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Abstract
Background: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the
sequences within these families (<0.5%) have had the residues responsible for catalysis determined.
To increase the active site annotations in the Pfam database, we have developed a strict set of rules,
chosen to reduce the rate of false positives, which enable the transfer of experimentally determined
active site residue data to other sequences within the same Pfam family.

Description: We have created a large database of predicted active site residues. On comparing
our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS
we find that we make many novel predictions. On investigating the small subset of predictions made
by these databases that are not predicted by us, we found these sequences did not meet our strict
criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate
that only 3% of our predicted sequences are false positives.

Conclusion: We have predicted 606110 active site residues, of which 94% are not found in
UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although
implemented for Pfam, the tool we have developed for transferring the data can be applied to any
alignment with associated experimental active site data and is available for download. Our active
site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to
date. They provide one of the largest available databases of active site annotation.

Background
Enzymes play a considerable role in controlling the flow
of metabolites within a cell; they catalyze virtually all of
the reactions that make and modify the molecules
required in biological pathways. Only a small number of
residues within an enzyme are directly involved in cataly-
sis and the structure and chemical properties of these res-
idues (termed the active site) determine the chemistry of
the enzyme. For this reason active site residues are highly
conserved.

Pfam [1] is a database of 8296 protein families (as of Pfam
release 20.0). Only ~0.4% of the sequences contained
within the enzymatic Pfam families (i.e. those families
that contain at least one characterized catalytic site) have
the active site residues experimentally determined. There
are families within Pfam which we know are catalytic, yet
the residues that perform catalysis have not been charac-
terized for any of the sequences within them, for example
family YgbB (PF02542). Even where a structure is known,
there are cases where the catalytic residues have not been
identified (e.g. Swiss-Prot:P30085). Although the propor-
tion of characterised catalytic residues known is low,
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many enzymatic sequences within a Pfam alignment are
homologous to a protein whose catalytic residues have
been characterised.

The fraction of characterized sequences continues to
diminish as high throughput genome sequencing projects
generate more and more data. To overcome the lack of
experimental data we can use computational methods to
predict functional residues on new protein sequences.

A range of approaches has been applied to the task of pre-
dicting active sites in protein sequences computationally.
These can be split into two broad categories: those that
transfer experimentally characterized active site data by
similarity and those that predict active site residues ab ini-
tio.

The ab initio methods for catalytic site prediction exploit
some of the known properties of active sites: active sites
are usually found buried within a cleft of a protein, muta-
tions in them can often increase the stability of an enzyme
and they are highly conserved. This has led to the use of
geometry data [2-5], stability profiles [4,6,7] and
sequence conservation [8-11] in active site prediction. In
addition, the different approaches can be used in combi-
nation. Evolutionary trace (ET) is one such method which
first identifies the most highly conserved residues in
related sequences, maps them onto the structure of the
protein and then examines the structure for clusters of res-
idues which could correspond to active sites or other func-
tional sites [12]. ET has been applied in automated
approaches that have been reported to predict active sites
successfully for structures in 60–80% of test cases [13-15].
There has been some work on developing motif based
methods to predict functional sites, however these have
generally shown a high rate of false positives (FPs) [16-
18]. Neural networks [19] and support vector machines
[20,21] are other types of computational approaches
which use structure and sequence information to predict
active site residues. The different methods are hard to
compare to each other in terms of accuracy since a range
of tests have been used and in each case the tests are per-
formed on a relatively small set of different enzymes
(<200 structures in the case of the structural methods).
However, it is clear that they all have a relatively high rate
of FPs.

