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A B S T R A C T   

In this paper, the limb of a goat is chosen as the research object, and according to mammalian 
anatomy, a bionic model called the quasi inverted pendulum with “J” curve spring (QIPJCS) 
model with nonlinear stiffness is built, and the equations of motion are derived. Based on these 
equations, the advantages of the QIPJCS model are illustrated from the aspect of the stable motion 
region by the SFA (step-to-fall analysis) numerical simulation method. These results are compared 
with the traditional SLIP model. Furthermore, the ARM (Apex-Return-Map) of this model is built, 
and the fixed points are analyzed. Finally, according to the locomotion law of goats running with 
gallop gaits and the analysis of the dead-point support effect, the dynamic motion mechanism of 
goat limbs is elucidated, and the equivalent mechanism model is built. Based on the mechanism, 
the dynamic mechanical analysis indicates that the joint driving torque can be minimized to 
conserve energy by optimizing the landing angle. The running mechanism research of quadruped 
mammals, which is based on the novel bionic stiffness model, provides theoretical support for the 
design of high-performance mechanical legs and the motion control of bionic robots.   

1. Introduction 

A great variety of 1.2–1.5 million species exist in the natural world. In the long term, these animals have made great contributions 
to the study of the natural universal truth for humans. Among these animals, mammals have attracted extensive attention from 
scholars in various disciplines due to their greater similarity with humans in physiological structure. Moreover, in the field of robotics, 
legged mammals provide rich templates for the development of legged robots. Changes in the physiological structure and motion 
characteristics of animals after continuous evolution are related to their living environments. The locomotion of most terrestrial 
mammals is dependent on limbs, which mainly include quadrupedal and bipedal movement. On the basis of the different living en
vironments, species with larger limbs, such as ruminants, generally achieve faster running speeds. Correspondingly, species with 
smaller limbs, such as rodents, achieve more flexible motion ability in narrow spaces. Therefore, different animals exhibit different 
movement patterns according to their own structural characteristics and their living environments. 

The coordinated function of the animal skeletal system and muscle system is conducive to the movement processes of animals. 
Moreover, different systems play different roles: the skeletal system, which consists of different types of bones and their articulations, 
confers basic functions such as organ protection and body support; the muscle system mainly serves a driving and controlling role 
during movement to accomplish a series of gaits. For different quadruped mammals, the modes of motion, such as walking and 
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running, are similar. In addition, quadruped animals can realize locomotion by jumping, and the energy efficiency of jumping is higher 
than that of other gaits [1]. 

Currently, great progress has been made in the research field of legged robots through the tireless efforts of worldwide scholars. 
Various biomimetic legged robots have been developed and employed in various fields, such as emergency rescue, military trans
portation and entertainment services [2–5]. Even so, the locomotion performance of animals is still far superior to the locomotion 
performance of the corresponding biomimetic legged robots: for example, the high-speed running of the cheetah [6], the stable 
jumping of the kangaroo [7], the flexible climbing of the goat [8], etc., cannot be perfectly realized by corresponding biomimetic 
robots at the present stage. For instance, the first generation of Cheetah quadruped robots [9–14], which was developed by MIT, 
achieves a maximum running speed of 6 m/s; however, the maximum running speed of the bionic template, acinonyx jubatus, is 29 
m/s [15]. Moreover, these remarkable locomotion abilities of animals are closely related to the stiffness characteristics of their limbs 
[16]. Hence, in the research of the mechanical leg stiffness design of legged robots, the stiffness characteristics of animal limbs provide 
important reference templates for design. In this paper, according to the physiological structure and locomotion characteristics of large 
quadruped mammals, the bionics mechanism is analyzed, and the corresponding bionic mapping model is built. Based on this model, 
the locomotion performance is studied through simulation analysis. This model can be employed as a template to guide the design of 
biomimetic mechanical legs for legged robots. Finally, the internal running mechanism of animal dynamic motion is analyzed by 
combining the bionic model with natural gait. 

This paper is structured as follows. The QIPJCS model based on biological leg stiffness is introduced in Section 2: this section 
includes the locomotion characteristic analysis, which is based on the quadruped mammal anatomy, the construction of the bionic 
mapping model and the derivation of the dynamic equation of this model. In Section 3, we compare the locomotion performance of the 
QIPJCS model with that of the classical SLIP model by using numerical simulation analysis in the ideal and completely passive 
locomotion states. The stable motion region analysis is simulated by utilizing the SFA method. Moreover, the ARM of the QIPJCS model 
is built, and the fixed point, which can also influence the dynamic performance of the model, is analyzed. In Section 4, the equivalent 
mechanism sketch with sequential changes in goat dynamic motion is constructed by combination with the dead-point support effect of 
animal limbs in the process of galloping. In addition, the equation of joint torque optimization with landing angle adjustment is 
completed based on the mechanics performance analysis. Section 5 concludes this paper. 

2. Equivalent QIPJCS model of a goat limb 

Currently, relevant scholars have carried out related research on the mechanism of model stiffness acting on locomotion perfor
mance. The spring-loaded inverted pendulum (SLIP) model [17] and two-segment leg (TSL) model [18] are mainly employed in this 
research. Meanwhile, many submodels are derived from the application of these two models, such as the D-SLIP model [19], TSLIP 
model [20], and three-segment leg model [21]. However, considering that the flexible structure in the SLIP model is a spring with 
linear stiffness and is a linear stiffness joint in the TSL model, the biological limb stiffness is determined by a complex tension system 
composed of muscles, tendons, ligaments and bones and exhibits an obvious nonlinearity. Therefore, we will draw on the classical 
model describing the locomotion and the simplification of the complex tension system as a reference. Subsequently, we start with the 
stiffness of the flexible biological limb system and then combine it with a rigid system such as the skeleton. Finally, the biomimetic 
stiffness foundation model, which is more in line with the locomotion characteristics of biological limbs, is built. 

Fig. 1. The skeletal structure changes of goat forelimb in the foot-ground contact process.  
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2.1. QIPJCS modeling 

Among the large quadruped mammals, most genera of ruminants possess good mobility (such as Cervidae) or high load capacity 
(such as Bovidae). Moreover, goats are quadruped mammals that live in the mountains [22]; not only does this species possess the 
ability for fast locomotion in flat areas, but goats can also flexibly climb in rugged areas. During the climbing process, the limbs are 
stressed by a greater support force from the ground. Hence, considering both the mobility and load capacity, goats are an ideal study 
subject for this research. 

