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Abstract. Despite the marked success of molecular targeted 
therapy in lung cancer in this era of personalized medicine, 
its efficacy has been limited by the presence of resistance 
mechanisms. The prognosis of patients with lung cancer 
remains poor, and there is an unmet need to develop more 
effective therapies to improve clinical outcomes. The 
increasing insight into the human immune system has led to 
breakthroughs in immunotherapy and has prompted research 
interest in employing immunotherapy to treat lung cancer. 

Natural killer (NK) cells, which serve as the first line of defense 
against tumors, can induce the innate and adaptive immune 
responses. Therefore, the use of NK cells for the development 
of novel lung‑cancer immunotherapy strategies is promising. 
A growing number of novel approaches that boost NK cell 
antitumor immunity and expand NK cell populations ex vivo 
now provide a platform for the development of antitumor 
immunotherapy. The present review outlined the biology of 
NK cells, summarized the role of NK cells in lung cancer 
and the effect of the tumor microenvironment on NK cells, 
highlighted the potential of NK cell‑based immunotherapy as 
an effective therapeutic strategy for lung cancer and discussed 
future directions.
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1. Introduction

Lung cancer is the leading cause of cancer‑related death 
worldwide; more than 1.7 million people succumbed to lung 
cancer in 2018 (1). Based on origin, lung cancer can be divided 
into small cell lung cancer (SCLC) and non‑SCLC (NSCLC), 
of which NSCLC accounts for 80‑85% of the cases  (1). 
Early lung cancer often lacks symptoms, which may lead to 
delayed diagnosis and treatment. In the late stage, both SCLC 
and NSCLC can metastasize to other organs; SCLC can 
metastasize considerably more rapidly, and patients develop 
metastatic symptoms (bone pain, nervous system changes such 
as dizziness and seizures, jaundice, enlarged lymph nodes, 
and/or other conditions such as syndrome of inappropriate 
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antidiuretic hormone and Horner syndrome) faster than 
those with NSCLC. Due to the large proportion of patients 
diagnosed with locally advanced or widely metastatic cancer 
at the time of diagnosis, the 5‑year relative survival rate for 
NSCLC is poor, from 68% in patients with stage IB disease to 
0‑10% in patients with stage IVA‑IVB disease (2). Although 
SCLC is characterized by rapid responses to chemotherapy 
and sensitivity to radiotherapy, given the early treatment 
resistance, the 5‑year overall survival (OS) is <10%  (3). 
Traditional treatments for lung cancer include chemotherapy, 
radiotherapy and surgery. Fortunately, advances in the 
knowledge of lung cancer and technologies for its detection 
have promoted marked progress of theories and molecular 
methods in diagnosing lung cancer and have revolutionized 
the relevant therapeutics. Researchers have already extensively 
described the characteristics of the lung cancer genome, and 
several major pathways sensitive to targeted therapy have been 
identified (4). Drugs that target these pathways have improved 
response and survival in patients with metastatic disease (5), 
some of which have replaced chemotherapy as first‑line 
treatment drugs. Unfortunately, the efficacy in most patients 
is limited by the emergence of resistance mechanisms, while 
these interventions are effective initially  (6,7). Therefore, 
investigation of effective strategies to eliminate these resistant 
tumor cells is urgently needed.

In recent decades, a series of studies have reported the 
importance of the immune system in malignant disease control, 
and immunotherapy has gradually attracted the attention 
of researchers  (8,9). Inducing passive or active antitumor 
responses by the immune system against malignant tumors is 
an attractive therapeutic strategy. As a critical part of immune 
surveillance, natural killer (NK) cells exhibit cytotoxic 
activity against diverse tumor cell types; furthermore, NK 
cells bridge the innate and adaptive immune responses (10). 
With the development of methods to regulate NK cell function 
and enhance tumor sensitivity to NK cell cytotoxicity and 
the ability to expand NK cells in vitro and manipulate their 
homing, numerous NK cell‑based immunotherapy methods and 
strategies have been developed (9). In physiological conditions, 
lung tissue has a considerable amount of NK cells, which may 
be important antitumor effector cells of lung tissue. Therefore, 
immunotherapy strategies based on NK cells may confer 
great clinical benefit to lung cancer treatment. In the present 
review, the distribution and function of NK cells, the control 
effect of NK cells on lung cancer, and the effect of the lung 
cancer tumor microenvironment (TME) on NK cells were 
briefly introduced and some NK cell‑based immunotherapy 
strategies were described. Given the advances summarized in 
the present review, an exciting future for NK cell‑based cancer 
immunotherapy is foreseen and the challenges that remain to 
be tackled are presented. Although enormous steps have been 
taken in understanding NK cell biology, more work is required 
to fully explore the anticancer potential of these cells.