Similarity transfer based methods use tools such as BLAST
searches, hidden Markov models (HMMs), pattern match-
ing and structural templates to first identify sequences
homologous to those with known active site residues, and
then transfer active site residues from the characterized
sequences to the uncharacterized sequences. The Catalytic
Site Atlas (CSA) [22] is a database that collates active site
residues from the literature for proteins with a known

structure. It also provides active site residue predictions
for proteins with a known structure which it infers on the
basis of PSI-BLAST hits, and it is one of the largest
resources for catalytic sites. Another database containing
literature collated active site residues and predicted active
site residues is UniProtKB [23], the central repository for
protein sequences. UniProtKB is composed of two sec-
tions, the hand annotated 'UniProtKB/Swiss-Prot' section
and the automatically generated 'UniProtKB/TrEMBL' sec-
tion. UniProtKB however, currently only predicts active
site residues by similarity for sequences in UniProtKB/
Swiss-Prot, and not for the sequences in the automatically
generated UniProtKB/TrEMBL entries which form ~94%
of this database. Additionally, it can sometimes be diffi-
cult to trace the evidence for a particular active site predic-
tion in UniProtKB. PROSITE [24] is a database that
contains a collection of regular expressions (patterns)
against which sequences can be searched. Each regular
expression represents a conserved motif such as an active
site region. Each PROSITE pattern is searched against Uni-
ProtKB/Swiss-Prot and the resulting matches are manually
annotated by curators as true positives (TP), false positives
(FP), false negatives (FN) or potential (P). PROSITE
matches to UniProtKB/TrEMBL sequences are available
via InterPro [25]. These matches are verified using a set of
secondary patterns derived from the PROSITE pattern
which are computed with the eMotif algorithm [26]. A
stringent threshold of E = 10-9 is used so that each eMotif
pattern is expected to produce a random false positive hit
in 1 in 109 matches. Based on the results of eMotif, Uni-
ProtKB/TrEMBL matches are annotated as 'true' or
'unknown'. Although not specifically designed for active
site predictions, large scale PROSITE matches are available
for UniProtKB sequences making them a useful resource
for comparing our predicted data with.

Protein domain databases such as SMART [27] and
MEROPS [28] also collate active site data from the litera-
ture and use sequence similarity based transfer to anno-
tate active site residues onto the sequences in their protein
families.

Pfam contains a large collection of protein alignments
and is one of the leading protein domain databases in
terms of sequence coverage; 74% of the sequences in Uni-
ProtKB have at least one match to a Pfam domain (statis-
tics taken from Pfam 20.0). Pfam contains the
experimental active site annotations present in Uni-
ProtKB. To enrich the sequence annotations in Pfam, we
have taken known active site residues defined by Uni-
ProtKB that occur within a Pfam alignment and used them
to predict active site residues on other sequences within
the same alignment. Using this methodology we have cre-
ated one of the largest databases of active site predictions.
Here we outline our methodology for active site residue
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transfer and compare our prediction data to four other
databases. We also estimate the specificity and sensitivity
of our methodology.

Construction and content
The manually curated thresholds for each Pfam family are
chosen such that the family contains no known FPs, there-
fore all sequences within a family can be considered
homologous [1]. The active site Pfam families can contain
both active and inactive homologues. This gives us an ini-
tial starting point of an alignment of sequences that share
a particular domain.

The Pfam flatfiles originally contained the active site resi-
due annotations present in UniProtKB/Swiss-Prot. As
authors of the Pfam database we noticed that within the
catalytic Pfam families, very few sequences had active site
residue annotations and within the large alignments, the
known active site residues can easily be overlooked. Fur-
thermore, if one looked at the known active site residues
from UniProtKB/Swiss-Prot in a Pfam alignment, one
could see that these residues are conserved in many of the
sequences without active site annotation. The Pfam data-
base is renowned for having no known false positives in
its alignments, so, to keep in line with this philosophy, we
have developed a set of rules that allows conservative
transfer of active site annotation from one protein to
another protein in the same Pfam alignment.

To predict active site residues in a Pfam alignment we
identify sequences with experimentally verified active site
residues and use this information to predict active site res-
idues in other members of that family. Our methodology
is composed of a strict set of rules, which we have drawn
up to prevent the transfer of active site annotation on
enzymatically inactive homologues which may be present
within Pfam families. Although we have applied it to
Pfam alignments, the methodology works with any align-
ment and source of active site data. The logic of the rule
based methodology is as follows and is outlined in Figure
1 (note that steps 1 and 2 are already present in Pfam).