First, we can learn about the basic composition of goat limb bones from the goat anatomy [23]. This skeletal structure can be 
combined with the limb pose in the foot-ground contact process when the goat moves on the horizontal plane; then, the corresponding 
locomotion model of the goat skeletal system is built. Moreover, during the locomotion process, the key frame is extracted. Finally, the 
change law of the forelimb skeletal structure of large quadruped mammals such as goats in the foot-ground contact process can be 
obtained as shown in Fig. 1. 

The skeletal structure morphology changes of the goat forelimb in the foot-ground contact process analysis are presented as follows. 
The foot-ground contact process of the forelimb can be divided into two parts: the touch-support process and the support-pedal process. 
The dividing line between these two processes is the plumb line, which passes through the foothold. The support state of a single limb 
in the locomotion process is similar to the dead-point support effect of the static support process [24]. For the limb mechanics analysis 
of large quadruped mammals with static standing, the scholars of Beihang University present the theory of the dead-point support 
effect, which reveals that the best support line or the best support posture under the dead-point support effect is the most comfortable 
state when the animal stands still. When the limb is in the state of dead-point support, the energy consumption by the musculature is 
minimal. Meanwhile, the sum of joint torques in joints is also the minimum. In this case, the burden upon the muscles can be reduced, 
which is beneficial for improving the load capacity of animals. 

In general, before the animal foot touches the ground, the elbow joint and wrist joint have already rotated and established the 
radius and metacarpals in a straight line as far as possible. This state is similar to the morphology of the elbow joint and wrist joint 
under a static dead-point support state. Moreover, this state remains mostly unchanged during the entire foot-ground contact process. 
A small extension motion exists in the metacarpophalangeal joint during the touch-support process. When the metacarpophalangeal 
joint reaches the limit, this joint can cooperate with the elbow joint and wrist joint to convert the torque of the joint into the structural 
movement of the skeleton. During the touch-support process, the shoulder joint exhibits a flexion motion in addition to the swinging 
limb motion to realize the pose of the support state and minimize the shoulder joint torque. However, during the support-pedal process, 
the shoulder joint and the metacarpophalangeal joint exhibit an extension motion and a flexion motion, respectively. These motions 
can realize the swing of a single limb and increase the reactive force from the ground. 

Therefore, during the foot-ground contact process, the elbow joint, wrist joint and metacarpophalangeal joint can maintain the 
state of dead-point support most of the time. As a consequence, the torque of the joint and energy consumption in locomotion can be 
reduced. In contrast, the swing amplitude of the shoulder joint is relatively large, and muscles, tendons, etc., in this joint serve the main 
roles in buffering and energy storage. 

According to the analysis of animal physiological structure and the locomotion law mentioned above, the angle change of each joint 
below the elbow joint is small during the foot-ground contact process, and a dead-point support effect exists in this part of the limb. 
This can be explained by the rigid model of the inverted pendulum. Furthermore, flexible structures such as muscles, tendons, etc., 
exist in animal limbs, and these parts act as a means of buffering and storing energy in the process of animal locomotion. This can be 

Fig. 2. Construction of the QIPJCS model.  
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explained by the flexible spring-mass model. Moreover, because the angle change of the shoulder joint is relatively large during the 
locomotion process, the muscles, tendons, etc., of the shoulder joint play leading roles in buffering and energy storage. Hence, a 
flexible structure that is similar to the spring exists between the body and limbs. Hence, we can draw on the experiences of animal 
walking with an inverted pendulum model and running with a spring-mass model [25] and then combine them with the flexible 
structure in the shoulder. We can build a motion model that is similar to the SLIP model, as shown in Fig. 2. 

Similar to the SLIP model, the whole mass can be equivalent to a mass point at the top of the model. However, the multistage limb 
structure of animals in this model is not simply equivalent to a linear compression spring such as the SLIP model. Here, the multistage 
limb structure is equivalent to a structure that is composed of a nonlinear compression spring and a massless rigid link. We define this 
model as the QIPJCS (Quasi Inverted Pendulum with “J” Curve Spring) model. 

For the nonlinear compression spring in the QIPJCS model, first, according to the extensive study of the characteristics of muscle 
stiffness and tendon stiffness of animal limbs from related scholars in the field of biology, such as the research of Couppe et al. on the 
human patellar tendon [26] and the research of Lichtwark et al. on horse pennate muscle [27], we draw the conclusion that most 
stiffness characteristics of soft tissues, such as muscles and tendons, can be described by a curve shaped like a “J”. On this basis, Jutte 
et al. designed a nonlinear spring corresponding to this “J” curve stiffness [28]. As shown in Table 1, the five feature points describing 
the “J” curve spring are given. The elastic element of the QIPJCS model proposed above utilizes this nonlinear spring with “J” curve 
stiffness. 

Based on this method, we can employ the five feature points of Table 1 to construct the F − ΔlJ equation with the characteristics of 
the “J” curve. Combined with curvilinear interpolation, this equation can be defined as follows: 

F
(
ΔlJ)= a0 + a1ΔlJ + a2

(
ΔlJ)2

+ a3
(
ΔlJ)3

+ a4
(
ΔlJ)4

, (1) 

Then, based on Equation (1) and Table 1, an equation set with five unknown coefficients is built. By solving this equation set, the 
F − ΔlJ equation can be further expressed as: 

F
(
ΔlJ)=

4Fmax

25lmax
ΔlJ −

11Fmax

25(lmax)
2

(
ΔlJ)2

+
48Fmax

25(lmax)
3

(
ΔlJ)3

−
16Fmax

25(lmax)
4

(
ΔlJ)4

, (2)  

where lmax is the maximum stretch length of the “J” curve stiffness spring and Fmax is the corresponding force of lmax. 
Obviously, once the maximum stretch length lmax and the corresponding force Fmax are determined, the stiffness characteristic of the 

“J” curve spring can also be determined. 
According to the literature [29], in general, 10 % compression of the initial limb length is a typical value in the case of animal 

running. Hence, the force F in limbs can be normalized: 

Fnorm =
F

F10%
, (3)  

where F10% is the force of the spring at 10 % compression. 
A relevant biological study indicated that the maximum compression of animal limb muscle rarely exceeds 30 % of its initial length, 

even in high-speed running [25]. Hence, during the motion process, the maximum spring compression of the QIPJCS model can be set 
as 30 % of the rest spring length. Then, the variation in the spring should be normalized as well: 

lJ
norm =

ΔlJ

lJ
0
× 100%, (4)  

where lJ0 is the rest length of the spring. 
Based on Equations (2)–(4), the normalized force-length curves of the classical SLIP model and QIPJCS model are compared, as 

shown in Fig. 3. 