2. Review criteria

A search for scientific papers published between 1975 and 2020 
focusing on NK cells, lung cancer and NK cell‑based 
immunotherapy was performed in PubMed. The search terms 
used were ‘NK cell’, ‘lung’, ‘cancer’, ‘immunotherapy’, ‘tumor 

microenvironment’, ‘cytokine’, ‘monoclonal antibodies’, 
‘adoptive transfer’, ‘CAR’, alone and in combination. A total of 
176 scientific papers were selected, 117 of which were original 
studies.

3. The biology of natural killer (NK) cells

NK cells are innate lymphocytes that can directly eliminate 
target cells without prior exposure (11,12) and play a key role 
in antiviral and antitumor immunity. NK cells, mainly present 
in the peripheral blood, comprise approximately 15% of all 
circulating lymphocytes (13), while they are also distributed 
in multiple tissues including the liver, lung, skin, kidney and 
bone marrow. Moreover, based on the expression of CD49a 
(i.e., integrin α1), CD69 and CD103 (i.e., integrin aE) (14‑17), 
NK cells can be subdivided into circulating and tissue‑resident 
NK cells. Tissue‑resident NK cells usually display high 
expression of CD49a, CD103, and CD69 (18). More commonly, 
researchers subdivide human NK cells into two major subsets 
with distinct maturation and functional properties according to 
the expression of CD56 and the antibody binding‑Fc receptor 
CD16 (13). CD56brightCD16‑ NK cells (approximately 10% of 
NK cells in the peripheral blood) are specialized in secreting 
cytokines and are abundantly located in secondary lymphoid 
organs (lymph nodes, tonsils, and spleen) (19), most of which 
exhibit characteristics of tissue‑resident lymphocytes and 
tissue‑specific adaptations. Furthermore, they can also reveal 
cytotoxicity under prolonged stimulation with cytokines 
such as interleukin (IL)‑15, IL‑12, and IL‑18  (13,20‑24). 
CD56dimCD16+ NK cells (approximately 90‑95% of NK cells 
in the peripheral blood) (12) are potent cytolytic effector cells, 
which can rapidly secrete pro‑inflammatory cytokines such as 
interferon (IFN)‑γ and cytotoxic mediators such as granzyme 
once activated. Most of them exhibit characteristics of 
circulating cells, but they can also show a resident phenotype 
while located in the lymph nodes, mucosa, and other parts.

Activation of NK cells is regulated by stimulatory and 
inhibitory signals (25,26). The activation signals are mainly 
provided by NKp46, NKp30, NKp44, natural killer group 2 
member D (NKG2D), CD16 and killer cell immunoglobulin‑like 
receptor (KIR)‑S (27), which usually recognize self‑ligands 
expressed on infected or transformed tissues [known as 
‘recognize non‑self’ and ‘stress‑induced self’  (28)]. The 
inhibitory signals are mainly provided by the classic inhibitor, 
KIR, which usually identifies diseased cells that are lacking 
ligands such as major histocompatibility complex (MHC) 
class I molecules [known as ‘missing self’ (29)]. Activated NK 
cells can exert cytotoxicity via several distinct mechanisms: 
i) They release cytoplasmic particles containing granzymes 
and perforin through immune synapses with target cells to 
induce target cell apoptosis (30); ii) they play a role through 
the tumor necrosis factor (TNF) family (31). They express 
a death‑inducing factor ligand [factor‑associated suicide 
ligand, (FASL)] after activation and induce FAS expression 
on malignant cells, which leads to target cell apoptosis (32). 
Moreover, TNF‑α produced by activated NK cells can also 
induce tumor cell apoptosis (33); iii) NK cells secrete various 
effector molecules (including multiple cytokines, chemokines 
and growth factors) interacting with dendritic cells (DCs), 
macrophages, T cells and endothelial cells to limit tumor 
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angiogenesis and activate adaptive immunity  (10,34‑36). 
For example, IFN‑γ produced by NK cells increases the 
expression of MHC class I molecules on transformed cells 
to promote their recognition by cytotoxic lymphocytes 
(CTL) (36). Other NK cell‑derived factors, including TNF‑α, 
IL‑10, granulocyte‑macrophage colony stimulating factor 
(GM‑CSF), and chemokine C‑C motif ligand (CCL)‑5, can 
also regulate the immune response (10); iv) by modifying the 
Fc portion of IgG antibodies, NK cells can eliminate target 
cells through antibody‑dependent cell‑mediated cytotoxicity 
(ADCC) (37) (Fig. 1).

