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Abstract

The recent era has witnessed exponential growth in the production of multimedia data which

initiates exploration and expansion of certain domains that will have an overwhelming

impact on human society in near future. One of the domains explored in this article is con-

tent-based image retrieval (CBIR), in which images are mostly encoded using hand-crafted

approaches that employ different descriptors and their fusions. Although utilization of these

approaches has yielded outstanding results, their performance in terms of a semantic gap,

computational cost, and appropriate fusion based on problem domain is still debatable. In

this article, a novel CBIR method is proposed which is based on the transfer learning-based

visual geometry group (VGG-19) method, genetic algorithm (GA), and extreme learning

machine (ELM) classifier. In the proposed method, instead of using hand-crafted features

extraction approaches, features are extracted automatically using a transfer learning-based

VGG-19 model to consider both local and global information of an image for robust image

retrieval. As deep features are of high dimension, the proposed method reduces the compu-

tational expense by passing the extracted features through GA which returns a reduced set

of optimal features. For image classification, an extreme learning machine classifier is incor-

porated which is much simpler in terms of parameter tuning and learning time as compared

to other traditional classifiers. The performance of the proposed method is evaluated on five

datasets which highlight the better performance in terms of evaluation metrics as compared

with the state-of-the-art image retrieval methods. Its statistical analysis through a nonpara-

metric Wilcoxon matched-pairs signed-rank test also exhibits significant performance.

1. Introduction

People nowadays love to capture and share their life happenings e.g. via social media platforms

which leads to the extensive growth of multimedia data, it triggers the need for certain
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techniques that can allow people to store, filter, or retrieve data whenever a need arises [1]. In

the case of images, these techniques must provide an image representation that can be used to

effectively classify images according to their similar visual representations. A content-based

image retrieval system (CBIR) uses the content of an image to retrieve images from datasets

having similar visual representations. Here visual representation depicts the color, texture, or

shape of an image. A typical CBIR system works by transforming training images into corre-

sponding feature vectors through techniques that can be both hand-crafted and based on deep

learning approaches [2]. A query image is then fed to the system where its feature vector is

compared against the feature dataset and similar images are retrieved based on the similarity

scores. The appropriate selection of image representation methods, classifiers, and similarity

measures is crucial for the success of image retrieval systems. In literature, researchers have

explored and presented many new techniques based on handcrafted features or deep features

to classify images, but it remains a challenging task because of the semantic gap (Fig 1), a vari-

ance that exists between low-level image representations and human level semantics.

Handcrafted feature extraction approaches use descriptors to detect and describe objects of

interest within images. Several studies combine these descriptors to enhance the retrieval accu-

racy of the CBIR system. These strategies have performed remarkably well in expressing the

image contents but still, their image expressing capabilities are limited, expensive to design,

and hard to transfer learned knowledge to new domains on larger size image datasets. An

alternative to handcrafted features is machine learning approaches that can learn features on

their own and have better description capabilities. Studies in the recent past [4, 5] have

reported remarkable results of deep learning in terms of accuracy, precision, and applicability

in diverse areas. The convolutional neural networks (CNN) based methods not only enhance

the classification accuracy but are now assessed to be good generic feature descriptors. CNN

extract features hierarchically where lower layers encode lower features i.e. edges, shapes, tex-

ture, etc. while higher layers encode semantic level details of an image. These networks do not

require any pre-processing as kernels are learned rather than handcrafted hence no initial

parameterization and human intervention are needed. Its huge success has overwhelmed the

researchers but its reliance on a huge amount of data, low feature interpretability [2], longer

training time, and requirement of massive computational resources are some of the prominent

limitations. To address the above limitations, the proposed method uses the VGG-19 model to

extract features that have both global and local information contained by an image. Features

from the FC 7 layer of the VGG-19 model are utilized. To further optimize the extracted fea-

tures and reduce the computational expense, a genetic algorithm is employed. Afterward,

images are classified through an extreme learning machine classifier which is a single layer

feed-forward neural network having a shorter learning time and robust in terms of

Fig 1. Images having similar visual appearance but belongs to different classes [3] (reprinted from [3] under a CC BY

license, with permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g001
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convergence and generalization as compared to alternate classification methods like support

vector machine (SVM), Boltzmann machine (BM), restricted Boltzmann machine (RBM),

deep belief network (DBN), Hopfield neural network (HNN), etc. [6, 7].

The main contributions of the proposed method are as follows:

i. An optimized feature set is constructed by applying a genetic algorithm over-extracted deep

features from VGG-19 architecture for robust CBIR and to reduce the computational

expense of the proposed method.

ii. The semantic gap issue of CBIR is reduced between the extracted features and high-level

semantic concepts of the images.

iii. For efficient, effective learning and convergence, an ELM classifier is utilized for the pro-

posed method.

iv. An extensive experimental analysis over five datasets (namely Wang-A, Wang-B, OT

Scene, Wang 10k, and Caltech 256) is conducted to examine the scalability of the proposed

method as compared with state-of-the-art CBIR methods.

The rest of the paper is organized as follows: Section 2 highlights some of the existing

related work. Section 3 presents the proposed methodology in detail. Experimental discussion

and achieved results are provided in section 4. Section 5 presents the conclusion and future

direction of the research.

2. Related works

Fadaei et al. [8] address issues such as noise and image translation by integrating several wave-

lets and curvelet features along with the dominant color descriptor (DCD). Firstly, HSV color

space is considered because of its ability to differentiate chromatic and achromatic compo-

nents precisely. The extraction of DCD features from HSV color space resulted in coarse parti-

tions. So, to get even partitions, pixels are classified based on similar probability. After that,

corresponding centers are defined based on their distances, not their partitions, to yield better

accuracy. Meanwhile, the combination of the Frobenius norm with wavelet and curvelet trans-

form is proposed for texture representation. Grouping of three feature sets using a particle

swarm optimization algorithm showed better performance than competitor methods even

with more running time. Images should not only be compared depending on their regions but

also on their nature because if the regions are considered only, the accuracy of the system

would be inefficient. Considering this, image retrieval based on location-independent ROI is

presented by Raghuwanshi et al. [9]. This novel approach segments an image into the texture

and non-textured region. Tetrolet transform is used to highlight texture regions and for non-

textured regions moment invariants in combination with the edge, features are used. Varying

block sizes are used for finding optimal blocks for segmentation. A larger block size resulted in

overlapping regions and increased segmentation time, therefore an 8×8 block is suggested. A

similarity count is added to give a higher rank to images having more similar regions hence

reducing no. of comparisons and better precision and recall. Another image representation

method based on iterative DCT and sparse representation is presented in [10]. HSI and CIE-