2.2. The dynamics of the QIPJCS model 

First, two hypotheses are proposed.  

1. No relative movement exists between the foot and the ground (no slip occurs) during the whole foot-ground contact process. The 
kinematic constraint can be considered an ideal fixed hinge.  

2. The collision is completely elastic at the moment of the foot touching the ground, and no damping exists in this spring (there is no 
energy loss). System energy is conserved in periodic locomotion. 

Table 1 
Five characteristic points of "J" curve spring.  

ΔlJ 0 % 25 % 50 % 75 % 100 % 
F 0 % 4 % 17 % 48 % 100 %  
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As in the classical SLIP model, the locomotion process can be divided into two parts: flight phase and stance phase. The dynamic 
equation of the QIPJCS model in the flight phase is the same as that of the SLIP model: 

{
ẍ = 0
ÿ = − g , (5) 

Then, the mathematical expression with the closed form is: 
⎧
⎨

⎩

x(t) = x(0) + ẋ(0)t

y(t) = y(0) + ẏ(0)t −
1
2

gt2
, (6)  

In the stance phase, as shown in Fig. 4, the Lagrange function can be represented as follows: 

L=
1
2

m
(
ṡ2 + s2θ̇

2)
− mgs cos θ − Vspr, (7)  

L=
1
2

m
(

l̇
J 2
+
(

lJ 2
+ j2 + 2lJ j

)
θ̇

2
)
− mglJ cos θ − mgj cos θ − Vspr, (8)  

where m is the mass, s is the length of the rigid link and spring, θ is the angle between the rigid link and the normal of horizontal 
ground, Vspr is the elastic potential energy of the spring, lJ is the length of the spring, and j is the length of the rigid link. 

The dynamic equation of the QIPJCS model in the stance phase can be represented as follows: 

Fig. 3. The normalized force–length curves of the SLIP model and QIPJCS model.  

Fig. 4. The stance phase of the QIPJCS model.  
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⎧
⎪⎨

⎪⎩

ml̈
J
− m

(
lJ + j

)
θ̇

2
+ mg cos θ + f

(
ΔlJ) = 0

d
dt

(
m
(

lJ 2
+ j2 + 2lJ j

)
θ̇
)
− mg

(
lJ + j

)
sin θ = 0

. (9) 

Substituting Equation (2) into the first equation of Equation (9): 

ml̈
J
+mgcosθ − m

(
lJ + j

)
θ̇

2
+

(
4Fmax

25lmax
ΔlJ −

11Fmax

25(lmax)
2

(
ΔlJ)2

+
48Fmax

25(lmax)
3

(
ΔlJ)3

−
16Fmax

25(lmax)
4

(
ΔlJ)4

)

= 0. (10) 

According to Equation (10), its expression form is characterized by a more complex nonintegrable term (lJ +j)θ̇2 compared with the 
SLIP model. This leads to the result that the exact analytic solution does not exist and the mathematical expression is more complex as 
well. 

Hence, considering the difficulty of utilizing the direct analytical method to solve the dynamic equation of the model, we employ 
the numerical simulation analysis method to address this issue. 

3. Numerical simulation analysis of the QIPJCS model 

3.1. SFA (step-to-fall analysis) numerical simulation analysis 

For the stability of SLIP model, a large number of researchers have conducted related research works. The step-to-fall analysis (SFA) 
method was first presented by Seyfarth et al. in the literature [30]: this method is an effective numerical simulation method that aims at 

Fig. 5. The stable motion regions of the QIPJCS model (left column) and SLIP model (right column) for different given initial apex velocities (v = 5 
m/s, v = 15 m/s, v = 30 m/s) with respect to allocation of the values of the landing angle (αTD) and dimensionless reference stiffness (k̃10%). 
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the case of a complex analytical expression of dynamics. Wróblewska et al. presented an analytical approximation of a reduced 
mapping which can be able to explicitly control the error of the approximation [31,32]. For the SFA method of classic SLIP model, the 
parameter set of {k,αTD, Esys,m, lS0} can determine the dynamics system. k is the stiffness coefficient of the linear spring, αTD is the 
landing angle, Esys is the energy of the system, m is the mass of the system, and lS0 is the rest length of the linear spring. Moreover, Esys is 
only related to the initial velocity at the apex (v) and initial height of the apex (ya). Hence, the parameter set can be indicated as {k,αTD,

v,ya,m, lS0}. In general, m, lS0 and ya are set to constant for convenient discussion. Therefore, the SFA method is a solution based on the 
different allocations of set {k,αTD, v} and calculates the gait cycle number N, which can satisfy completely passive and stable jumping 
motion. Three cases may occur during the motion process. To prevent infinite loops and excessively long simulation time, the gait cycle 
number of the simulation should be less than a threshold Nmax. In this paper, Nmax = 50. 

Similar to the parameter set of the SLIP model, the dynamics system of the QIPJCS model can be determined by a parameter set as 
well. In particular, compared with k of the linear spring, the stiffness coefficient of the “J” curve spring is determined by Equation (2). 

Thus far, the constant parameters of the SLIP and QIPJCS models can be given.  

(1) Mass of system: m = 80kg;  
(2) The rest length of the linear spring in the SLIP model is lS0 = 1m, the rest length of the “J” curve spring in the QIPJCS model is 

lJ0 = 0.5m and the length of the rigid link in the QIPJCS model is j = 0.5m;  
(3) The initial apex height: ya = 1m. 

For the convenience of discussion, the stiffness coefficients of the SLIP and QIPJCS models should be nondimensionalized. Based on 
the literature [18], the concept of dimensionless reference stiffness is utilized: 

Fig. 6. The stable motion regions of the QIPJCS model (left column) and SLIP model (right column) for different given dimensionless reference 
stiffness values (k̃10% = 15, k̃10% = 25, k̃10% = 35) with allocation of the values of the landing angle (αTD) and initial apex velocity (v). 
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k̃10% =
k10%l0

mg
, (11)  

where k10% is the reference stiffness, which corresponds to the case of 10 % compression of the rest spring length. 
Hence, the allocation of set {k,αTD, v} can be equivalent to that of set {k̃10%,αTD,v}. For the equivalent set, one parameter should be 

kept unchanged, and the remaining two parameters are allocated different values. After programming in MATLAB, the numerical 
simulation method is accomplished for analyzing the motion ability. 