4. NK cells in the lung under physiological conditions

NK cells exhibit marked mobility, thereby circulating between 
organs to promote immune surveillance (38). NK cells can 
respond to multiple chemokines and be recruited to different 
tissues or inflammation sites owing to the expression of several 
chemokine receptors  (39). The lung is a critical organ of 
body‑environment interaction and is rich in NK cells (40,41). 
It is generally considered that NK cells originate and develop 
in the bone marrow and then migrate to the lung (42). The 
proportion of NK cells in the lung is similar to, and even 
slightly higher, than that in the peripheral blood, accounting 
for 10‑20% of the lymphocytes in the lung (43). IL‑15 secreted 

by bronchial epithelial cells and alveolar macrophages may be 
responsible for the high proportion of NK cells (44,45) because 
it is the main cytokine supporting NK cell cytotoxicity, 
homeostasis, and development (46,47). Unlike the liver and 
secondary lymphoid organs rich in CD56brightCD16‑ NK 
cell subpopulation, most NK cells in the lung exhibit the 
CD56dimCD16+ phenotype  (48), indicating that most are 
circulating subsets and highly differentiated (49,50). Despite 
their high differentiation, human NK cells in the lung exhibit 
a weaker response to target cell stimulation than peripheral 
blood NK cells (51), which may be attributable to the inhibition 
of alveolar macrophages (52) and soluble factors of the lower 
respiratory tract (51). Perhaps because the pulmonary mucosa 
is continuously exposed to the environment and autoantigens, 
NK cells with restricted function in physiological conditions 
may be more conducive to the maintenance of pulmonary 
homeostasis  (49). Although circulating CD56dimCD16+ NK 
cells are the major subpopulation in the lung (51), CD49a+ 
tissue‑resident NK cells (mainly CD56brightCD16‑ NK cells) 
also account for approximately 15% of human NK cells in 
this organ (53). Studies have revealed that CD56brightCD49a+ 
NK cells in the lung strongly co‑express CD103 and CD69, 
significantly different from CD56brightCD16‑NK cells 
in the peripheral blood  (18,53). In in  vitro experiments, 
CD49a+ tissue‑resident NK cells exhibited a higher ability 

Figure 1. Mechanisms of NK cells exerting cytotoxicity. NK cells induce target cell apoptosis by releasing cytoplasmic particles containing granzymes and 
perforin (yellow arrow). NK cells play a role through the tumor necrosis factor family (red arrow). NK cells secrete various effector molecules interacting 
with other immune cells (blue arrow). NK cells eliminate target cells through the ADCC (green arrow). NK, natural killer; ADCC, antibody‑dependent 
cell‑mediated cytotoxicity; DC, dendritic cell; FASL, factor‑associated suicide ligand; GM‑CSF, granulocyte‑macrophage colony‑stimulating factor; IFN, 
interferon; IL, interleukin; TNF, tumor necrosis factor; TRAIL, TNF related apoptosis inducing ligand; Ab, antibody; Ag, antigen.
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to degranulate and produce IFN‑γ when in contact with 
virus‑infected autologous macrophages than NK cells in the 
peripheral blood (50). Collectively, these results indicated that 
circulating NK cells in the lung have a larger number and 
highly differentiated phenotype but exhibit depressed function, 
while tissue‑resident NK cells have stronger function. It is 
necessary to further study the characteristics of circulating 
and tissue‑resident NK cells in the lung to understand their 
roles in the physiological condition and in the occurrence 
and progression of lung tumors, which may provide novel 
directions for the development of therapeutic strategies.

5. NK cell effect on lung cancer

In the 1980s, some studies revealed that cancer incidence was 
higher among individuals with NK cell dysfunction (54,55). 
Since then, studies have increasingly confirmed that the 
antitumor effect of NK cells can act against multiple tumor 
types (56,57), including head and neck (58), pharyngeal (59), 
colorectal (60), and lung (38,61) cancers. The direct evidence 
that NK cells act against lung cancer is supported by 
Kras‑driven spontaneous lung cancer and cancer cell implan‑
tation experiments in mice (61,62), both of which revealed 
that mice lacking NK cells have a greater lung tumor burden. 
However, the antitumor effect is limited to the early stage of 
Kras‑driven lung cancer in mice due to NK cell dysfunction in 
the advanced stage (61).