LAB color spaces are analyzed because of their uniform color perception which is considered

to be related to human perception. Sparse representation is combined with several available

acceleration techniques like DALM, PALM, etc. to investigate retrieval results. The proposed

method’s performance is evaluated by varying recall probability and averaged modified nor-

malized retrieval rank. Experimental analysis shows a remarkable reduction in storage require-

ments and vector size.
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To identify prominent objects with high precision in an image Rehan et al. [11] proposed a

novel image representation method based on color histogram and bandelets transform. The

proposed method highlights the most edifying texture regions and uses artificial neural net-

works to overcome incorrect geometric classification. After determining the semantic class of

an image by SVM, a reverted index mechanism used by google for text-based search is also

incorporated for fast image retrieval. Experimental evaluation shows promising results without

external management from a user as with many relevant feedbacks based CBIR systems. If a

machine vision system can identify salient objects in an image in the early stages of recogni-

tion, it will be possible to not only generate proper object detection windows for further pro-

cessing but will also reduce computational costs to much extent. Considering this a method

for salient object subitizing (SOS) combined with CNN is presented by Zhang et al. [12]. For

the training of CNN based SOS model, 20k synthetic images are generated by varying no. of

salient objects and background images. This method successfully suppresses false object detec-

tion and results in better average precision for images having 3 dominant objects. Hussain

et al. [13] present an improved pre-processing technique using Quaternion transform to high-

light salient regions of the image thereby improving the retrieval rate.

Anandh et al. [36] presented a hybrid framework comprising local features for CBIR. The

framework uses color auto-correlogram, Gabor wavelet, and wavelet transform for extracting

color, texture, and shape simultaneously. For deriving texture, six orientations and four scales

are used. This method used SVM as a classifier and Manhattan distance as a similarity measure

for image retrieval. In terms of performance, the combination of hybrid features resulted in

improved performance as compared to the individual feature representation methods for

image retrieval. Dubey et al. [37] have come up with a novel descriptor based on adder and

decoder concepts. Local binary patterns (LBP) of three channels are combined with adder and

decoder to yield outputs of 3 input channels, 4 adder channels, and 8 decoder channels. In

terms of performance, decoder channels highlight color texture information better as com-

pared to adders and input channels. A higher dimension of the feature vector is one of the

shortcomings of decoder-based LBP. A robust feature representation model based on local tex-

ton XOR patterns (LTxXORP) is presented by Bala et al [38]. The proposed model divides the

V space of HSV color space into sub-blocks of 2×2. Texton images are generated by applying 7

texton shapes on each sub-block. Afterward, an XOR operation is performed between the cen-

ter pixels and neighboring pixels of the resultant image. Histograms of HSV color spaces and

the texton XOR image are concatenated to get the final feature vector. The experimental analy-

sis highlights the robustness of the proposed model as compared to other LBP-based methods.

Another novel method based on bag-of-words (BoW) is presented by Sarwar et al. [39] to

address the semantic gap issue that occurred in a CBIR system. The proposed method builds a

dictionary that incorporates complementary features from both LBPV and LIOP descriptors

by applying density-based spatial clustering of applications with the noise (DBSCAN) method.

LBPV features overcame the loss of global texture information faced by LBP by adding vari-

ance as a weight to get the feature vector. On the contrary, to preserve both local and global

order of pixel intensities, LIOP is used. The dimensions of a resulted feature vector are reduced

using PCA and classification is performed using SVM. The experimental analysis highlights

better recall by forming a small-size visual dictionary and better precision by forming a large-

size dictionary. ‘In most of the studies to represent features, the output of the last layers of a

single CNN without quantization is used. Hence, the intermediate convolution layers remain

neglected. To address this Alzu’bi et al. [40] have proposed a bilinear approach named

CRB-CNN by modeling two CNNs in parallel i.e. VGG-16 and VGG-m for extracting features

from intermediate convolution layers in an unsupervised way, which resulted in low dimen-

sion but compact and highly discriminative features of vector length 16. This method uses the
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first 15 and 30 layers of VGG-m and VGG-16 respectively and replaced fully connected layers

with three new layers i.e. root pooling, sqrt, and L2 normalization. The model reduces the

dimensions of image features into several compact dimensions i.e. 512,128, 64,32,16. The

experimental analysis highlights the best retrieval accuracy overall dimensions when Euclidean

distance is used as a similarity measure. In the case of Manhattan distance, accuracy tends to

improve when vector size is set to 64 and starts to degrade when size is reduced to 32 or 16. In

[41] Quantization as the pre-processing step is also suggested to reduce dimensions.

Mary et al. [42] presented a hybrid feature selection method based on a genetic algorithm.

The feature set is a merger of color moments, entropy, energy, homogeneity, contrast, and fea-

ture descriptor. A backpropagation neural network is used as a feature selection algorithm as

well as for classification. 10 best features are selected from a set of 26 features. The approach’s

performance is judged considering many similarity measures but the modified normalized

retrieval rank evaluated the system accurately. Using CNN for feature extraction is also sug-

gested by Shah et al. [43] based on the precision achieved against competitive methods. Bai

et al. [44] have come up with an optimized version of AlexNet named (OANIR). The proposed

improvements of this method are a combination of max and average pooling, the use of max-

out function as the activation function for fully connected layers, and the addition of a hidden

layer for binary code representation. At a hidden layer, a binary code function is used to limit

output between 0 and 1. Extracted and queried binary codes are then judged based on ham-

ming distance. OANIR has outperformed the original AlexNet in terms of precision and mAP

even for large-scale image datasets. Can the same binary code be used for retrieval and com-

pression to efficiently utilize storage? To answer this Zhang et al. [45] have studied deep net-

works for image compression. Two deep networks are trained. First, for representation of the

image in compressed bitstream form, and second for extracting features. Both the trained net-

works are then combined using triplets of images. The proposed method outperformed in

terms of JPEG compression and achieved a compression ratio of 5.3 for 32×32 thumbnails.