First, the stable motion regions of the QIPJCS model and SLIP model are analyzed by allocating the values of the landing angle (αTD) 
and dimensionless reference stiffness (k̃10%) at different given initial apex velocities (v). For the selection of the initial apex velocity, the 
high-speed reference value of v is 30 m/s. The reference values of v under low speed and moderate speed are selected as 5 m/s and 15 
m/s, respectively. 

As shown in Fig. 5, the entire stable motion region of the QIPJCS model increases with the increase in the given initial apex velocity 
v, and the overall shape of the stable motion region is presented as a “J”. 

Compared with the QIPJCS model, the whole stable motion region of the SLIP model decreases with the increase in the given initial 
apex velocity v, and the overall shape of the stable motion region is presented as a “J” at low speed. Moreover, the stable region of the 
SLIP model tends to have a dense distribution at moderate speed and vanishes at high speed. In the case of low speed (v = 5 m/s), the 
stable motion region of the SLIP model is superior to that of the QIPJCS model. In the case of moderate speed (v = 15 m/s), the stable 
motion regions of the two models are greatly different. The stable motion region of the SLIP model represents a high sensitivity with 
respect to stiffness and only exists in the range of stiffness from 34 to 50. No stable region exists under low stiffness. In contrast, the 
QIPJCS model can realize stable motion with a stiffness that ranges from 6 to 50. This phenomenon indicates that when the initial apex 
velocity v further increases, the stable motion region of SLIP will be further reduced within a limited range of stiffness, and finally, no 

Fig. 7. The stable motion regions of the QIPJCS model (left column) and SLIP model (right column) for different given landing angle values (αTD =

45∘, αTD = 55∘, αTD = 65∘) with allocation of the initial apex velocity (v) and dimensionless reference stiffness (k̃10%). 
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region can satisfy the stable motion condition. Meanwhile, due to the lower inferior limit of the stable motion region of the QIPJCS 
model, this model can continuously satisfy a certain stable motion within a limited range of stiffness. Namely, both models have a 
minimum stiffness limit for the range of stable motion, and this limit has less effect on the QIPJCS model compared with the SLIP 
model. In the case of high speed (v = 30 m/s), as mentioned above, the SLIP model cannot satisfy the requirements of stable motion 
within the given range of stiffness and landing angle. Meanwhile, the QIPJCS model can satisfy a certain stable motion in the range of 
stiffness values from 9 to 50. We also notice that the range of landing angles that can satisfy the stable motion of the QIPJCS model 
remains approximately unchanged at low, moderate and high speeds in the case of high stiffness. Meanwhile, in the case of high 
stiffness, the range of the landing angle that can satisfy the stable motion of the SLIP model only remains approximately unchanged at 
low speed (5 m/s). When the SLIP model moves with moderate speed (15 m/s), the range of landing angles that can satisfy the stable 
motion only increases with increasing stiffness. 

Then, we discuss the stable motion region of the two models by allocating the values of the landing angle (αTD) and initial apex 
velocity (v) under different dimensionless reference stiffnesses (k̃10%). 

As shown in Fig. 6, the whole stable motion region of the QIPJCS model changes slightly with the increase in the given dimen
sionless reference stiffness (k̃10%) (left column), and the shape of the regions resembles a “J”, which is mirrored. The whole stable 
motion region of the SLIP model increases with the increase in the given dimensionless reference stiffness (k̃10%) (right column); 
meanwhile, in the case of the same dimensionless reference stiffness, the range of the landing angles that can satisfy the stable motion 
increases first and then decreases with the increase in the initial apex velocity (v). For instance, in the case of k̃10% = 25, the stable 
motion region of the SLIP model increases constantly until the initial apex velocity (v) increases to 15 m/s. When the initial apex 
velocity (v) is greater than 15 m/s, the stable motion region decreases with increasing velocity. Moreover, the velocity allocation of the 
SLIP model that satisfies stable motion is restricted with a superior limit. For example, when k̃10% = 15 and k̃10% = 25, the superior 
limits are approximately 14 m/s and 23 m/s, respectively, and the superior limit is proportional to the given stiffness. This phe
nomenon indicates that if the SLIP model could maintain stable motion in the case of high initial apex velocity, the model stiffness 
needs to be further increased. The inferior limit of velocity that satisfies stable motion for all three stiffness cases is approximately 4 m/ 
s. Correspondingly, the initial apex velocity superior limits of the QIPJCS model that satisfy stable motion in the three stiffness cases 
are greater than the given maximum speed limit, and the inferior limits are both approximately 6 m/s. The above analysis further 
indicates that the QIPJCS model is more suitable for stable motion with higher speed than the SLIP model. 

Lastly, the stable motion regions of these two models should be discussed by allocating the initial apex velocity (v) and dimen
sionless reference stiffness (k̃10%) under different given landing angles (αTD). 

As shown in Fig. 7, the whole stable motion region of the SLIP model decreases with increasing landing angle (right column). For 
the QIPJCS model (left column), the relationship between the change in the whole stable motion region and the change in the landing 
angle is not linear. Moreover, when the landing angle increases to 65∘, the range of the stable motion region presents a certain discrete 
distribution. In this case of parameter allocation, the stable motion region of the QIPJCS model is superior to that of the SLIP model. 
Both models are limited with a minimum stiffness for the stable motion, and this minimum stiffness limit increases along with the given 
landing angle. Moreover, in the case of the same landing angle, the minimum stiffness limit of the QIPJCS model is smaller than that of 
the SLIP model. For instance, in the case of αTD = 45∘, the respective minimum stiffness limits of the QIPJCS model and SLIP model 
which can satisfy the stable motion are approximately 2 and 9. In addition, this difference is even more significant when the landing 
angle increases. For the SLIP model, the whole stable motion region is mainly distributed in the low- and moderate-speed motion areas. 
The SLIP model can barely satisfy stable motion at high speed. Moreover, the maximum initial apex velocity that can satisfy stable 
motion will decrease with the increase in the given landing angle. For instance, in the case of αTD = 45∘, the maximum initial apex 
velocity is limited to approximately 38 m/s. When the landing angle increases to 65∘, the maximum initial apex velocity decreases to 
13 m/s. For the QIPJCS model, the whole stable motion region is mainly distributed in the high-speed motion area. In these three 
landing angle cases, the model can ensure a certain stable motion. Moreover, when the given landing angle increases, the stable motion 
regions at low and moderate speeds increase to a certain degree. Hence, the QIPJCS model is more suitable for stable motion at high 
speed but can still ensure certain stable motion at low and moderate speeds. 