In the past few years, some studies have revealed that 
NK cells can infiltrate lung cancer and that the number of 
tumor‑infiltrating NK (TINK) cells is significantly associated 
to postoperative patient survival, indicating that the infiltration 
of NK cells into tumors may benefit patient prognosis (63‑65). 
Similar phenomena have been observed in patients with breast 
cancer (66) and renal clear cell carcinoma (67). Interestingly, 
most TINK cells are of the CD56brightCD16‑ NK type (68), 
and they only exist in the intratumoral fibrous septum and the 
interface between stromal and surrounding tumor cells, which 
appear to indirectly be in contact with cancer cells (68,69). 
Conversely, in renal clear cell carcinoma, NK cells infiltrate 
the entire tumor tissue  (70). Although the mechanism of 
TINK enrichment remains unclear, homing restriction and an 
immunosuppressive microenvironment may play an important 
role (71‑73). A previous study revealed that the proportion 
of CD56brightCD16‑ NK cells in tumoral and non‑tumoral 
lung tissues is similar  (74), indicating that the enrichment 
of CD56brightCD16‑ NK cells in tumors may be driven by the 
rejection of CD56dimCD16+ NK cells by the tumor. Conversely, 
it may be related to the chemokine spectrum of CD56dimCD16+ 
NK cell subsets. For example, it has already been confirmed 
that the adhesion signal of heterodimerization of chemokine 
receptor CCR5 (i.e., MIP‑1β receptor), which is only expressed 
by CD56bright CD16‑ NK cells, could force leukocytes to stay in 
the tissue (75,76). In contrast, the viability of CD56dimCD16+ 
NK cells may be impaired in the TME. Interestingly, it is 
generally considered that tumor rejection is mainly due to 
direct killing by lymphocytes. However, some studies have 
revealed that IFN‑γ and other lymphocyte‑derived cytokines 
such as TNF‑α can promote tumor rejection to control tumor 
progression (77,78), which indicates that tumor rejection is 
a more complicated event than previously considered and 

that the cytokine secretion function of tumor‑infiltrating 
CD56brightCD16‑ NK cells cannot be ignored in tumor control.

In summary, NK cells can infiltrate and eliminate tumor 
cells; therefore, targeting NK cells through immunotherapy 
is an attractive anticancer strategy. Based on the available 
literature, it can be theorized that the localization of NK cells 
in tumors (NK cells are most successful in the treatment of 
hematopoietic malignancies such as leukemia because NK 
cells are abundant in the peripheral blood) may be an essential 
factor of NK cell‑based immunotherapy. Exploring the role 
of NK cells in survival and the lung tumor environment may 
enable the development of methods to improve the ability of 
NK cells to migrate and infiltrate into tumor tissues, thereby 
effectively improving the antitumor immunity of the body.

6. The microenvironment of lung cancer modulates NK 
cells

Although it has been determined that NK cells have antitumor 
effects, malignant tumors continue to develop in the pres‑
ence of NK cells, which does not mean that NK cells do not 
contribute to tumor control, but that their antitumor activity 
may be impaired to some extent (79,80). In this regard, the 
TME, which is composed of cell components, growth factors, 
proteases, extracellular matrix, and lymphatic and vascular 
systems, plays an important role (81). The TME allows tumor 
cells to obtain cancer markers, establishing a chronic inflam‑
matory environment that maintains tumor growth and induces 
dysfunction of NK cells in various ways (79,82). An increasing 
number of studies have revealed that the phenotype and 
function of NK cells are altered in the tumor microenviron‑
ment (68‑69,79). A comprehensive understanding of the factors 
and mechanisms that cause NK cell changes in the TME may 
help reveal means to restoring their antitumor potential.

Several mechanisms have been revealed to be related 
to the phenotype and function alterations of NK cells 
(Fig.  2). Firstly, tumor cells can affect the phenotype of 
NK cells depending on cell‑to‑cell contact  (83). In lung 
cancer, an in vitro Transwell experiment revealed that the 
communication between NK and tumor cells is associated 
with the downregulation of active receptors including NKp30, 
NKp80, DNAM‑1, and NKG2D on the surface of TINKs (69). 
Another study revealed that the expression of CD155 on tumor 
cells is related to the downregulation of DNAM‑1 on NK cells 
in NSCLC (84). Conversely, the inhibitory receptors of NK 
cells are upregulated in cancer. In humans, the expression of 
T‑cell immunoglobulin and ITIM domain (TIGIT) on NK 
cells was further upregulated in tumor regions compared with 
peritumoral regions in colorectal tumors (85).