The performance of several classifiers i.e. SVM, LSSVM, NN, ELM, and kernel ELM for the

object recognition domain is evaluated by Zhang et al. [46]. The deep features are extracted

using CNN having 5 convolutions and 3 fully connected layers pre-trained on the ImageNet

dataset. Layers 6 and 7 are used as inputs for classification. The recognition accuracies are

tested under three setups i.e. single domain, cross-domain using source, and cross-domain

using source and target. In all three setups, kernelized ELM shows a state-of-the-art perfor-

mance among all. Recent advances in CBIR are comprehended in [47]. The study highlights

key challenges in generic modules of the CBIR framework and suggested a variety of represen-

tative strategies and methods to overcome recognized challenges. Guo et al. [48] describe vari-

ous deep learning approaches comprehensively and summarizes the significant issues related

to the design and training of deep networks. The study provides insight into the scope and

compares the performance of deep networks on commonly used datasets. The details of com-

petitive CBIR methods are presented in Table 1.

3. The methodology of the proposed model

This section discusses in detail the methodology of the proposed method as presented in Fig 2.

The three primary steps of the proposed methodology are a) deep feature learning through

transfer learning and VGG-19, b) selection of optimal features and c) image classification

using ELM. A similarity between a query image and training images are judged based on Can-

berra distance. A detailed description of each of these steps is presented in subsequent

sections.
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Table 1. Details of competitive CBIR methods.

Technique Problem addressed Feature extraction Clustering Classification Similarity

measure

Limitations/ Future

work

FIF-IRS [14] Semantic gap, the

computational cost

8-Directional Gray Level Co-

occurrence Matrix,

geometric shape features,

and HSV Color Moments

N.A. N.A. Manhattan,

Canberra

Euclidean and

statistical

distance

To integrate

optimization

techniques to reduce

dimensions of feature

vectors

SCNN-ELM [15] Classification accuracy Fine-tune AlexNet N.A. Extreme learning

machine

N.A. Misclassified visually

similar images

CM-LBP-CED [16] Retrieval accuracy Color moments,

Local Binary Pattern (LBP)

and Canny edge detection

N.A. N.A. Manhattan

distance

Incorporate deep

learning techniques

GMM-mSpatiogram

[17]

Lack of spatial

information,

dimensionality

problem

GMM based color

quantization method,

spatiograms

Expectation

maximization-

Bayesian

Information

Criterion

N.A. Mahalanobis

distance,

Jensen–Shannon

Divergence

To explore more

sophisticated color

and texture

information

SIFT-SURF [18] Semantic gap SIFT, SURF k-means SVM Euclidean

distance

Incorporate deep

learning techniques

CM-DWT-CEDD [19] Semantic gap Color moments, Gabor and

Discrete wavelet transform,

Color and Edge

Directivity Descriptor

N.A. N.A. Euclidean

distance

Incorporate deep

learning-based

classifiers

PUD [20] Incompatibility of

image descriptor and

ranking methods

Perceptual Uniform

Descriptor

N.A. N.A. L1/L2 norm,

Scatter balance

metric learning

Manifold ranking with

multi-graph fusion

N3G-MFR [21] Role of image re-

ranking in CBIR

HSV, SIFT, AlexNet N.A. N.A. Jaccard

similarity

To incorporate feature

extraction and fusion

re-ranking

ResNet [22] Vanishing gradient Residual network N.A. Minimum distance

classifier

Canberra

distance

Use of deep

architecture in the

medical field

CDH-ART [23] Fusion framework for

ranking retrieval

results

Color Difference Histogram

and Angular Radial

Transform features

N.A. N.A. Euclidean

distance,

Modified

Canberra

distance

Handcrafted features,

computationally

expensive

B-T-Morph [24] Semantic gap Image binarization, image

transform, and

morphological operator

N.A. ANN, SVM Euclidean

distance, City

block distance

Handcrafted features,

computationally

expensive

HWVP [25] Semantic gap, Effective

feature representation

Hierarchical wavelet packet

descriptors

N.A. SVM Euclidean

distance

Over partitioning of

images leads to

disrupted texture

patterns

ISA-SPM [26] Learning difficulty in

dynamic image

samples

Independent Subspace

Analysis-spatial pyramid

matching

k-means SVM Histogram

intersection

Sensitive to noise,

required fixed group

size for random

vectors

FC-GPHOG [27] Challenges in object

and scene image

classification

GP-HOG, FC-GPHOG,

enhanced fisher model

N.A. Nearest neighbor Cosine similarity To handle fuzzy

memberships of class

images.

Balanced tree

structures [28]

Computational

complexities in case of

a large no. of classes

Dense SIFT, Locally

constrained linear coding,

Spatial pyramid matching

k-means One vs all binary

classifiers

N.A. Incorporation of the

semantic relationship

between classes and

distribution of classes

(Continued)
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Table 1. (Continued)

Technique Problem addressed Feature extraction Clustering Classification Similarity

measure

Limitations/ Future

work

ResNet-HAM [29] Lack of prior

knowledge while

transferring to

a new domain

.

ResNet-50, VGG-16 k-means Hopfield network Euclidean

distance between

two weighted

matrices

Inherent ambiguity

while retrieving

images from certain

classes.

ILHS [30] Visual similarity vs

semantic correlation

NA Spectral clustering SVM Euclidean

distance

Incorporate CNN-

based representations

for better classification

accuracies.

Spatial color-Shape

[31]

Lack of spatial

information,

dimensionality

reduction

BRISK like FREAK, Spatial

CH, BoW

N.A. K-nearest

neighbors

Chebyshev

distance

To incorporate scale

invariancy

SURF-HOG [32] Semantic gap SURF, HOG k-means++ SVM Euclidean

distance

To incorporate spatial

information

CHLDP-DSIFT [33] Image diffusion CH, LDP, SIFT, BoF N.A. K- nearest

neighbors

Manhattan

distance

Time optimization of

a diffusion process

MDGHM-SURF-ORB

[34]

Semantic gap MDGHM-SURF-ORB Fuzzy c- means Soft label SVM Canberra

distance

Incorporate VLAD,

deep learning

approaches

DNN-SAR [35] Semantic gap Local binary pattern, Zernike

moments, HSV histogram

Adaptive

Sunflower

optimization

algorithm (SFO)

Deep neural

network-search

and rescue

optimization

algorithm (DNN-

SAR)

Matching

difference

Integration of Hadoop

approaches with CBIR

Proposed method Semantic gap,

dimensionality

reduction, robust

feature representation,

the computational

expense

Transfer learning based on

VGG-19 architecture, GA

N.A. ELM Canberra

distance

Incorporate other

deep learning

techniques

https://doi.org/10.1371/journal.pone.0274764.t001

Fig 2. A proposed methodology for CBIR (reprinted from [3] under a CC BY license, with permission from J. Z.

WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g002
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3.1 Features learning

Machine learning algorithms have always worked by mapping the relationship between input

and output data based on the learned knowledge. In case the input/training data shares the

same feature space or distribution as output/testing data, the predictions would be accurate.

On the contrary, if they belong to different feature spaces then the predicted outcomes would

be inaccurate hence, degrades the overall performance of the system. As mentioned earlier,

with the exponential growth of image repositories, utilizing an existing dataset not entirely

similar but close to the target domain seems an efficient approach. Hence, in the proposed

method transfer learning (TL) is being employed for optimizing time and resources by fine-

tuning or utilizing a pre-trained network. TL is defined in [49] as given a source domain S and

learning Task LS, a target domain T and learning task LT, transfer learning improves the learn-

ing of the target predictive function fT(�) in T by utilizing the knowledge in S and LS, where

S6¼T and Ls6¼LT. When utilizing a pre-trained network, parameters of the initial layers are

used as it is rather than initializing the parameters randomly which enhances the generaliza-

tion ability of the model and accelerates the learning process.

In the proposed method, VGG-19 architecture (discussed in subsequent sections) is

retrained on our selected datasets. As this network intake images of a specific size so, prepro-

cessing of the images is being done to make them compatible with the network’s initial layers.

In VGG-19, after training the network, the fully connected layer 7 is considered as a feature

map having a 4096×1 dimensional vector.

3.1.1 CNN architecture for the proposed method. A convolution neural network (CNN)

starts with N number of training images, which are passed through several convolution layers

followed by some pooling layers to the final fully connected layers. In convolution layers, fea-

tures are extracted by convolving filters f of size m×m with image I at all spatial locations. A

linear convolution operation outputs a feature map having distinct details and is smaller in

size than the original image. Mathematically, a feature value in fth feature map of layer l at loca-

tion (x, y) is expressed as:

Fl
x;y;f ¼ wl

f Tx
l
x;y þ blf ð1Þ

where x, b, and w represent input patch, bias, and weight vector, respectively. To detect non-

linear features, activation functions like ReLu [50], sigmoid, and tanh are mostly used to add

non-linearity to CNN. ReLU activation function is expressed as:

ReLU ¼ maxð0; xÞ ð2Þ

Early layers of CNN capture local details i.e. edges, curves, textures, etc. while as the layer

gets deeper and deeper these networks can have a semantic level understanding of images like

we humans do. Upper layers of CNN are also referred to by [4] as good descriptors. The num-

ber of kernels, stride factor and size are some of the parameters of convolution layers.

Stacked feature maps are then passed to pooling layers that reside between succeeding con-

volution layers to reduce the overall computation burden through a reduction in no. of train-

able parameters. In other words, pooling layers reduce the dimension of feature maps by

applying a downsample operation hence, achieving translation invariance. Max, min, and

average pooling are some variant operations of this layer. For a pooling region of size n×n,

max-pooling can be mathematically expressed as:

MXl
j ¼

max
1 � i � n� n

xj

� �
ð3Þ

where MXl
j represents the output of max-pooling operation at layer l using n×n pooling region.
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After passing through a series of multiple convolutions and pooling layers, the resultant output

is then flattened into a single-dimensional vector which determines the probability of possible

class labels. All the neurons of the previous layer are connected to each neuron of a fully con-

nected layer to predict semantic association to a class. A loss function is then used to measure

the prediction error. Once an error is calculated, results are backpropagated to update weights

and biases to reduce misclassification.

3.1.2 VGG -19 for the proposed method. VGG architecture is presented by the visual

geometry group [51] in 2014. Its two variants are introduced i.e. 16 and 19 based on the depth

of layers. Because of fewer parameters, deeper layers, uniform architecture, and small size con-

volution filter as compared to AlexNet, the proposed method uses the VGG-19 architecture. It

comprises 16 convolution layers and 3 fully connected layers (Fig 3) and utilizes a 3×3 filter at

all the convolution layers to learn as many complex features as possible and doubles its number

after pooling layers to retain spatial dimensions while increasing depth. Color images of size

224×224 are first pre-processed by subtracting mean RGB values and then forwarded to con-

volution layers having a stride and padding of 1 pixel. The dimensions are reduced to half

through 5 max-pool layers having filter of size 2 and stride 2 with no padding, occasionally

between convolution layers. After convolution and pooling block, 3 fully connected layers

along with dropout with a 50% probability to discard activations are utilized where the first

two layers contain 4096 features and the last layer contains 1000 features. VGG uses the ReLU

activation function for non-linearity and is trained by a mini-batch stochastic gradient descent

algorithm.

3.2 Selection of optimal features through genetic algorithm

The purpose of this step is to refine the resultant feature vector by discarding irrelevant and

redundant information that may affect the performance of the proposed model and end up

being costly in terms of computation. Hence, a genetic algorithm (GA) [52] which is a stochas-

tic search and optimization technique based on Darwin’s theory of natural evolution is

employed in the proposed method which articulates survival of the fittest. The reason for opt-

ing for GA lies in its parallelism as it can explore an entire feature space for potential solu-

tions/features rather than exploiting a single candidate solution and avoid being stuck in

finding a locally optimal solution. The main segments of GA are i) selection (probabilistic) ii)

crossover, and iii) mutation. Initially, an entire feature set extracted in the previous step is

Fig 3. VGG-19 architecture for the proposed method.

https://doi.org/10.1371/journal.pone.0274764.g003
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considered as a population that is encoded as real numbers represented as chromosomes. Indi-

vidual components of chromosomes are called “genes”. Afterward, a probability score is calcu-

lated for each chromosome based on the fitness value calculated through the k-nearest

neighbors (kNN) classifier [53]. In the selection process, a pair of fittest chromosomes among

the entire population are selected through the roulette wheel selection method [54], where a

slice of the wheel is assigned to each chromosome based on its probability value. A random

pointer is attached to the wheel, which points to the chromosomes once the wheel is rotated.