According to the above three different parameter allocation analyses, compared with the SLIP model, the minimum stiffness limit of 
the QIPJCS model, which can realize stable motion, is smaller (lower stiffness sensitivity). Moreover, the QIPJCS model possesses a 
higher stable motion speed. All of the analyses indicate that the QIPJCS model is a better biological stiffness model for stable motion, 
especially in the case of high speed. 

3.2. ARM (Apex-Return-Map) numerical simulation analysis 

The SFA numerical simulation method can neither detect the self-stability of the model after the threshold value nor ensure the 
correctness of the detection results by increasing the threshold value. Therefore, scholars presented a numerical simulation method 
called ARM (Apex-Return-Map) to study the self-stability of the SLIP model. This section employs this method to further analyze the 
motion performance of the QIPJCS model. 

3.2.1. The building of ARM of the QIPJCS model 
When a system degenerates from the vector field space to a one-dimensional scalar system, the Poincaré map of this system can be 

converted into a special form called a return map. Hence, to conveniently conduct the dynamic analysis of a system with a periodic 
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trajectory, the Poincaré map can be transformed into the return map with a simpler expression. 
In general, as shown in Fig. 8, a complete gait cycle i of the QIPJCS model can be divided into the following parts, similar to the SLIP 

model.  

(1) The apex state of the flight phase is Ci := (yai, vi)
T ;  

(2) The falling stage of flight phase FD;  
(3) The moment of touchdown TD;  
(4) The stance phase ST;  
(5) The moment of leaving the ground LO;  
(6) The surface disconnection stage of the flight phase FU. 

Afterward, the model enters the next gait cycle i+1, and the apex state of the flight phase is Ci+1 := (yai+1, vi+1)
T . Then, the apex 

return map can be defined as Ci+1 = PARM(Ci), where Ci and Ci+1 belong to Qa and Qa is a simply connected open set in R2. Moreover, 
the motion sketch of the QIPJCS model during a complete gait cycle is shown in Fig. 9, and the reference coordinate system is defined 
as {O}. Hence, the motion characteristics of the apex return map in different stages of the complete gait cycle can be analyzed as 
follows. 

First, the total energy of the model is given. The velocity of the apex along the x-axis in gait cycle i can be represented as vi, and the 
velocity of the apex along the y-axis is obviously 0. The height, which is relative to the reference coordinate system {O}, is denoted as 
yai. In this stage, the model is only affected by gravity, and the energy of the system is conserved according to Hypothesis 2 in Section 
2.2. Therefore, the apex velocity of the whole system in gait cycle i can be expressed as: 

vi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
Esys − mgyai

)/
m

√

. (12) 

Then, the apex state of the flight phase of current gait cycle i is: 

Ci : =(yai, vi)
T
=

[
yai̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
Esys − mgyai

)/
m

√

]

. (13) 

The process of movement from the Apex of gait cycle i to the moment of touchdown TD is a submap of ARM PARM, and this submap 
can be denoted as PFD.  

(b) The moment of touchdown TD 

The moment of touchdown is the transition between the falling stage and stance phase. The switch critical condition of this moment 
is: 

y= yTD = s0 sin αTD =
(
lJ
0 + j

)
sin αTD. (14) 

The state of TD is defined as qi
TD, and qi

TD satisfies: 

Fig. 8. The ARM of the QIPJCS model during a complete gait cycle.  

Y. Zheng et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e30302

11

qi
TD =

⎡

⎣
xTD

ẋTD

yTD

ẏTD

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋTD
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(yai − yTD)/g

√

vi
(
lJ
0 + j

)
sin αTD

−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2g(yai − yTD)

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
(
Esys − mgyai

)(
yai −

(
lJ
0 + j

)
sin αTD

)/
mg

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
Esys − mgyai

)/
m

√

(
lJ
0 + j

)
sin αTD

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2g
(
yai −

(
lJ
0 + j

)
sin αTD

)√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)  

where xTD denotes the distance between the mass point m and the origin of coordinate system {O} along the x-axis at TD, ẋTD denotes 
the velocity of m in {O} along the x-axis, yTD denotes the distance between m and the origin of {O} along the y-axis at TD, and ẏTD 
denotes the velocity of m in {O} along the y-axis.  

(c) The stance phase ST 

After touchdown, the model enters stance phase ST from the falling stage. ST can be divided into two stages according to the 
compression or tension of the model spring: in the compression process, the J-curve spring of the QIPJCS model transitions from the 
initial length state to the maximum compression state and stores the elastic potential energy; in the tension process, the spring 
transitions from the maximum compression state to the initial length state and releases the elastic potential energy. 

Compared with the flight phase, the model is affected not only by gravity but also by the support force from the ground. Meanwhile, 
the support force can be denoted as Fspr, which is the elastic force of the spring. The motion equations are determined as follows: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mẍST = Fspr
xST − xFP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xST − xFP)
2
+ (yST − yFP)

2
√

mÿST = Fspr
yST − yFP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xST − xFP)
2
+ (yST − yFP)

2
√ − mg

, (16)  

where xST denotes the distance between the projection of m on the x-axis and the origin of {O} during ST, yST denotes the distance 
between the projection of m on the y-axis and the origin of {O} during ST, xFP denotes the coordinate of the projection of the foothold 
on the x-axis in {O} during ST, and yFP denotes the coordinate of the projection of the foothold on the y-axis in {O} and yFP = 0 during 
ST. 

The process that occurs from the moment of touchdown TD to the moment of leaving the ground LO is a submap of ARM PARM as 
well: PST .  

(d) The moment of leaving the ground LO 

The moment of leaving the ground represents the transition between the stance phase and the surface disconnection stage. The 
switch critical condition of this moment is: 

Fig. 9. The motion sketch of the QIPJCS model during a complete gait cycle. 
(a) The falling stage of flight phase FD. 
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s= s0 = lJ
0 + j. (17) 

Equation (17) can also be employed as the switch critical condition of TD. For the projections of m on the x- and y-axes at LO, xLO 

and yLO can be determined by the step-by-step integration numerical method. The step size of integration is set as Δ tn = 10− 4(n = 1,2,
3⋯), and the calculation process is shown in Fig. 10. 

After LO, the foothold of the model leaves the ground and enters FU. During this stage, part of the kinetic energy of the system is 
converted to gravitational potential energy until the velocity along the y-axis is 0. Meanwhile, when the model reaches the Apex of gait 
cycle i+1, the model has accomplished a complete gait cycle and enters the next gait cycle. The submap of ARM that moves from LO to 
the Apex of gait cycle i+1 can be defined as PFU. 