Secondly, the modification of the NK cell phenotype can 
be altered due to the high expression of immunosuppressive 
factors such as transforming growth factor (TGF)‑β, 
indoleam ine 2, 3 ‑d ioxygenase  ( IDO),  I L ‑ 4,  and 
prostaglandin E2 (PGE2) (86‑89). TGF‑β has been revealed to 
be overexpressed in lung cancer cells (90,91), and its expression 
level can be a prognostic marker in lung cancer (92). Some 
mechanisms by which TGF‑β inhibits the function of NK 
cells have been identified in lung cancer: i) TGF‑β changes 
the receptor spectrum of NK cells in patients with lung 
cancer (68,69,93). TGF‑β downregulates the expression of NK 
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activating receptors NKp80, NKp30, and NKG2D (68,69,94), 
thereby inhibiting the cytolytic activity of NK cells (86,94). 
Neutralizing TGF‑β inhibits the downregulation of NKG2D 
expression and restores the antitumor response of NK 
cells  (93,95); conversely, TGF‑β upregulates inhibitory 
receptors including NKG2A (96) and programmed cell death‑1 
(PD‑1) (97) in NK cells in tumors (96,98). ii) TGF‑β affects 
the metabolism of NK cells in lung cancer. In Kras‑driven 
lung cancer, high levels of TGF‑β in the TME cause aberrant 
expression of the fructose 1,6‑biophosphatase (FBP1) 
protein in NK cells, thereby inhibiting NK cell glycolysis 
and reducing cellular activity, eventually leading to NK cell 
dysfunction (61); iii) TGF‑β mediates NK cell polarization 
toward angiogenesis (99). Furthermore, another study revealed 
that the expression of PGE2, which inhibited the antitumor 
activity of NK cells in NSCLC tumor tissue, was significantly 
increased  (100). Notably, immune cells which are a major 
component of the TME, inhibit NK cell function mainly by 
secreting immunosuppressive molecules (101‑103). Studies 
have revealed that the number of myeloid‑derived suppressor 
cells (MDSCs) (104) and regulatory T cells (Tregs) (105) in 
the lung cancer TME is higher than that in normal tissues and 
peripheral blood adjacent to cancer, both of which can secrete 
TGF‑β (86,93,106,107).

In addition, the physical and chemical conditions of 
the TME, including hypoxia, low pH and low glucose 
concentration, can also impair NK cell function  (108). 
Previous studies have confirmed that hypoxia downregulates 
the expression of NCR and NKG2D on NK cells (109) and 
damages their cytotoxicity  (110). In NSCLC, high HIF‑1α 
levels of tumor negatively impact (111,112) the OS of patients; 
the associated mechanisms may include adenosine generation 
and accumulation, lactate accumulation and extracellular 
acidosis. Both adenosine accumulation and extracellular 
acidosis can block NK cell activation, proliferation and 
cytotoxicity  (113,114), while lactate accumulation mainly 
inhibits the cytotoxic activity of NK cells and increases the 
number of MDSCs that inhibit NK cytotoxicity (115).

Clearly, various components of the TME affect the 
antitumor functional activity of NK cells in different ways 
during the progression of lung cancer. Among them, TGF‑β is 
the main inhibitor of NK cell function. Notably, intratumoral 
NK cells may have a negative effect on other immune cells 
located in the TME after their own antitumor function 
decreases. For example, DC maturation was impaired due 
to the lack of IFN‑γ secretion by NK cells and Tregs were 
profusely recruited through CCL22 secretion induced by 
NK cells  (116,117). An important question is whether the 

Figure 2. Mechanisms of the microenvironment of lung cancer modulates NK cells. Tumor cells downregulate the expression of active receptors of NK cells 
(yellow arrow). Tumor cells and some immune cells in the TME secrete immunosuppressive factors which alter the phenotype and metabolism of NK cells 
(green arrow). The physical and chemical conditions of the TME impair NK cell function (blue arrow). Tumor cells upregulate the expression of inhibitory 
receptors of NK cells (red arrow). NK, natural killer; TME, tumor microenvironment; HLA, human leukocyte antigen; IDO, indoleamine 2,3‑dioxygenase; 
IL, interleukin; ILT, Ig‑like transcript; KIR, killer cell immunoglobulin‑like receptor; MDSC, myeloid‑derived suppressor cell; MICA/B, MHC class I 
chain‑related protein A/B; NKG2A, natural killer group 2 member A; PVR, poliovirus receptor; TAMC, tumor‑associated myeloid cell; TGF‑β, transforming 
growth factor‑β; TIGIT, T‑cell immunoglobulin and ITIM domain; Treg, regulatory T cell.
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modifications in the intratumoral NK phenotype and function 
are reversible. If they are, enhancing NK cell function 
with immuno‑stimulatory cytokines such as IL‑15 or by 
neutralization of immunosuppressive factors produced in 
the environment may improve the efficacy of NK cell‑based 
immunotherapy and further ameliorate the clinical outcome 
of lung cancer.

7. Prospects for lung cancer treatment: NK cell‑based 
immunotherapy

Based on the important role of NK cells in tumor control, 
NK cell immunotherapy has developed rapidly. Several 
approaches have recently been proposed to boost NK cell 
antitumor function, to support in  vivo persistence and 
homeostatic proliferation, and to promote homing to the tumor 
microenvironment (33) (Fig. 3).

