNCAM

According to Tobler’s First Law of Geography, all frequent patterns on a geographic surface

are related to one another, but the closer patterns are more strongly related than the more dis-

tant ones [29]. In other words, frequent pattern mining from raster datasets tends to appear in

spatial clusters. Thus, we design SNCAM to explore the spatial pattern.

Considering the challenges associated with simultaneously analyzing complicated frequent

patterns at the same location, first, we determine which parameters are of interest. Then, we

transform such patterns into a series of frequent patterns with the given parameters. Finally,

we use the spatial thematic map to represent them. The choice of which parameters to analyze

depends on the interests of the user.

Table 3. Frequent two-dimensional patterns from Table 1.

Pattern Support (%)

0 A1[+1]A2[–1] 40

1 A1[+1]A3[+1] 30

2 A1[+1]A5[+1] 30

3 A2[–1]A3[+1] 40

4 A2[–1]A4[–1] 30

5 A2[–1]A5[+1] 30

6 A3[+1]A5[+1] 30

7 A3[+1]A6[+1] 30

https://doi.org/10.1371/journal.pone.0177438.t003

Table 4. Frequent two-dimensional pattern from Table 1.

Pattern Support (%)

0 A1[+1]A2[–1]A5[+1] 30

https://doi.org/10.1371/journal.pone.0177438.t004
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To calculate the spatial Pattern Matching Degree (PMD), SNCAM embeds the contribu-

tions of the spatial neighborhoods. Fig 5 shows the workflow of SNCAM for a given spatial

location, (row, col) and the marine parameters of interests.

In Fig 5, the frequent patterns at pixel (row, col) are denoted as FPs, whereas those of the

spatial neighborhoods are denoted as NFPs. Given (A1,A2,. . ., Am) as the user frequent pat-

terns of interest at the m-dimensional pattern node, if the FPs at (row, col) do not contain (A1,

A2,. . ., Am), the pixel (row, col) value is assigned a value of zero. If the FPs contain (A1,A2,. . .,

Am), the m-dimensional frequent pattern (A1[k1]A2[k2]. . . Am[km]) is denoted as m-p, and the

following steps should be carried out to assign the pixel (row, col) value.

Step 1: Determine the spatial neighborhood window size of the pixel (row, col) in both

directions, known as w. For each neighborhood, calculate its PMD to m-p using Eqs (1) to (3).

Eq (3) is a recursive function.

ZPMDði; jÞ < m � p;NFPs >¼

XK

k¼1

ZPMDði; jÞ < m � p;NFPs½k� >

K
ð1Þ

ZPMDði; jÞ < m � p; FAPs½k� >¼

1:0 m � p 2 NFPs½k�

� 1:0 m � p0 2 NFPs½k�

Xs¼m

s¼1

f ðsthðm � 1Þ � pÞ

m
others

; ð2Þ

8
>>>>>>>><

>>>>>>>>:

f ðsthðm � rÞ � pÞ

¼

1:0 ðm � rÞ � p 2 NFPs½k�

� 1:0 ðm � rÞ � p0 2 NFPs½k�

0 ðm � rÞ � p=2NFPs½k�&m � r ¼ 1

Xs¼m� r

s¼1

f ðsthðm � r � 1Þ � pÞ

m � r
ðm � rÞ � p=2NFPs½k�&m � r 6¼ 1

; ð3Þ

8
>>>>>>>>><

>>>>>>>>>:

Fig 4. Tree-based cascading organization of Example 1.

https://doi.org/10.1371/journal.pone.0177438.g004
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where NFPs represent the frequent pattern of a spatial neighborhood at pixel (i,j) and i and j
represent the row and column, respectively, in a spatial neighborhood. NFPs[k] is the kth fre-

quent pattern of NFPs, K is the total number of frequent patterns, m−p is the m-dimensional

pattern to be matched, m−p’ is the anti-pattern of m−p, and (m−r)−p is a one (m-r)-dimen-

sional sub-pattern of m−p. Considering pixel (row,col) as the center and row−w/2 � i� row +

Fig 5. Workflow of SNCAM.

https://doi.org/10.1371/journal.pone.0177438.g005
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w/2 and col−w/2� j� col + w/2, we learn that m−p 2NFPs[k] means that m−p belongs to

NFPs[k], and m−p’ 2NFPs[k] means that the anti-pattern of m−p belongs to NFPs[k].