During FU, the system is only affected by gravity; hence, the apex state of the flight phase of the next gait cycle i+1 is: 

Fig. 10. The calculation process of the coordinates of m at LO. 
(e) The surface disconnection stage of the flight phase FU. 
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Ci+1 : =(yai+1, vi+1)
T
=

⎡

⎣
yLO +

1
2g

ẏ2
LO

ẋLO

⎤

⎦, (18)  

where yLO denotes the coordinate of m on the y-axis at LO, ẏLO denotes the velocity component along y of m during FU, and ẋLO denotes 
the velocity component along x of m during FU. 

In conclusion, the ARM that presents gait cycle i to gait cycle i+1 Ci+1 = PARM(Ci) can be determined: 

PARM : Ci : =

[
yai
vi

]

=

[
yai̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
Esys − mgyai

)/
m

√

]

→
[

yai+1
vi+1

]

=

⎡

⎣
yLO +

1
2g

ẏ2
LO

ẋLO

⎤

⎦ : =Ci+1. (19) 

Moreover, PARM can be denoted as the composition of three submaps: 

PARM =PFD ∘ PST ∘ PFU : Ci→Ci+1. (20)  

3.2.2. Fixed point analysis of the QIPJCS model 
In this paper, the motion space of the stable motion of the QIPJCS model can also form a periodic closed orbit like the SLIP model. 

For the ARM with dimension reduced to one, the periodic closed orbit can be represented as the fixed point on the Poincaré section. 
The fixed point can be defined as follows: the ARM of the system is given as PARM and Ci+1 = PARM(Ci). If and only if the state of one 

point in a gait cycle (C∗) satisfies C∗ = PARM(C∗), then C∗ is the fixed point of ARM PARM. According to Hypothesis 2, the mechanical 
energy is conserved during a gait cycle; hence, the state of apex C∗ can be represented by an apex height of m in gait cycle i (yai) or an 
apex velocity of m in gait cycle i (vi). Compared with vi, yai is more visualized and easier to sketch. Therefore, yai is selected as the 
reference variable, and Ci+1 = PARM(Ci) can be denoted as a map with one dimension: 

yai+1 =PARM(yai). (21)  

Similarly, the fixed point C∗ should satisfy: 

y∗ =PARM(y∗). (22) 

Based on Equations (21) and (22), the fixed point can be denoted as y∗ = yai+1 = yai. 
Referring to Ref. [18], the stability criteria of the fixed point of the QIPJCS model are the same as those of the SLIP model: 

σ =
dyai+1

dyai

⃒
⃒
⃒
⃒

y∗
. (23) 

A sketch of the fixed point during gait cycle i is shown in Fig. 11, and the range of the stable motion region is: 

|σ| < 1, (24)  

− 1 <
dyai+1

dyai

⃒
⃒
⃒
⃒

y∗
< 1. (25) 

According to Equation (25), when the absolute value of the slope of yai+1 = PARM(yai) at yai = y∗ is less than 1, y∗ is the stable fixed 

Fig. 11. Sketch of a fixed point during gait cycle i.  

Y. Zheng et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e30302

14

point of the system; otherwise, when the absolute value of the slope at yai = y∗ is greater than 1, y∗ is the unstable fixed point. 
Employing the numerical simulation method presented in Section. 3.2.1, the fixed point of ARM of the QIPJCS model is analyzed. 

For the analysis of the neighborhood at a fixed point, the slope of the ARM curve represents the dynamic performance of the 
neighborhood. First, the constant parameters of the numerical simulation analysis are given as follows.  

(1) Mass of system: m = 80kg;  
(2) The rest length of the “J” curve spring lJ0 is 0.5 m, and the length of rigid link j is 0.5 m;  
(3) The total energy of the system is Esys = 9784.8J. In other words, the initial apex height and the initial apex velocity are ya = 1m 

and v = 15m/s, respectively; 

Then, the effects of the stiffness and landing angle on the fixed point of the QIPJCS model are investigated as follows.  

(a) The effects of different reference stiffnesses on fixed points 

First, the same landing angle is set as 65∘, and the ARM curves with different reference stiffnesses (k10% = 15696N/m, k10% =

23544N/m and k10% = 31392N/m) are determined by numerical simulation, as shown in Fig. 12. All three ARM curves intersect the 
diagonal line with only one point within the given height of motion, and all the slopes at these points are less than 1. Hence, these 
intersection points are the stable fixed points of the QIPJCS model under three different reference stiffnesses. All initial apex height 
conditions in the neighborhood of these points can make the model system converge to stable periodic motion. Moreover, with the 
increase in the reference stiffness, the value of the stable fixed point and the slope at the fixed point increase as well. As a result, the 
basis of attraction decreases [33]. 

First, the same reference stiffness is set as 7848 N/m, and the ARM curves with different landing angles (αTD = 50∘, αTD = 53∘ and 
αTD = 56∘) are determined by numerical simulation, as shown in Fig. 13. In the case of αTD = 50∘, the ARM curve intersects the di
agonal line with two points. The slope of the point with a lower position is less than 1; hence, this point is the fixed point. The slope of 
the other point is greater than 1, and this point is the unstable fixed point. For the two remaining cases, the ARM curves intersect the 
diagonal line with only one point (fixed point) within the given height of motion. With the increase in the landing angle, the value of 
the stable fixed point and the slope at the fixed point decrease. As a result, the basin of attraction grows. For the unstable fixed point of 
αTD = 50∘, any subsequent initial apex height condition cannot make the model system converge to stable periodic motion, and the 
model system will diverge to the unstable state after limited cycles. 

From the above simulation results, the oversize reference stiffness and the undersize landing angle will cause the ARM curve of the 
model to gradually deviate from the diagonal line. Therefore, no stable fixed point exists, and the model system diverges. The stable 
periodic motion of the model cannot be realized. 

The investigation of the slope of the ARM curve directly reflects the number of gait cycles that guarantees that the model system can 
converge to stable periodic motion or diverge to the unstable state. The dynamic performance of the model in the neighborhood of one 
point can be known by analyzing the slope of the curve at this point. As the slope of the ARM curve approaches 0, the sensitivity of the 
model system to the initial value of motion becomes lower, and the model system can converge to stable periodic motion faster. In 
contrast, as the slope of the ARM curve approaches 1, the sensitivity of the model system to the initial value of motion is higher, and the 
number of gait cycles that makes the model system converge to stable periodic motion is added. Even the model system gradually 
diverges to the unstable state. 

Fig. 12. The effects of different reference stiffnesses on the fixed point. 
(b) The effects of different landing angles on fixed points. 

Y. Zheng et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e30302

15

Fig. 13. The effect of the landing angle on a fixed point.  