The first step is to use HMMs to find a homologous set of
proteins and generate a protein alignment (Figure 1
step1). We identify the positions of all experimentally ver-
ified active sites in the alignment (Figure 1 step 2), and
perform an all-against-all comparison of sequences
within an alignment that contain experimentally deter-
mined active site residues (Figure 1 step 3). The compari-
son not only removes redundancy but also allows the
identification of sequences for which only a subset of the
active site residues have been experimentally determined.
Figure 2 shows two alignments in which residues are pre-
dicted to be active site residues using our rule based meth-
odology. In the first alignment (Figure 2a), sequence 1

contains three experimental active sites (D, E and H – the
'active site pattern') and sequence 2 contains two experi-
mentally defined active site residues (D and E). Since
sequence 2 has H aligned with the active site H of
sequence 1 (and as both the D and E active site positions
in sequences 1 and 2 align), the H in sequence 2 is pre-
dicted to be an active site residue in addition to the two
experimentally defined residues. If similar patterns over-
lap but do not align then these are treated as separate dis-
tinct active site patterns.

Step 4 is to identify all the active site patterns and their
column positions (Figure 1 step 4). For Figure 2a this is D
in column 13, E in column 43 and H in column 45. Each
unannotated sequence in the alignment is analyzed to see
if it contains an exact match to the active site pattern (Fig-
ure 1 step 5). For example, sequence 3 contains the resi-
dues D, E and H in the active site residue columns (as
found in sequence 1) and so these are predicted to be
active site residues. Sequence 4 contains E and H in the
active site residue columns, however it does not have res-
idue D in column 13, so no active site residues are pre-
dicted. Although D to E in column 13 is a conservative
substitution, the methodology currently does not make
allowances for conservative residue substitutions at a par-
ticular position.

Finally (step 6) when there are two distinct experimentally
determined active site patterns within a family, each
unannotated sequence is compared as before. There are
cases where an unannotated sequence matches more than
one active site pattern. In such cases the active site residues
from the sequence in the redundant set of active site pat-
terns with the greatest percentage identity to the unanno-
tated sequence are predicted. An example scenario of this
is shown in Figure 2b. In this scenario sequence 5 contains
two experimentally verified active site residues: H in col-
umn 9, and E in column 42. Sequence 6 contains two
experimentally verified active site residues: T in column
11, and E in column 42. As before, a comparison of the
experimentally verified active sites is performed. Note that
although sequence 5 contains a T in column 11 and
sequence 6 contains a H in column 9, these two patterns
are not merged since neither is a subset of the other.
Although one could argue that the true active site pattern
for the family should be the union of the active sites of
sequence 5 and sequence 6, we choose not to combine
these patterns since the union of the two active site pat-
terns has not been experimentally observed. Merging
active site patterns would potentially increase our sensitiv-
ity but also result in an increase in FPs. Thus, in Figure 2b
we have for predictive purposes two distinct, yet overlap-
ping, active site residue patterns. Sequence 7 contains the
active site patterns found in both sequence 5 and
sequence 6. In this case sequence 7 has a higher percent-
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age identity to sequence 6 than sequence 5, so only the T
in column 11 and E in column 42 of sequence 7 are pre-
dicted to be active site residues, (the active site pattern
from sequence 6).

In order to test the ability of these rules to predict active
site residues, we used the 8296 alignments from Pfam
20.0 and the experimentally verified active site residues
from two different databases, UniProtKB and CSA. Both
resources provide predicted active site residues based on
different methods. We compared the results of our predic-
tions to each of the database predictions.

UniProtKB Knowledgebase (release 8.0) contains 2735
experimentally verified active site residues and a further
45698 predicted active site residues (these are annotated
in UniProtKB as being 'by similarity', 'potential' and
'probable'). The underlying Pfam sequence database is

based on UniProtKB, thus the active site residue positions
from UniProtKB are easy to transfer onto the Pfam align-
ments of UniProtKB sequences.