As the fittest chromosomes occupy a larger slice of a wheel, their chances of getting selected

are higher than the ones having a minor share of a wheel. The selected pairs of chromosomes

are then passed on to the crossover stage to generate a new child population. Single point

crossover is applied in which genes of the parent chromosomes are swapped before and after

the point which is selected randomly to get a mixture of parent’s characteristics in child chro-

mosomes. Moreover, to get child chromosomes with distinct characteristics along with inher-

ited ones, a mutation operation is performed. The mutation operator maintains the diversity

by altering randomly selected one or more genes within child chromosomes i.e. 0 to 1 and vice

versa. Fig 4 shows the overall workflow of the genetic algorithm. The above operations are

repeated until the population is converged, and no distinct features are being produced fur-

ther. The final feature vector after this step can be expressed as:

FV ¼ fF1; F2; . . . ; Fng ð4Þ

3.3 Image classification using ELM

In this step, for learning a model, the reduced feature set along with labels are passed to the

extreme learning machine (ELM) classifier. The ELM is first proposed by Huang et al. [55] for

single hidden layer feedforward neural networks (SLFN). Instead of fine-tuning the weights of

a hidden layer using traditional gradient-based methods, the parameters of hidden nodes can

be initialized randomly and need not be tuned. Hence, this makes it a linear problem whose

output weights can be determined easily by applying any generalized inverse operation on the

hidden layer’s output matrices. The schematic diagram of ELM classifier is shown in Fig 5. For

M distinct samples (xi, yi)2Rd×Rn, ELM classifier (one output node) having M̂ hidden nodes

and activation function α(x) can be modeled as follows:

f M̂ðxÞ ¼
XM̂

i¼1

biaðxpÞ ¼
XM̂

i¼1

biaðwi � xp þ biÞ ¼ yp; p ¼ ð1; 2; � � � ;MÞ ð5Þ

where βi = {β1,. . .,βn} is the weight vector having output weights between nodes of the output

layer and ith hidden node and wi = {w1,. . .,wM} is the weight vector connecting input nodes

with ith hidden nodes. bi is the thresholding value for ith hidden node. The above equation can

be represented in matrix form as

Hb ¼ Y ð6Þ

Fig 4. Methodology of genetic algorithm for the proposed method.

https://doi.org/10.1371/journal.pone.0274764.g004

PLOS ONE Deep features for CBIR

PLOS ONE | https://doi.org/10.1371/journal.pone.0274764 October 3, 2022 10 / 30

https://doi.org/10.1371/journal.pone.0274764.g004
https://doi.org/10.1371/journal.pone.0274764


where H represents the hidden layer output matrix, which is expressed as

H ¼

hðx1Þ

..
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hðxMÞ
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Fig 5. ELM schematic diagram [56].

https://doi.org/10.1371/journal.pone.0274764.g005
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For better generalization, ELM aims to minimize training error kHβ−Yk2 and norms of

output weights kβk. The value of β can be evaluated as

b ¼ HyY ð8Þ

where H† represents the Moore–Penrose generalized inverse of output matrix H which can be

calculated through iterative methods, singular value decomposition, or orthogonal projection

methods. For a multi-class classification problem to find an optimal solution, the objective

function of ELM can be formulated as.

minimize L ¼
1

2
kbk

2
þ C

1

2

XM

e¼1

kx
2

ek

subject to hðxeÞb ¼ yeT � xe
T e ¼ 1; 2; . . . ;M

ð9Þ

where ξ represents the training error and C is a tunable parameter that manages the distance

between the margin line and ξ. While training an ELM, the following dual optimization prob-

lem needs to be solved which is based on the Karush–Kuhn–Tucker (KKT) theorem.

L ¼
1

2
kbk

2
þ C

1

2

XM

e¼1

kx
2

ek �
XM

e¼1

Xn

k¼1

Le;kðhðxeÞbk � ye;k þ xe;kÞ ð10Þ

where L is the Lagrange multiplier. Corresponding optimality conditions based on KKT are as

follows.

@L
@bk
¼ 0! bk ¼

XM

e¼1

Le;khðxeÞ
T
! b ¼ HTL ð11Þ

@L
@xe
¼ 0! Le ¼ Cxe e ¼ 1; . . . ;M ð12Þ

@L
@Le
¼ 0! h xeð Þb � yT

e þ x
T
e ¼ 0 e ¼ 1; . . . ;M ð13Þ

where L ¼ ½L1;L2; . . . ;LM�
T

and Le ¼ ½Le;1;Le;2; . . . ;Le;n�
T
. By solving these equations, the

final value of β becomes

b ¼ HT I
C
þHHT

� �� 1

Y ð14Þ

The final output of the ELM classifier can be expressed mathematically as follows:

f xð Þ ¼ h xð Þb ¼ h xð Þ
I
C
þHHT

� �� 1

HTY ð15Þ

The class label to which the pattern x belongs is determined by the index of the output node

with the largest output value.

3.4 Retrieval of the images

In this step, images are retrieved from the image database by measuring the similarity between

query image q and dataset images d using Canberra distance which is mathematically defined
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as follows:

D q; dð Þ ¼
Xn

s¼1

jqs � dsj

jqsj þ jdsj
ð16Þ

4. Evaluation parameters, results, and discussion

This section discusses in detail the chosen image datasets along with evaluation parameters

that are used to assess the performance of the proposed method. A thorough discussion

regarding attained results is also presented in subsequent sections.

4.1 Performance evaluation parameters

4.1.1 Precision and recall. Precision and recall are among the frequently used perfor-

mance evaluators in the CBIR framework. Precision depicts the accuracy of a system by mea-

suring the relevancy of images against retrieved images for a certain query q whereas, recall

depicts the robustness of the system by identifying all relevant images within a dataset.

P ¼ Xr=Xt ð17Þ

R ¼ Xr=Xdt ð18Þ

where Xr represents no. of images retrieved as relevant, Xt represents total retrieved images

and Xdt represents no. of relevant images in a dataset.