Fig. 14. Sketch of a gait cycle of goat galloping and the corresponding hoof points.  
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4. Inherent running mechanism analysis of goat natural gait 

Based on the analysis of the QIPJCS model, which is equivalent to the single goat limb and the goat gait in the natural environment, 
the motion characteristics of all goat limbs can be investigated during a gait cycle, and the inherent running mechanism of coordinated 
motion in quadruped mammal limbs with natural gait can be further revealed. Goats can employ different gaits according to different 
environments during the walking motion. Moreover, natural gaits can be divided into six types depending on the differences in stride 
length and frequency: walk, trot, pace, gallop, canter and bound [34]. In general, the velocity of gallops is the maximum among the 
natural gaits of large quadruped mammals (such as ruminants) because the stride length of gallops is the maximum. The main 
characteristic of galloping is that four hoof beats exist in a gait cycle. Moreover, the stride length of diagonal limbs increases because of 
the high velocity, and two front hooves and two hind hooves land on the ground almost at the same time. Hence, in a gait cycle, the 
number of hoof beats can be approximately counted as two. In this paper, galloping is selected to analyze the running mechanism of 
quadruped mammals. A sketch of a gait cycle of goat galloping and the corresponding hoof points is shown in Fig. 14. 

According to the keyframes of goat galloping in Fig. 14, the process of this type of gait is investigated: keyframe (a) is the initial 
state of a gallop gait cycle; at this moment, only LH (left hind limb) lands on the ground and one hoof beat exists; during keyframes (b)– 
(c), LF (left front limb) and RH (right hind limb) land on the ground as well, and three hoof beats exist; during keyframes (d)–(e), LH, 
which lands on the ground first, is left and the remaining two hoof beats belong to LF and RH; at keyframe (f), RF (right front limb) 
lands on the ground and RH is left at the same time, and two hoof beats exist (LF and RF); during keyframe (g)–(j), LF is left and the goat 
is only supported by RF, and hence, one hoof beat exists; keyframe (k) represents the flight phase and no hoof beat existing; at keyframe 
(l), LH lands on the ground again and one hoof beat exists, and the goat will enter the next gait cycle. 

The equivalent mechanism can be built for each keyframe of the goat gallop based on the gait analysis, as shown in Fig. 15. 
For keyframes (a)–(b), the knee joint, tarsometatarsal joint and metatarsophalangeal joint of the goat are on the same support line 

in the sagittal plane during the motion process, as shown in Fig. 16. Based on the theory of the dead-point support effect, the joint 
torque can be transformed into the structural torque of the bone under this configuration of joints. It is beneficial for the goat to buffer 
the motion impact that comes from the process of transitioning from the flight phase to the stance phase to retain stable motion. 
Moreover, the muscle group of the hip joint plays the main role of a buffer and energy store. Hence, for LH, this limb can be considered 
equivalent to a typical QIPJCS model. For RH and LF at keyframe (b), these two limbs land on the ground at the same time and form a 
floating support mechanism with a quasi quadrangle. 

For keyframes (c)–(e), the most important characteristic of this process is the equivalent mechanism formed by the interaction 
between the goat and ground in the sagittal plane, as shown in Fig. 17. The state of LH at keyframe (c) represents the stretching stage of 
the stance phase and provides the forward momentum for goat galloping. Two links (RH and LF) of the equivalent mechanism are 
driven to rotate, and then the body of the goat can be pushed forward; for keyframes (d)–(e), LH is in flight, and then the forward 
movement of the goat body can be considered as approximately equivalent to the motion process of a four-link mechanism. Moreover, 
due to the physiological differences of limbs and the characteristics of gallops, a phase difference exists between the equivalent models 
of RH and LF. RH transitions to the flight phase first. 

For keyframe (f), RH has already changed to the stance phase, and LF is in the stretching stage of the stance phase. Meanwhile, RF 
lands on the ground. The elbow joint, wrist joint and metacarpophalangeal joint of RH obey the theory of a dead-point support effect 
and are on the same support line. At every moment of keyframe (f), RF, LF and the ground form a triangular truss structure together, as 

Fig. 15. The equivalent mechanism sketch of a gallop gait cycle.  
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shown in Fig. 18. This structure is beneficial for stable support during goat galloping. 
For keyframes (g)–(j), the goat only relies on RF to support the body during this process. RF can be considered equivalent to a 

typical QIPJCS model during this whole process, as shown in Fig. 19. The support line formed by the elbow joint, wrist joint and 
metacarpophalangeal joint on the RF is perpendicular to the ground, and the spring of the equivalent QIPJCS model is in the maximum 
compression state. 

For keyframe (k), the four limbs of the goat have already transitioned to the flight phase. 
For keyframe (l), LH lands on the ground again, and the state of LH is the same as in keyframe (a). Meanwhile, this keyframe is the 

start of the next gait cycle. 
Based on the above analysis of the equivalent mechanism during the goat galloping process, the stance phase of the forelimb is 

selected as the representative to proceed with the force analysis of the dynamic motion of the goat, as shown in Fig. 20. The goat 
proceeds with uniformly accelerated motion, and the acceleration is a. 

The forelimb can be equivalent to a QIPJCS model. First, the shoulder joint is equivalent to the buffer elastic unit. According to the 
dead-point support effect, all joints are on the support line of the dead-point, and all the joint torques are 0 except for the elbow joint 
that provides the driving torque. The body of the goat is supported by structural torque. Hence, the parts below the elbow joint are 

Fig. 16. The equivalent mechanism sketch of keyframes (a)–(b).  

Fig. 17. The equivalent mechanism sketch of keyframes (c)–(e).  

Fig. 18. The equivalent mechanism sketch of keyframe (f).  
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equivalent to a rigid link, and for the convenience of analysis, the shoulder joint and elbow joint are considered equivalent to a rotation 
joint to connect the body and the elastic unit. 

The whole equivalent length of the forelimb is s; the angular acceleration of the equivalent joint can be denoted as: 

α= as. (26) 

The total moment of the equivalent joint МT is: 

МT = Іα = m1s3a, (27)  

where I is the momentum of inertia of the forelimb equivalent mechanism with respect to the landing point and І = m1s2, m1 is the 
mass of forelimb. 

According to Newton’s second and third laws, the force analysis of the equivalent mechanism can be determined: 

Fx
f =

1
2
(m1 +m2 +mb)a, (28)  

Fy
f =

(

m1 +
1
2

mb

)

g, (29)  

where Fx
f and Fy

f are the component forces of the support force from the ground along the x-axis and y-axis, respectively, m2 is the mass 
of the hindlimb, and mb is the mass of the goat body. 