Example 2: Given pixel (row, col), one of its matched frequent pattern is A1[+1]A2[+1],

denoted as m−p. The PMDs from its spatial neighborhoods with a 3 × 3 window size are listed

in Table 5, where the frequent patterns of the spatial neighborhoods are denoted as NFPs.

Step 2: Calculate the neighborhood contributions to m−p using Eq (4) according to the spa-

tial neighborhood PMDs.

CNghðrow; colÞ ¼

Xw� 1

i¼0

Xw� 1

j¼0
ZPMDði; jÞ � 1

w� w � 1
ð4Þ

Step 3: Assign the pixel (row, col) value according to the inequality in (5); if (5) is true, the

pixel value is set to A1[k1]A2[k1]. . . Am[km]. Otherwise, the value is zero.

CNgh > tc; ð5Þ

where τc is the contribution threshold.

5. Case study—Marine spatial patterns in the Pacific Ocean

Our study was conducted on long-term marine remote sensing products, including SST, Chl-

a, SSP, and SLA. Multiple ENSO index (MEI) was used to identify the ENSO events. The

Pacific Ocean from 100˚E to 60˚W and 50˚S to 50˚N, where it is sensitive to global climate

change and regional sea–air interactions and is responsible for marine variations, was consid-

ered as a case study, as shown in Fig 6. Table 6 lists the summary of the used datasets. SST was

obtained from (http://www.esrl.noaa.gov/psd/) and provided by NOAA/OAR/ESRL Physical

Sciences Division [30]. Chl-a was obtained from the SeaWiFS and MODIS projects, including

their level-3 standard mapped images [31]. SSP was obtained from Version 7 of the Tropical

Rainfall Measuring Mission (TRMM Product 3B43), provided by the Goddard Distributed

Active Archive Center (GES DISC DAAC). SLA was produced by Ssalto/Duacs and distributed

by AVISO with the support of Cnes (http://www.aviso.oceanobs.com/duacs). The ENSO index

was obtained from (http://www.esrl.noaa.gov/psd/enso/mei/) and provided by NOAA-ESRL

Physical Sciences Division [32].

Table 5. PMDs from the spatial neighborhoods to the central pixel.

Spatial

location

NFPs ηPMD Description

1 (row− 1, col− 1) A1[+1]A2[+1] 1.0 m−p 2 NFPs

2 (row− 1, col) A1[+1]A2[+1]

A3[+1]

1.0 m−p 2 NFPs

3 (row− 1, col+1) A1[+1] 0.5 One subset of m−p belongs to NFPs

4 (row, col− 1) A2[+1] 0.5 One subset of m−p belongs to NFPs

5 (row, col+1) A1[+1]A2[−1] 0 One subset of m−p belongs to NFPs, and one anti-subset belongs to NFPs

6 (row+1, col− 1) A1[−1]A2[−1] −1.0 Anti-pattern of m−p belongs to NFPs

7 (row+1,col) A2[−1] −0.5 One anti-subset belongs to NFPs

8 (row+1, col+1) A1[+1]A2[−1],

A1[+1]A3[−1]

0.25 The matched degree of the first pattern is zero, and the second is 0.5. From Eq (1), the total matched

degree is (0+0.5)/2.

https://doi.org/10.1371/journal.pone.0177438.t005

An approach for exploring marine spatial patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0177438 May 16, 2017 11 / 19

http://www.esrl.noaa.gov/psd/
http://www.aviso.oceanobs.com/duacs
http://www.esrl.noaa.gov/psd/enso/mei/
https://doi.org/10.1371/journal.pone.0177438.t005
https://doi.org/10.1371/journal.pone.0177438


5.1. Data pretreatment and frequent pattern discovery

To obtain uniform datasets from the raster datasets with the same spatial and temporal resolu-

tions, the analysis period from January 1998 to December 2014 was selected. The monthly

anomalies of the research area elements with a spatial resolution of 1˚ in the grid projection

and with a time resolution of one month were calculated to remove the seasonal effects. The

resulting anomalies were SSTA, SLAA, SSPA and CHLA, and the datasets are S1 Dataset, S2

Dataset, S3 Dataset and S4 Dataset, respectively. Thus, 100 × 200 grid pixels with 204 time

series were quantified, yielding a total of 100 × 200 × 204 records with five parameters each

(i.e., SSTA, CHLA, SSPA, SLAA, and MEI).