4.1.2 Average precision and mAP. The average of precision values against a set of queries

Q is known as average precision which is calculated as:

AvgP ¼
1

Q

XQ

n¼1
PðnÞ ð19Þ

Whereas the mean of average precision is referred to as mAP which is calculated as follows:

mAP ¼
1

K

XK

n¼1
AvgPðnÞ ð20Þ

4.1.3 F-measure. Another statistical measure that highlights the accuracy of a system and

captures the properties of both precision and recall is called F-measure. Mathematically

expressed as:

F� measure ¼ 2 �
ðP � RÞ
Pþ R

ð21Þ

4.2 Experimental results and discussions

The proposed image retrieval framework is evaluated on 5 image datasets which are Wang-A,

Wang-B, Wang 10k, OT Scene, and Caltech-256. 70% of the images are used for training and

the remaining 30% are used for testing purposes from each dataset. The subsequent sections

present details of each dataset along with retrieval results.

4.2.1 Performance assessment on the Wang-A dataset. In the CBIR domain, Wang-A

[57] is one of the widely used image collections which comprises a variety of images catego-

rized into 10 semantic classes about 100 images for each semantic class. The resolution sizes of

this image collection are 256×384 or 384×256. Fig 6 shows sample images from each class.

The experimental analysis based on precision, recall, and f-measure of the proposed

method along with other competitive CBIR methods is presented in Table 2. As observed in
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Table 2, the proposed method exhibits the best performance among all because of a) optimal

deep features obtained through genetic algorithm instead of handcrafted features which

require considerable human effort in the feature selection process, b) an extreme learning

machine classifier which is computationally fast as compared to traditional classifiers in CBIR

because of its feedforward pass approach. In many groups of Wang-A dataset, the proposed

method shows promising results and has also achieved the highest precision among all com-

petitive methods. Fig 7 shows a query image of class “African tribe” which has distinct features

and the top-20 images which are retrieved as relevant against the query image by the proposed

method. Fig 8 shows the top-20 retrieved images against a query image taken from class “Ele-

phants”. The label above the retrieved images is the classification score calculated through

Canberra distance. Images having lesser distance are in initial rows and are most similar in

content to the query image. Against our proposed method, the precision/recall values of com-

petitive methods on some of the classes of this dataset are better because of the complex nature

of these classes. However, the overall average precision and mean recall scores highlight the

better performance of our proposed method. The performance of the proposed method has

also been statistically evaluated by utilizing the nonparametric Wilcoxon matched-pairs

signed-rank test. Results of the nonparametric Wilcoxon matched-pairs signed-rank test are

reported in Table 2. The level of significance is set at 0.05.and the results are analyzed in terms

of z-value and p-value. As the p-values against all the competitor methods along with [1] are

less than the level of significance, we can conclude that the proposed method shows robust

performance.

4.2.2 Performance assessment on the Wang-B dataset. The Wang-B [57] is another sub-

set of the WANG dataset and comprises 15 semantic classes having 100 images each and a res-

olution of 256×384 pixels or 384×256 pixels. Fig 9 shows sample images of each category.

Table 3 highlights the achieved results of the proposed method against other competitive

methods. As shown in Table 3, the proposed method attains 91.05% precision in retrieving rel-

evant images. The statistical analysis has also shown significant results as all the p-values are

less than 0.05 when compared against competitor methods and [60]. Figs 10 and 11 show the

top-20 retrieved images against query images taken from classes of “Bus” and “Tiger”. The per-

formance of the Wang-B dataset in terms of retrieval time against a query image is 4.86 sec-

onds as compared to the approach presented by Amsa et. al. [61] which took 32.87 seconds.

4.2.3 Performance assessment on the Wang 10k dataset. Wang 10k [62] dataset com-

prises 10,000 images categorized into 100 categories. Each category has 100 images of size

192×128 or 128×192 pixels. Some of the categories are ships, elephants, horses, trains, cards,

butterflies, roses, mountains, sunset, musical instruments, judo-karate, etc. Fig 12 shows sam-

ple images of each category. Table 4 highlights the performance of the proposed method

against other competitive methods. As shown in Table 4, the proposed method attains 78.65%

Fig 6. Sample images of Wang-A dataset (reprinted from [3] under a CC BY license, with permission from J. Z.

WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g006
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precision in retrieving relevant images. Figs 13 and 14 shows the top-20 retrieved images

against a query image. The p and z values of the nonparametric Wilcoxon matched-pairs

signed-rank test have also shown the significant performance of our proposed method as com-

pared to competitive methods and [63].

4.2.4 Performance assessment on the OT scene dataset. The OT scene [64] dataset con-

sists of 2688 images which are divided into 8 different categories. Each category has varying

no. of images of size 256×256. Categories include coast, beach, forest, open country, mountain,

highway, street, city center, and tall building. Fig 15 shows some sample images from each

class of the OT scene dataset.

Table 2. Performance comparison of the proposed method with state-of-the-art methods on the Wang-A dataset (values presented in bold are significant among

competitive methods).

Semantic Classes FIF-IRS [14] VGG-16 [58] SCNN-ELM [15] AlexNet [59] CM-LBP-CED [16] Proposed Method