Moreover, the total moment of the equivalent joint can be denoted as follows: 

МT =МD +Мx
f +М

y
f +Мb, (30)  

where МD is the driving torque of the equivalent joint, Мx
f and Мy

f are the moments of Fx
f and Fy

f acting on the equivalent joint, and Мb 

is the moment of gravity of mb acting on the equivalent joint. 
In addition, each torque can be calculated as follows: 

Мx
f =Fx

f s sin αTD, (31)  

Мy
f =Fy

f s cos αTD, (32)  

Fig. 19. The equivalent mechanism sketch of keyframes (g)–(j).  

Fig. 20. Forecast analysis during the stance phase.  
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Мb =
1
2
mbgs. (33) 

Based on Equations (27) and (30): 

МD +Мx
f +М

y
f +Мb = m1s3a. (34) 

Equations (31)–(33) can be substituted into Equation (34), and the driving torque МD can be calculated as follows: 

МD =m1s3a − Fx
f s sin αTD − Fy

f s cos αTD −
1
2

mbgs. (35) 

Then, Equations (28) and (29) can be substituted into Equation (35): 

МD =m1s3a −
1
2
(m1 +m2 +mb)as sin αTD −

(

m1 +
1
2

mb

)

gs cos αTD −
1
2
mbgs. (36)  

In consideration of the actual motion of a goat, the flexion and extension range of the shoulder joint of the goat forelimb, which is 
compared with the length of the whole limb, can be ignored. Hence, s can be regarded as constant. Moreover, due to m1, m2 and mb are 
constant as well. Equation (36) can also be denoted as follows: 

МD =m(αTD). (37) 

According to Equation (37), the driving torque of equivalent joint МD is only affected by the landing angle αTD. Therefore, in the 
case of stable goat motion with constant acceleration a, the driving torque can be reduced for energy conservation by optimizing the 
landing angle within limits. 

5. Conclusion 

In this paper, the large mammal goat is chosen as the study object, and a novel bionic stiffness model is presented based on goat 
anatomy. The elastic unit of this model is equivalent to the flexion and extension muscles, tendons and other tissues of the goat 
shoulder joint. Hence, because of the nonlinear characteristic of these biological tissues, a nonlinear spring with a “J”-shaped force‒ 
deformation curve is utilized. The parts below the elbow joint can be considered equivalent to a rigid link based on the dead-point 
support effect. Finally, the combination of the nonlinear spring and the rigid link constitutes the QIPJCS model. 

For the dynamic performance analysis of the QIPJCS model, the dynamics equations are derived first, and then we refer to the SFA 
numerical method. The simulation results of the QIPJCS model are compared with the classical SLIP model under three different cases 
by the reasonable allocation of parameter set {k̃10%,αTD,v}. All three analysis results indicate that the QIPJCS model presented in this 
paper has a larger range of stable motion than the SLIP model and achieves a better dynamic performance. For the motion performance 
of the model beyond the simulation threshold, the ARM of the QIPJSC model is established. Based on this ARM, the sensitivity of the 
model fixed point to parameter variation is investigated by numerical simulation. The results indicate that an excessively large or small 
reference stiffness and landing angle will result in the divergence of the system and the loss of stabilization of the model. 

Afterward, according to the motion process of a typical goat natural gait (gallop), the keyframes of a complete gait cycle are 
extracted, and then the equivalent mechanisms of all keyframes in the sagittal plane are established. Moreover, the gait sequences can 
be classified based on the equivalent mechanism state. Each limb obeys the dead-point support effect at each keyframe of the stance 
phase: 1. the equivalent QIPJCS model of single limb support; 2. the equivalent triangular truss mechanism formed by one forelimb and 
one hindlimb; 3. the equivalent four-link mechanism formed by one forelimb, one hindlimb, spine and ground. Then, the dynamic 
motion performance of the equivalent mechanism in the stance phase is analyzed: the equation between the driving torque and the 
landing angle is established in the case of moving at the target acceleration; therefore, energy savings can be realized by optimizing the 
landing angle and reducing the driving torque. 

The novel QIPJCS model presented in this paper is a bionic stiffness model that is more similar to the actual animal limb and 
possesses better stability of motion at higher speed compared with SLIP model. Hence, this model provides a better template for the 
design of bionic robot limbs. Furthermore, based on the motion characteristics of the animal’s natural gait, the dynamic motion 
mechanism of the animal limb is analyzed. According to this mechanism, an optimization method for the landing angle is presented for 
energy conservation and can be utilized as the joint control target of robot dynamic motion. 
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[32] P. Kowalczyk, Ł. Płociniczak, Z. Wróblewska, Energy variations and periodic solutions in a switched inverted pendulum model of human running gaits, Phys. 

Nonlinear Phenom. 443 (2023) 133554. 
[33] H. Yu, M. Li, H. Cai, Analysis on the performance of the SLIP runner with nonlinear spring leg, Chin. J. Mech. Eng. 26 (5) (2013) 892–899. 
[34] R.M. Alexander, Why mammals gallop, Am. Zool. 28 (1) (1988) 237–245. 

Y. Zheng et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8440(24)06333-3/sref1
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref1
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref2
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref3
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref3
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref4
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref4
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref5
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref6
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref7
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref8
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref8
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref9
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref9
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref10
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref10
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref11
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref11
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref12
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref12
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref13
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref13
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref14
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref14
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref15
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref15
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref16
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref17
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref18
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref19
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref20
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref21
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref22
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref23
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref24
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref25
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref26
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref26
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref27
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref27
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref28
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref29
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref30
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref31
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref31
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref32
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref32
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref33
http://refhub.elsevier.com/S2405-8440(24)06333-3/sref34

	Revealing the inherent running mechanism of quadruped mammals based on a novel bionic stiffness model
	1 Introduction
	2 Equivalent QIPJCS model of a goat limb
	2.1 QIPJCS modeling
	2.2 The dynamics of the QIPJCS model

	3 Numerical simulation analysis of the QIPJCS model
	3.1 SFA (step-to-fall analysis) numerical simulation analysis
	3.2 ARM (Apex-Return-Map) numerical simulation analysis
	3.2.1 The building of ARM of the QIPJCS model
	3.2.2 Fixed point analysis of the QIPJCS model


	4 Inherent running mechanism analysis of goat natural gait
	5 Conclusion
	Funding statement
	Ethics statement
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