The experimentally determined active site residues found
in the CSA database are defined on proteins of known
structure found in PDB. CSA also contains predictions for
other sequences in PDB based on PSI-BLAST searches
[22]. To allow the experimentally defined CSA dataset to
be used with Pfam alignments, we converted the CSA (ver-
sion 2.1.8) active site data from PDB residue positions to
UniProtKB residue positions using the mapping provided
by the MSD [29]. The resulting CSA dataset contains a
total of 1495 literature active site residues and an addi-
tional 5517 predicted active sites residues. The experimen-
tal active site data was transferred to the alignments
within Pfam using the methodology described above and
our predictions were compared to those of CSA.

Flow diagram outlining the steps of the methodology we use to predict active site residuesFigure 1
Flow diagram outlining the steps of the methodology we use to predict active site residues. Steps 1 and 2 are already present 
in Pfam and our methodology adds steps 3–6. See text for discussion.
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We also compared our active site data to that of the active
site patterns found in PROSITE. We extracted the
sequences matching the active site PROSITE patterns from
InterPro 14.0 (based on PROSITE 19.30). InterPro anno-
tates PROSITE matches in UniProtKB/TrEMBL as 'true' if a
sequence match to a PROSITE pattern is confirmed by
eMotif, and 'unknown' if it is not. For UniProtKB/Swiss-
Prot sequences matches, PROSITE hits are available with
manual annotation (TP, FP, FN or P). In our analysis we
compared the number of sequences annotated as active
site PROSITE hits (potential or TP/true) with the number
of sequences in Pfam that had a Pfam active site residue.
We also examined the sequences in UniProtKB/Swiss-Prot
which matched an active site PROSITE pattern and com-
pared the manual annotation of these sequences to our
Pfam active site predictions.

To test the sensitivity and specificity of our method we
compared our prediction data and that of PROSITE to the
data in MEROPS. We defined a TP as a sequence on which
there is a PROSITE hit (annotated as TP or true) or where
Pfam predicted an active site residue in the peptidase
region of a sequence defined by MEROPS as a peptidase,
and defined a FP as a sequence that MEROPS defined as a
non-peptidase homologue and where there was a
PROSITE hit or Pfam predicted active site residue. We
defined a TN as a sequence on which there were no
PROSITE hits or Pfam active sites within the peptidase
region of a sequence that MEROPS defined as a non-pepti-
dase homologue, and a FN as a sequence on which there
were no PROSITE hits or Pfam active sites but MEROPS
defined the sequence as being a peptidase. The following

equations were used to calculate specificity and sensitiv-
ity.

Sensitivity = TP/(TP+FN) (1)

Specificity = TN/(TN+FP) (2)

During our analyses we found that with using UniProtKB
experimental active sites as our source of known active
sites we obtained a low false positive rate. The UniProtKB
experimental active sites are more comprehensive than
the CSA in that they cover sequences with both known
and unknown structure. For these reasons we have chosen
UniProtKB as our preferred source of experimental active
sites for Pfam (see Discussion for further details).

The active site data predicted with our methodology using
the UniProtKB experimental data are re-calculated at each
Pfam release. Each Pfam family has two associated align-
ments called the 'seed' alignment and the 'full' alignment
(see [30] for further details). We run our methodology on
the full alignments for each family, and use the resulting
data to markup sequences in the seed alignment. To sup-
plement our annotations, UniProtKB predicted active
sites are stored/displayed if they are not predicted by our
methodology. Our active site data is stored in a MySQL
database and the schema is outlined in Figure 3.