Cytokine therapy promotes NK cell proliferation, viability 
and tumor infiltration. It has been reported that IL‑2, IL‑15 
and IL‑18 can enhance the proliferation ability of NK cells 
and improve their antitumor function (48,118). Meta‑analysis 
results have revealed that IL‑2 treatment can significantly 
improve OS in patients with NSCLC (119). However, IL‑2 
is not the best choice because Tregs can be preferentially 
activated by IL‑2, thereby inhibiting NK cell proliferation and 
cytotoxicity (120,121). IL‑15 is an alternative form of IL‑2, 
which preferentially stimulates NK cells without activating 

Tregs (122). Treatment of drug‑resistant solid tumors (including 
NSCLC) with subcutaneous injection of recombinant human 
(rh) IL‑15 could significantly promote the proliferation of 
peripheral blood NK cells, especially the proliferation of 
CD56brightNK cells, in a phase I non‑randomized trial (123). 
As a super‑agonist of IL‑15, ALT‑803 could encourage the 
growth of NK cells, induce the expression of NKG2D and 
the production and release of IFN‑γ, and enhance the role 
of ADCC (124). In a phase 1b clinical trial, patients with 
metastatic NSCLC treated with ALT‑803 and nivolumab 
exhibited a high tumor response rate and the treatment was 
well tolerated (125).

Monoclonal antibodies (mAbs) that induce NK cells to exert 
ADCC effects. mAbs that induce NK cells to exert ADCC 
effects include mAbs targeting tumor‑associated antigens 
such as rituximab or cetuximab that recognize CD20 and 
epidermal growth factor receptor (EGFR) and antibodies 
against inhibitory molecules such as monalizumab that 
recognizes NKG2A (126‑129). Nowadays, immunotherapy 
targeting the PD‑1/PD‑L1 inhibitory axis is considered a treat‑
ment pillar in NSCLC (130‑135). A recent study revealed that 
TINK cells from patients with NSCLC expressed increasing 
immune checkpoint receptor PD‑1 on their surface, which 
correlated with their dysfunction (132). Notably, treatment 
with PD‑1 blocking antibodies could reverse PD‑L1‑mediated 
inhibition of NK cells (132), highlighting the critical role of 
PD‑1+ NK cells in immune checkpoint blockade for NSCLC. 

Figure 3. NK cell‑based immunotherapies. NK, natural killer; ADCC, antibody‑dependent cell‑mediated cytotoxicity; CAR, chimeric antigen receptor; 
EGFR, epidermal growth factor receptor; HSP, heat shock proteins; IL, interleukin; mAb, monoclonal antibody; NKG2A, natural killer group 2 member A; 
PD‑1, programmed cell death‑1; HLA, human leukocyte antigen.
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In addition, TIGIT immune checkpoint inhibitors have been 
revealed to prevent NK cell depletion and elicit effective 
tumor‑specific T‑cell immunity in an NK cell‑dependent 
manner (85).

Adoptive transfer of activated NK cells. Adoptive transfer of 
NK cells with high yield and high quality is the most direct 
means to restoring and improving the function of the immune 
system. The outcome of adoptive transfer of NK cells can vary 
due to differences in the strategies used for the separation, 
expansion and activation of NK cells  (136,137). NK cells 
can be derived from either autologous or allogeneic sources, 
either peripheral blood mononuclear cell (PBMC), stem cell 
(including umbilical cord blood, embryonic stem cells and 
induced pluripotent stem cells) or NK cell lines. It has been 
proven that transferring autologous NK cells into patients is 
safe (138). An experiment using adoptive NK cells to treat 
melanoma revealed that the adoptively transferred NK cells 
persisted in the peripheral circulation of patients for at least 
1 week post‑transfer and exhibited high levels of lytic activity 
in  vitro but had no effect on tumor regression  (139). The 
limited effect may be attributable to the KIR‑ligands of tumors 
always matching the autologous NK cell KIR repertoire and 
the suppression by self MHC class I that enables malignant 
cells to evade NK‑mediated elimination. Thus, strategies have 
been developed to overcome this limitation, such as use of an 
anti‑KIR antibody (140).

Compared with autologous NK cells, allogeneic NK cells 
persist in vivo and exhibit a clear, improved association with 
the therapeutic response (141,142). The major risk of using 
allogeneic NK cells is the development of graft‑versus‑host 
disease, which can be improved by the use of haploidentical 
NK cells  (143). A previous study has revealed that after 
treatment with allogeneic NK cells, the quality of life of 
patients with advanced NSCLC is improved (130). At present, 
allogeneic NK cells are widely used in several tumor therapy 
clinical trials, including acute myeloid leukemia, chronic 
myeloid leukemia, melanoma, breast and ovarian cancer, 
neuroblastoma and some types of solid tumors, such as renal 
cell carcinoma, colorectal and hepatocellular cancer (144).