African Tribes P 82.00 96.06 70.00 93.33 81.00 84.85

R 16.40 19.21 14.00 18.66 16.20 16.97

F 27.33 32.00 23.33 31.10 27.00 28.28

Beaches P 60.00 84.19 66.00 90.00 66.00 87.50

R 12.00 16.83 13.20 18.00 13.20 17.50

F 20.00 28.00 22.00 30.00 22.00 29.16

Building P 67.00 87.30 72.00 96.67 78.75 100

R 13.40 17.46 14.40 19.33 15.75 20.00

F 22.33 29.10 24.00 32.21 26.25 33.33

Buses P 95.00 100 70.00 100 96.25 100

R 19.00 20.00 14.00 20.00 19.25 20.00

F 31.66 33.33 23.33 33.33 32.08 33.33

Dinosaurs P 100 97.99 78.00 100 100 100

R 20.00 19.59 15.60 20.00 20.00 20.00

F 33.33 32.65 26.00 33.33 33.33 33.33

Elephants P 95.00 91.60 96.00 100 70.75 100

R 19.00 18.32 19.20 20.00 14.15 20.00

F 31.66 30.53 32.00 33.33 23.58 33.33

Flowers P 100 98.03 96.00 96.67 95.75 100

R 20.00 19.60 19.20 19.33 19.15 20.00

F 33.33 32.66 32.00 32.21 31.91 33.33

Horses P 100 100 82.00 100 98.75 100

R 20.00 20.00 16.40 20.00 19.75 20.00

F 33.33 33.33 27.33 33.33 32.91 33.33

Mountain P 63.00 90.70 67.00 83.83 67.75 93.33

R 12.60 18.14 13.40 16.76 13.55 18.66

F 21.00 30.23 22.33 27.93 22.58 31.10

Foods P 71.00 100 100 96.83 77.25 100

R 14.20 20.00 20.00 19.36 15.45 20.00

F 23.66 33.33 33.33 32.26 25.75 33.33

mAP (%) Avg. R Avg. F P 83.30 94.58 79.70 95.73 83.22 96.57

R 16.66 18.91 15.90 19.14 16.64 19.31

F 27.76 31.51 26.51 31.90 27.73 32.18

Statistical analysis using non-parametric Wilcoxon matched-pairs signed-rank test

z-value -2.8031 -1.9876 -2.8031 -1.9876 -2.8031 -2.8031

p-value 0.00512 0.0466 0.00512 0.0466 0.00512 0.00512

https://doi.org/10.1371/journal.pone.0274764.t002
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Table 5 shows the performance of our proposed method on the OT scene dataset against

competitive methods. Figs 16 and 17 shows the top 20 images retrieved against query image

which belongs to the class “open country” and “inside city”. The statistical analysis has also

shown significant results as all the p-values are less than 0.05 when compared against competi-

tor methods and [65].

4.2.5 Performance assessment on the Caltech 256 dataset. The Caltech 256 [66] dataset

has a total of 30,607 images categorized into 257 object categories. Each category has at least 80

images having varied resolutions. It is a challenging dataset as compared to its predecessor Cal-

tech-101 as more variation in object size, pose, and location is considered. Some of the sample

images are shown in Fig 18.

Table 6 shows a better performance of the proposed method against competitive methods

as it achieves 80.95% precision as compared to other methods. Figs 19 and 20 shows the top-20

retrieved relevant images closest to the query image in terms of content. The p and z values of

the nonparametric Wilcoxon matched-pairs signed-rank test have also shown the significant

performance of our proposed method as compared to competitive methods as well as against

[68].

4.2.6 Discussions of experimental results. The reason for opting for an ELM classifier is

its random independent feature transformation and quadratic loss function which guarantees

the convergence of training to a global optimum solution [69]. As compared to traditional

classifiers, it has fewer optimization constraints and better generalization capabilities [70]. One

of the parameters to adjust in the ELM classifier is the no. of hidden neurons which can

Fig 7. Top-20 retrieved images against query image (class: African tribes) (reprinted from [3] under a CC BY

license, with permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g007
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influence the retrieval accuracy of the proposed system. The reported retrieval accuracy is

achieved when no. of hidden neurons is in the range of 200–300. The retrieval accuracy keeps

on fluctuating between this range but gradually starts to increase when no. of neurons is set to

1000 or more. Fig 21 represents the accuracy vs no. of hidden neurons curve over selected

datasets. Even though better performance is observed while increasing the no. of neurons but

it resulted in increased computational time. As observed in Fig 21 accuracies of Wang-A,

Fig 8. Top-20 retrieved images against query image (class: Elephants) (reprinted from [3] under a CC BY license,

with permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g008

Fig 9. Sample images of Wang-B dataset (reprinted from [3] under a CC BY license, with permission from J. Z.

WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g009
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Wang-B, and OT datasets tend to decrease at points where no. of hidden neurons is equivalent

to no. of training images. In Fig 22 it can be seen that while increasing the no. of images

retrieved precision remains the same in most of the chosen datasets whereas an increase in a

recall is observed when more images are retrieved, highlighting the effective performance of

our proposed method.

The limitations of handcrafted approaches mentioned in sections 1–2 like limited image

expressing capabilities, expensive design, etc. are addressed by utilizing a VGG-19 architecture

that can learn features in an automated form. As the feature vector, we get from the FC-7 layer

of the network is of a higher dimension. There needs to be a dimension reduction strategy that

can not only selects the important features but also be computationally efficient while

Table 3. Performance comparison of the proposed method with state-of-the-art methods on the Wang-B dataset.

Performance metrics GMM-mSpatiogram [17] SIFT-SURF [18] LIOP-LBPV [39] CM-DWT-CEDD [19] Proposed Method

mAP 74.10 74.95 76.02 86.33 91.05

Avg. recall 13.80 14.99 15.20 17.26 18.21

Avg. F-measure 23.26 24.98 25.33 28.76 30.35

Statistical analysis using non-parametric Wilcoxon matched-pairs signed-rank test

z-value -2.8030 -2.8031 -2.8032 -2.8036 -2.8031

p-value 0.00512 0.00512 0.00514 0.00517 0.00512

https://doi.org/10.1371/journal.pone.0274764.t003

Fig 10. Top-20 retrieved images against query image (class: Bus) (reprinted from [3] under a CC BY license, with

permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g010
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Fig 11. Top-20 retrieved images against query image (class: Tiger) (reprinted from [3] under a CC BY license, with

permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g011

Fig 12. Sample images of the Wang 10k dataset (reprinted from [3] under a CC BY license, with permission from J. Z.

WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g012
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classifying the images. To address this, the incorporation of a genetic algorithm in the pro-

posed approach not only selects the optimal features but also reduces the feature vector size.

This resultant feature vector is approximately half in dimension as compared to the original

feature vector. For classification, ELM being a single hidden layer feedforward neural network

works better in terms of precision, recall, f-measure, and retrieval time as compared to hand-

crafted methods of CBIR.

4.2.7 Required resources and comparative analysis of computational cost. The hard-

ware and software resources upon which the performance of the proposed method is assessed

are as follows: a PC having Intel Core i7-7700 3.60 GHz processor, RAM 8GB, Microsoft

Table 4. Performance comparison of the proposed method with state-of-the-art methods on the Wang 10k dataset.