Utility
Our methodology predicts active site residues on
sequences which are homologous to sequences with
experimentally known active site residues. The data we

Two example alignments (a and b) showing scenarios in which residues are predicted to be active site residues using our rule based methodologyFigure 2
Two example alignments (a and b) showing scenarios in which residues are predicted to be active site residues using our rule 
based methodology. Residues in red denote an experimental active site, and residues in blue denote predicted active site resi-
dues. Grey columns indicated the presence of experimental active site data in the alignment, and these are the columns in the 
alignment which are methodology focuses on. See Construction and Content for details.
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have generated were originally intended to aid proteome
annotation, but they will also be of interest to those work-
ing in fields such as comparative genomics, protein evolu-
tion and active site characterization.

We make our data available in a variety of different ways
that should provide a suitable access point for a wide
range of users. See Availability and requirements section
for the address of the Pfam website and ftp site

1. ' Traditional' Flatfile – The Pfam flatfiles contain the
multiple sequence alignments for each family with active
site residues marked with '*' in Stockholm format. A sam-
ple alignment is shown in Figure 4. The flatfiles are also
available for download via the ftp Pfam site.

2. Website – The Pfam alignments on the Pfam website
highlights experimental active site residues with a black
background. Our 'Pfam predicted' active site residues are

Database entities diagram showing the active site tables (pfamseq_markup and markup_key) in relation to other key tables in the Pfam databaseFigure 3
Database entities diagram showing the active site tables (pfamseq_markup and markup_key) in relation to other key tables in 
the Pfam database. The 'pfamseq' table is one of the central tables in Pfam and contains the sequence information. The Pfam-A 
alignments (both seed and full) and Pfam-B alignments that a particular active site residue belongs to can be accessed via the 
tables that link off pfamseq (pfamA_reg_full, pfamA_reg_seed, pfamA, pfamB_reg, pfamB). The red diamonds denote an 
indexed column and the key symbol denotes the primary key. The diamonds connecting the tables indicate many-to-one rela-
tionships with the dark filled end of the diamond indicating the many side of the relationship.
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shown on a dark grey background and UniProtKB pre-
dicted active site residues are marked with a light grey
background (Figure 5a). The active site residues can also
be viewed on the protein graphical domain view in which
the experimentally verified active site residues are colored
in red (Figure 5b), our Pfam predicted active site residues
in purple, and UniProtKB predicted active site residues in
pink. On the structural view of a protein we color the
active site residues in a different color to the rest of the
protein (Figure 5c).

3. DAS – Programmatic access to the data is available via
a DAS features server that is written using ProServer [31]
and provides the position and type of active site residues
for the query sequence. See Availability and requirements
section.

4. MySQL database – The Pfam MySQL database stores the
location and type (experimental, predicted by Pfam or
UniProtKB) of each active site residue, and is available for
download from the Pfam ftp site.

The Perl code for implementing the rules detailed in the
methodology is available and can be used with an align-
ment in either Stockholm or Selex format, and a file con-
taining experimental active sites.

Discussion
Transfer of UniProtKB experimental data within Pfam 
alignments
Using the 2735 experimentally determined active site
annotations in UniProtKB 8.0 and the alignments in Pfam
20.0, we have predicted 606110 active site residues. This
compares to 45685 active site residues predicted by Uni-
ProtKB and increases the active site annotations in Pfam
by more than 200 fold. Figure 6 shows the overlap of pre-
dicted active site residue annotation between our method-
ology, termed 'Pfam predicted', and UniProtKB. A

significant proportion (35373 residues, 77%) of the active
sites predicted by UniProtKB are also predicted by our
methodology. To understand why we were unable to pre-
dict the remaining 23% (10312 residues), we investigated
these sequences further.

Of the 10312 UniProtKB predicted active sites that were
not predicted by us, 55% (5601) were found in Pfam
alignments that did not contain experimental UniProtKB
active site residues at that position (Figure 7). The evi-
dence that UniProtKB used to predict these residues is not
transparent. We cannot predict these residues using our
methodology because all of our predictions are based on
transferring known experimental data within a Pfam
alignment.