The source of cells is another issue to consider. Given the 
small percentage of NK cells of PBMCs, purified NK cells 
must be expanded ex vivo to attain the requirements for clinical 
use, but developing strategies to yield an adequate cell number 
remains a major challenge. Thus, stem cell‑derived NK cells 
are gradually becoming a focus of research. Differentiation 
of mature, functional NK cells can be achieved through the 
co‑culture of bone‑marrow‑ or umbilical cord blood‑derived 
CD34+ hematopoietic stem cells with IL‑2/IL‑15 and various 
growth factors (145). Compared with PBMC‑derived and stem 
cell‑derived NK cells, NK cell lines are easier to expand. 
Several cytotoxic cell lines including KHYG‑1, NK‑92, 
and NKL are gradually becoming a powerful tool for NK 
cell‑based immunotherapy (136,137). However, the lack of 
in vivo persistence and CD16 expression in most cell lines 
limits their clinical use. Fortunately, transgene expression can 
promote the expression of CD16 (145). Moreover, an in vitro 
experiment revealed that NK92‑CD16 cells have greater 
cytotoxic potential against tyrosine kinase inhibitor‑resistant 
NSCLC cells than their parental NSCLC cells (146).

Furthermore, to obtain more robust cytotoxic activity of 
NK cells, immunostimulatory molecules such as cytokines 
are usually used in combination with NK cells in clinical 
research. Studies have confirmed that adoptive transfer of 
NK cells stimulated by IL‑15 is effective in the treatment of 
patients with advanced NSCLC (130,147). Notably, ex vivo 
heat shock protein (HSP)‑70‑peptide stimulates NK cells and 
improves their function. HSPs are usually synthesized when 
cells react to various stress‑inducing or toxic factors (148). 
Most HSPs are molecular chaperones, and promoting the 
synthesis of HSPs can improve the function of the chaperone 
machinery and lead to reduction of cell sensitivity to repeated 
action of the same or other stressful agents (149). HSPs are 
overexpressed in various cancers, and their increased expres‑
sion is generally associated with tumor cell survival, invasion, 
metastasis and chemoresistance  (150‑152). A substantial 
number of studies have reported a relatively higher risk of lung 
cancer with increased expression of HSP‑70, and their levels 
correlated with the grade and stage of lung tumors (153,154). 
Another study revealed that membrane‑bound HSP‑70 acts 
as a tumor‑specific marker enhancing NK cell activity (155). 
Subsequently, several clinical trials have revealed that ex vivo 
HSP‑70‑peptide‑activated, autologous NK cells are well 
tolerated and deliver positive clinical responses in patients 
with advanced NSCLC (156‑158). This may be a promising 
treatment for lung cancer.

Genetic modification of NK cells. Genetic modification 
can induce profound and sustained genetic changes in NK 
cells (159). Among them, chimeric antigen receptor (CAR) 
NK cells have attracted increasing attention (160,161). The 
advantages of CAR NK cells over CAR T cells are MHC 
independence, lack of graft‑versus‑host response and a 
relatively limited lifespan (avoiding the need to insert suicide 
genes into CAR NK cell constructs). Similar to adoptive 
transfer, the sources of CAR NK cells are diverse and include 
peripheral blood NK cells, primary cord blood‑derived NK 
cells and the NK cell line NK‑92; recent studies have tested 
their effectiveness (162,163). A previous study has revealed 
that cord blood NK cells engineered to express IL‑15 and 
a CD19‑targeted CAR have long‑term persistence and 
potent antitumor activity and are easy to produce (164). In a 
phase 2 trial, among 11 patients with relapsed or refractory 
CD19‑positive lymphoid tumors, eight patients exhibited a 
response to treatment with cord blood‑derived CAR‑NK cells 
without the development of major toxic effects (165).