A combination of the mean and 1.0 standard deviation of the time series of each grid pixel

was used to quantify the marine environmental parameters at each time interval into three lev-

els. The value is defined as one when it is at a time interval greater than the mean plus 1.0 stan-

dard deviation. The value is defined as -1, when it is less than the mean less 1.0 standard

deviation. The remaining value is defined as zero. The −1, 0, or +1 value indicates negative,

Fig 6. Research area. The background colors show the yearly averaged SST from 1998 to 2014.

https://doi.org/10.1371/journal.pone.0177438.g006

Table 6. Sources and resolutions of the raster datasets and MEI used in this study.

Product Source Timespan Temporal resolution Spatial coverage Spatial resolution

1 SST NOAA/PSD 1981.12–2014.12 Monthly Global 1˚ × 1˚

2 Chl-a SeaWiFS 1997.09–2010.11 Monthly Global 9 × 9 km

MODIS 2002.07–2014.12 Monthly Global 9 × 9 km

3 SSP TRMM 1998.01–2014.12 Monthly Global 0.25˚ × 0.25˚

4 SLA AVISO 1993.01–2014.12 Monthly Global 0.25˚ × 0.25˚

5 ENSO MEI 1950.01–2014.12 Monthly - -

https://doi.org/10.1371/journal.pone.0177438.t006
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zero, or positive change, respectively. MEI was quantified in the same manner, and −1, 0, and

+1 indicate a La Niña event, neutral condition, and El Niño event, respectively. Using this algo-

rithm, we have obtained ENSO events similar to those in Refs. [8], [33], and [34]. This is the

core idea of the quantitative Apriori derived from the previous Apriori algorithm, which has

been widely used in the data-mining domain. After many experiments and comparisons, the

optimal support threshold was set to 10.0% [17], and the quantitative Apriori algorithm was

used to discover the frequent patterns of each grid pixel one by one. The total number of

mined frequent patterns is 14326, and S1 Table lists the frequent patterns of the grid pixel (0,

174˚E) and its eight-neighborhood patterns. S1 Table lists too much information about the

association patterns among two and more marine environmental parameters, and finding the

spatial information where the specified marine environments interact as listed in S1 Table is

very difficult, e.g., where the marine environments respond when a La Niña event occurs or

where an abnormal increase in SSTA indicates the occurrence of a La Niña event, and so on.

Thus, TCOM was used to store these table-formatted frequent patterns, whereas SNCAM was

used to extract the spatial frequent patterns. In SNCAM, τc was set to zero, meaning that at

least half of the neighborhoods contribute to the center pixel, i.e., the center pixel is ensured to

be not an isolated noise.

5.2. Marine spatial patterns in the Pacific Ocean

With 10.0% support threshold, the marine spatial patterns indicate that the probability is not less

than 10.0% when abnormal variations in one or several marine environmental parameters in a

specified spatial region occur or co-occur. In other words, these abnormal variations in a speci-

fied spatial region last for at least 20.4 months. From the table-formatted patterns to the spatial

patterns, spatial neighborhood window size w was set to 3 pixels (i.e., the latitude and longitude

spatial ranges are 3˚), and the spatial neighborhood contribution threshold was set to zero,

meaning that at least half of the neighborhoods that contribute to the pattern must be matched.

To illustrate the feasibility of our proposed method, a series of two-dimensional thematic

maps was used to map the frequent spatial patterns. Because the same spatial region may have

directly opposite characteristics, i.e., abnormal increase and decrease variations, from the

table-formatted patterns to the spatial ones, the marine parameters of interest with a quantita-

tive level should be given first. Using SNCAM, 10 frequent one-dimensional spatial patterns

are obtained. They are El Niño/La Niña events (ENSO with +1/-1 level), SSTA abnormal

increase/decrease (SSTA with +1/-1 level), SLAA abnormal increase/decrease (SLAA with +1/-

1 level), SSPA abnormal increase/decrease (SSPA with +1/-1 level), and CHLA abnormal

increase/decrease (CHLA with +1/-1 level), as shown in Fig 7.

ENSO is a dominant climate signal, which is a cycle of the alternating warm El Niño and

cold La Niña. The relationships between ENSO and the marine environments comprise a very

complicated and interrelated system [1]. Thus, we consider the La Niña event as a parameter

of interest to obtain the marine spatial patterns with frequent two- and three-dimensional pat-

terns. Based on SNCAM, we obtain three frequent two-dimensional spatial patterns. They are

SSTA, SSPA, and SLAA during a La Niña event, as shown in Fig 8. In addition, we obtain one

frequent three-dimensional spatial pattern among the SSTA, SSPA, and a La Niña event, as

shown in Fig 9.