Another 24% (2501) of the UniProtKB predicted active
sites that were not predicted by our methodology did not
fall within a Pfam alignment. Again, these residues cannot
be predicted since our methodology can only predict resi-
dues falling within the Pfam domain boundaries. The
sequences which contain these active sites are cases in
which the existing Pfam domain boundaries need extend-
ing, or are sources for potential new Pfam families. They
have been flagged for the attention of the Pfam curators.
18% (1840) of the active site residues predicted by Uni-
ProtKB and not by Pfam were due to cases where the
sequences in the family contained different residues at
one or more positions, as compared to the active site resi-
due pattern of the experimentally verified sequence(s).
This is a drawback of our very strict rule based methodol-
ogy since incomplete or conservative substitutions are not
taken into account. A small proportion of cases were due
to misalignments in the Pfam alignments (242 residues,
2%). Again these have been flagged for the attention of
the Pfam curators. There were also some cases where Uni-
ProtKB predicted active sites were 'off by one' when com-
pared to the experimental active sites and these appear to

Sample multiple sequence alignment with active site markup in Stockholm format as used in the Pfam flatfilesFigure 4
Sample multiple sequence alignment with active site markup in Stockholm format as used in the Pfam flatfiles. AS indicates an 
experimental active site, pAS indicates a Pfam predicted active site and sAS indicates a UniProtKB predicted active site.
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be cases where UniProtKB has mis-annotated a residue
(128 residues, 1%).

A substantial proportion (96%, 570765 residues) of our
active site predictions are not present in UniProtKB. This
is due to the fact that unlike UniProtKB, which only
makes predictions for sequences in UniProtKB/Swiss-
Prot, we also make predictions for the automatically gen-
erated UniProtKB/TrEMBL entries. Comparing the active
site residue prediction for UniProtKB/Swiss-Prot alone,
our methodology predicts 48943 residues compared with
the 45685 predicted by UniProtKB. Thus, we have 12570
additional active site predictions for the sequences in Uni-
ProtKB/Swiss-Prot. In the reverse comparison of Uni-

ProtKB against Pfam, UniProtKB only contains 6% of the
active site information contained within Pfam.

Transfer of CSA experimental data within Pfam 
alignments
Next, we assessed our methodology by using the CSA
experimental data. Figure 8 shows the comparison of the
CSA PSI-BLAST predicted data and the data we generated
(for sequences with a known structure) using the experi-
mental CSA data (which they term 'literature'). There is
some overlap (2695 residues) in our predictions, however
the CSA predicts 5517 active site annotations compared
with only 3523 predicted by our methodology. We ana-
lyzed the Pfam alignments that contain CSA predicted

Sample multiple sequence alignment with active site markup in Stockholm format as used in the Pfam flatfilesFigure 5
Sample multiple sequence alignment with active site markup in Stockholm format as used in the Pfam flatfiles. AS indicates an 
experimental active site, pAS indicates a Pfam predicted active site and sAS indicates a UniProtKB predicted active site.
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active site residues that are not predicted by our method-
ology, and found that in roughly half (1376 residues,
49%) of the cases there were no CSA experimental active
sites within the Pfam alignments. These are cases where
the experimental CSA active site sequence and the CSA
predicted active site sequence are too divergent for both to
belong to the same Pfam family.

To understand how our methodology compares to CSA
when there is experimental data, we removed CSA pre-
dicted active sites where the predictions occurred in Pfam
alignments that did not contain experimental active sites.

After this filtering, there were still 1446 CSA predicted
active sites that were not predicted by our methodology.
These are cases where the criteria for predicting an active
site are not met because one or more active site residues
are different from the active site residues in the experi-
mentally verified sequence. There are proportionally more
of these cases here compared to when using the Uni-
ProtKB data due to the broader definition of an active site
residue in CSA [22]. For example, in UniProtKB the
sequence [Swiss-Prot:P77444] has residue 364 defined as
an active site residue and residue 226 as a 'binding site' for
pyridoxal phosphate, whereas CSA defines both residues