Transformed cell line NK‑92, originating from undif‑
ferentiated NK‑cell precursors, is also commonly used (166). 
To date, NK‑92 has been intensively studied; both preclinical 
mouse studies and phase I clinical testing have confirmed its 
safety in patients and cytotoxicity against several tumor types, 
particularly against lung tumors (167‑169). In an in vitro study, 
a novel chimeric costimulatory converting receptor‑modified 
NK92, which comprised the extracellular domain of PD‑1, 
transmembrane and cytoplasmic domains of NKG2D, and the 
cytoplasmic domain of 4‑1BB, exhibited enhanced antitumor 
activity against human lung cancer H1299 cells (170). Given 
that CAR NK cells have favorable application prospects, 
some measures need to be implemented to develop a more 
intelligent next generation. First, non‑viral vector methods 
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should be developed to avoid the insertion mutations induced 
by retroviral transfection. Second, establishing improved 
clinical‑grade protocols for purifying NK cells to avoid T‑cell 
contamination which may lead to graft‑versus‑host disease or 
lymphoproliferative disorders (171,172). Third, establishing 
CAR ligand bi‑specific CAR molecules or silencing NK 
inhibitory receptors during the design of CAR‑NK cells may 
further improve the efficacy of CAR‑NK cell therapy.

Bispecific killer‑cell cements promote lysis of tumor cells by 
NK cells. Recently, bispecific killer‑cell cements have been 
designed to promote lysis of tumor cells by NK cells (173,174). 
These NK cell adaptors enable the killing effect of NK cells 
on tumor cells by targeting activation receptors NKp46 and 
CD16 via tumor antigens (such as CD19, CD20, or EGFR) 
and Fc fragments, respectively. Two CD16‑based bispecific 
antibodies with EGFR variants and wild‑type EGFR (AFM22 
and AFM24) are in preclinical development. In vivo, these 
antibodies effectively control tumor growth in mouse models 
of solid and invasive tumors (81).

Targeting autophagy enhances lysis of tumor cells by 
NK cells. Targeting autophagy is a new strategy in cancer 
immunotherapy. A recent study revealed that rocaglamide 
inhibits autophagy and restores the level of NK cell‑derived 
granzyme B in NSCLC, enhances NK cell‑mediated lysis of 
lung cancer cells, and causes tumor regression in vivo (175).

Various applications of NK cells to lung cancer treatment 
are increasingly being attempted, denoting that there is major 
progress in NK cell research (Table  I). Additional studies 
in patients with lung cancer are still required to realize the 
antitumoral potential of NK cells and establish its clinical 
applications.

8. Summary

In recent years, molecular targeted therapy and immune 
checkpoint inhibitor therapy have led to marked progress in 
the treatment of lung cancer. However, a considerable number 
of patients remain unresponsive to treatment, and the need for 
new treatment strategies is still urgent. Numerous studies have 
confirmed the critical role of NK cells in lung cancer control. 
Immunotherapy targeting NK cells may be an effective strategy 
for lung cancer treatment. The growing insight into the NK 
cell potential for lung cancer treatment provides a platform 
for the development of NK‑based immunotherapy. However, 
numerous obstacles remain to be overcome to derive the full 
benefit of the NK cell antitumor potential. First, the poor ability 
of NK cells to reach tumor tissues limits their application 
in solid tumor therapy, which is a common problem with 
cellular immunotherapy strategies. As aforementioned, when 
NK cells are present in tumor tissues, they are preferentially 
localized in the matrix without coming into contact with the 
tumor cells. Second, changes in NK cell‑activated receptors 
and ligands in tumors may result in decreased antitumor 
activity. Finally, the TME remains the main obstacle to the 
effectiveness of the adoptive transfer of NK cells. Despite 
these challenges, as more data are gathered on the lung cancer 
TME, immune regulatory cell populations, cancer‑related 
changes in NK cell biology, function, and transport, NK 

cell immunotherapy will become increasingly effective. 
Key components to the success of future trials include the 
incorporation of modalities that harness NK cell cytotoxicity 
while promoting in vivo survival, homeostatic proliferation, 
and trafficking to the tumor and the development of drugs 
that trigger NK cell tumor killing via ADCC or sensitization 
of the target and drugs that promote NK cell tumor homing, 
such as the development of monoclonal antibody‑chemokine 
fusion proteins to promote the infiltration of cytolytic NK 
cells into tumor tissues. Efforts should be made to solve 
the problems of clonal expansion and genetic modification 
of NK cells. Currently, several phase I and II clinical trials 
for the treatment of targeted NK cells for lung cancer are 
underway, including chemotherapy combined with NK cell 
adoptive transfer therapy (NCT03366064, NCT03410368), 
immune checkpoint inhibitors combined with NK cell 
adoptive transfer (NCT03958097), surgery combined with 
NK cell adoptive transfer therapy (NCT02843815), and CAR 
NK cell therapy (NCT03656705). In the future, combined 
standard radiotherapy, chemotherapy or radiochemotherapy, 
targeted therapy, ex vivo stimulation or CAR‑NK cells and 
other targeted NK cell methods may eventually change the 
treatment mode of lung cancer, providing hope to patients 
with limited treatment options.
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