Fig 7 shows that directly opposite variations exist in the western and eastern Pacific Ocean.

In other words, these regions are sensitive not only to El Niño and La Niña events but also to

abnormal increase and decrease in the marine environmental parameters. In such regions,

analyzing the spatial relationships using the traditional methods becomes challenging. Using

TCOM and SNCAM, we can obtain the spatial relationship of one geographical parameter
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(Fig 7). We can also obtain the spatial patterns among several parameters (Figs 8 and 9). In

addition, some of the obtained spatial patterns are well known to Earth scientists whereas oth-

ers are not. For example, when La Niña events occur, the westward North Equatorial Current,

Fig 7. Spatial distribution of frequent one-dimensional patterns. (a) El Niño event. (b) La Niña event. (c)

Abnormal increase in SSTA. (d) Abnormal decrease in SSTA. (e) Abnormal increase in SSPA. (f) Abnormal

decrease in SSPA. (g) Abnormal increase in SLAA. (h) Abnormal decrease in SLAA. (i) Abnormal increase in

CHLA. (j) Abnormal decrease in CHLA.

https://doi.org/10.1371/journal.pone.0177438.g007
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South Equatorial Current, and eastward Equatorial Counter Current result in the decrease in

the SSTA in the central and eastern Pacific Ocean and increase in the western Pacific Ocean,

as shown in Fig 8(A). The increasing warm water in the western Pacific Ocean depresses the

water mass transport, resulting in westward accumulation. Therefore, the SLA in the western

Fig 8. Spatial distribution of frequent two-dimensional patterns with La Niña events. (a) SSTA

abnormal variations. (b) SSPA abnormal variations. (c) SLAA abnormal variations.

https://doi.org/10.1371/journal.pone.0177438.g008
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Pacific Ocean increases, whereas that in the eastern Pacific Ocean decreases [Fig 8(C)]. Under

the force of the trade winds and the Walker circulation, the rainfall shifts westward, and the

SSPA in the middle of the tropical Pacific Ocean abnormally decreases [35] [Fig 8(B)]. How-

ever, further study is needed to determine the physical mechanisms behind the abnormal

decrease in the SSTA along the California coast, the abnormal increase in the SSTA in the

northern subtropical Pacific Ocean [Fig 8(A)], and the co-variations in the decrease in SSTA

and SSPA (Fig 9).

6. Conclusions

To address the great challenges of dealing with table-formatted frequent patterns resulting

from rule mining using multiple long-term raster datasets, we have proposed an original

approach to explore marine spatial patterns named TAXMarSP. TAXMarSP includes two

models, i.e., TCOM and SNCAM. TCOM stores the table-formatted frequent pattern and sup-

ports spatial information extraction, whereas SNCAM explores the spatial information from

the pixel-based frequent patterns. A real dataset coming from multiple remote sensing prod-

ucts was used to explore marine spatial patterns in the Pacific Ocean. Among these marine

spatial patterns, some are well known to Earth scientists, whereas the others are new patterns.

In summary, the main contributions of our algorithm and study are the following:

1. TAXMarSP linked the table-formatted frequent patterns to spatial information, which

improved the capacities of dealing with multiple long-term raster datasets.

2. Using the “Spatial node!Pattern node,” TCOM simultaneously stored the spatial location,

parameters, and variation degree of the frequent patterns. The spatial node layer helped

Fig 9. Spatial distribution among SSTA, SSPA, and a La Niña event.

https://doi.org/10.1371/journal.pone.0177438.g009

An approach for exploring marine spatial patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0177438 May 16, 2017 16 / 19

https://doi.org/10.1371/journal.pone.0177438.g009
https://doi.org/10.1371/journal.pone.0177438


obtain the spatial location, whereas the pattern node layers (from bottom to top) helped

obtain any dimensional frequent patterns.

3. SNCAM considered the contributions from spatial neighborhoods when exploring the spa-

tial patterns. Using spatial neighborhoods, the pseudo-frequent patterns were removed.

4. A case study within the Pacific Ocean using SSTA, SLAA, SSPA, CHLA, and MEI was con-

ducted, and the obtained marine spatial patterns were not only well known but also were

new to Earth scientists.
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