Performance metrics GLCM-GSF-HSVCM [14] CM-LBP-CED [16] PUD [20] N3G-MFR[21] ResNet [22] Proposed Method

mAP 56.4 59.98 58.46 65 74.60 78.65

Avg. recall 11.28 11.99 11.69 13 14.92 15.73

Avg. F-measure 18.8 19.98 19.48 21.66 24.86 26.21

Statistical analysis using non-parametric Wilcoxon matched-pairs signed-rank test

z-value -2.8031 -2.8033 -2.8032 -2.8035 -2.8037 -2.8031

p-value 0.00512 0.00512 0.00512 0.00513 0.00515 0.00512

https://doi.org/10.1371/journal.pone.0274764.t004

Fig 13. Top-20 retrieved images against a query image (class: Car) (reprinted from [3] under a CC BY license, with

permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g013
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Fig 14. Top-20 retrieved images against a query image (class: Train) (reprinted from [3] under a CC BY license, with

permission from J. Z. WANG, original copyright [2003]).

https://doi.org/10.1371/journal.pone.0274764.g014

Fig 15. Sample images of the OT Scene dataset [64].

https://doi.org/10.1371/journal.pone.0274764.g015
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Windows 10 (64-bit), and MATLAB 2019b (64-bit). The competitor approaches of the pro-

posed method utilize integrated local features like color, shape, texture, etc., and global features

having varying sizes of feature vectors along with clustering and classification which results in

increased computations. The feature extraction and later feature fusion are not only dependent

on the researcher’s knowledge but are computationally expensive as compared to CNN archi-

tectures. In the proposed method, a convolution neural network i.e., VGG-19 architecture

extracts features in an automated way by convolving an image with a fixed kernel of size 3.

This eases the feature engineering task as well as it is invariant to scale, rotation, and transla-

tion and computationally less expensive as compared with competitive image retrieval meth-

ods. The performance comparison in terms of the computational cost (retrieval time) of the

proposed method and its competitive methods for a Wang-A dataset is presented in Tables 7

and 8 represents the retrieval time of the proposed method on the Caltech-256 dataset.

Table 5. Performance comparison of the proposed method with state-of-the-art methods on the OT Scene dataset.

Performance metrics CDH-ART [23] B-T-Morph [24] SIFT-SURF [18] HWVP[25] ISA-SPM [26] FC-GPHOG [27] Proposed Method

mAP 51.04 60.7 69.75 77.2 86.29 89.6 90.36

Avg. recall 10.20 12.14 13.95 15.44 17.25 17.92 18.07

Avg. F-measure 17 20.23 23.25 25.73 28.75 29.86 30.11

Statistical analysis using non-parametric Wilcoxon matched-pairs signed-rank test

z-value -2.8031 -2.8031 -2.8033 -2.8033 -2.8035 -2.8036 -2.8033

p-value 0.00512 0.00512 0.00513 0.00513 0.00514 0.00514 0.00513

https://doi.org/10.1371/journal.pone.0274764.t005

Fig 16. Top-20 retrieved images according to the query image of the OT Scene dataset (class: open country).

https://doi.org/10.1371/journal.pone.0274764.g016
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Fig 17. Top-20 retrieved images according to the query image of the OT Scene dataset (class: inside a city).

https://doi.org/10.1371/journal.pone.0274764.g017

Fig 18. Sample images of the Caltech-256 dataset [66].

https://doi.org/10.1371/journal.pone.0274764.g018
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5. Conclusion and future work

The most important factors for an image retrieval system to be termed efficient and accurate

are its retrieval accuracy and utilization of computational resources. Reduction in feature vec-

tor dimensionality or extracting the appropriate features can influence both factors. So, the

proposed method first extracts the features through VGG-19 architecture which resulted in a

4096-dimensional vector. All of these extracted features may not be useful and can consume

more resources and time during execution. Hence irrelevant, and redundant features are dis-

carded by utilizing a genetic algorithm. The proposed method used an ELM classifier because

it’s computationally fast and easily trained. Classification results over 5 datasets clearly show

that the proposed method has the highest precision and recall rates among other competitive

CBIR methods. In the future, we’ll explore other deep architectures and different versions of

the ELM classifier to enhance the CBIR process.

Table 6. Performance comparison of the proposed method with state-of-the-art methods on the Caltech-256 dataset.

Performance metrics FC-GPHOG [27] ACEnet [67] Balanced tree structures [28] ResNet-HAM [29] Proposed Method

mAP 33 36.99 38.56 74.7 80.95

Avg. recall 6.6 7.39 7.71 14.94 16.19

Avg. F-measure 11 12.31 12.85 24.9 26.98

Statistical analysis using non-parametric Wilcoxon matched-pairs signed-rank test

z-value -2.8025 -2.8026 -2.8027 -2.8034 -2.8027

p-value 0.00510 0.00510 0.00510 0.00513 0.00510

https://doi.org/10.1371/journal.pone.0274764.t006

Fig 19. Top-20 retrieved images according to the query image of the Caltech-256 dataset (class: French Horn).

https://doi.org/10.1371/journal.pone.0274764.g019
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Fig 20. Top-20 retrieved images according to the query image of the Caltech-256 dataset (class: Grapes).

https://doi.org/10.1371/journal.pone.0274764.g020

Fig 21. Effect of no. of hidden neurons on the accuracy of the proposed method.

https://doi.org/10.1371/journal.pone.0274764.g021
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Table 7. Computational time (in seconds) of the proposed method and its comparative analysis with competitive methods of CBIR on the Wang-A dataset.

CM-LBP-CED

[16]

FIF-IRS [14] Spatial color-Shape

[31]

DNN-SAR [35] SURF-HOG [32] CHLDP-DSIFT [33] MDGHM-SURF-ORB [34] Proposed

Method

1.1087 1.46 1.34 1.26 0.7845 0.7837 0.5124 0.47

https://doi.org/10.1371/journal.pone.0274764.t007

Table 8. Computational time (in seconds) of the proposed method and its comparative analysis with competitive

methods of CBIR on the Caltech-256 dataset.

No. of images retrieved Proposed method DNN-SAR [35] Spatial color-Shape [31]

10 0.28 0.93 1.06

15 0.76 1.0 1.11

20 0.9 1.07 1.19

25 0.94 1.11 1.25

30 1.01 1.16 1.26

https://doi.org/10.1371/journal.pone.0274764.t008
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