Breakdown of the UniProtKB predicted active sites that are not predicted using our methodologyFigure 7
Breakdown of the UniProtKB predicted active sites that are not predicted using our methodology.
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A Venn diagram comparing the active sites predicted by our methodology using the UniProtKB experimental active sites (Pfam predicted active sites) with the predicted active site residue annotation in UniProtKBFigure 6
A Venn diagram comparing the active sites predicted by our methodology using the UniProtKB experimental active sites (Pfam 
predicted active sites) with the predicted active site residue annotation in UniProtKB.
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226 and 364 as active site residues. In addition, unlike our
strict methodology, the CSA allows a one residue change
per active site [22] when predicting active site residues.

We predicted 828 active site residues that CSA does not
predict. These are cases where HMMER [32] (the package
of programs used to construct the Pfam collection of
HMMs) is able to identify homologous sequences that
PSI-BLAST does not.

The narrower definition of experimental active site resi-
dues in UniProtKB works well with our conservative rule
based methodology in that our prediction criteria are
more often met than with the CSA experimental data.
UniProtKB contains experimental active site annotations
for sequences with known and unknown structure, and
therefore has a greater number of active site sequences
with associated experimental evidence than CSA. In addi-
tion to being able to predict a greater number of active site
residues by using the UniProtKB data, it is easy to trace the
source of our active site predictions since all the sequences
in Pfam are present in UniProtKB. For these reasons we
have chosen UniProtKB as our source of experimental
active sites.

Assessing sensitivity and specificity
In order to estimate the rate of false positives and to calcu-
late the specificity and sensitivity (see equations 1 and 2
in Construction and Content) of our methodology we
would ideally compare our data to an independent data-
set. It is however difficult to find truly independent data-
sets since all of the resources utilise the active site
annotation in UniProtKB.

We have chosen to compare our data to the active site data
in PROSITE, because it is one of the most comprehensive,
and to MEROPS, because it supplements its active site data
with a thorough mining of literature data. In our calcula-
tions we assume that the predictions in these two data-
bases are correct and compare our prediction data to
theirs. We also compare the active site data of PROSITE to
MEROPS.

Comparing Pfam to PROSITE
We compared the number of UniProtKB sequences that
matched an active site PROSITE pattern to the number of
sequences that contained a Pfam active site. Our method
predicts approximately three times more active site
sequences (282009) than PROSITE (90962), see Figure 9.

We examined the Pfam active site residues found on Uni-
ProtKB/Swiss-Prot sequences that had a match to an active
site PROSITE pattern and compared them to the PROSITE
manual annotation (TP, FP, FN, P) (see Table 1). We
found that 29692 (99.5%) of our active site residues fell
on a sequence region which matched an active site
PROSITE pattern that was curated as a TP, 98 active sites
(0.32%) were found on a PROSITE sequence region anno-
tated as a FN, and only 44 active sites (0.15%) were
present on a PROSITE sequence region annotated as a FP.
We examined the 44 active sites that were FPs and found
in each case there was good evidence (a strong alignment
to a homologous sequence with experimental active
site(s)) to annotate residues on these sequences as active
site residues. Furthermore, in 5 of the 44 (11%) cases
there was experimental evidence (in UniProtKB) to con-
firm that residues in these sequences were catalytic. This
shows that the number of PROSITE matches manually
annotated as FP are being overestimated.

Venn diagram comparing the active sites predicted by our methodology using the CSA experimental active sites with the pre-dicted active site residues annotations in CSAFigure 8
Venn diagram comparing the active sites predicted by our methodology using the CSA experimental active sites with the pre-
dicted active site residues annotations in CSA.
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Of the PROSITE active site sequences in UniProtKB/Swiss-
Prot, 136000 (95.87%) had been manually annotated as
TPs, 3477 (2.45%) annotated as FNs, 1933 (1.36%)
annotated as FPs and 450 (0.32%) were annotated as
potential. This means that for the subset of UniProtKB/
Swiss-Prot sequences for which we have manual annota-
tion, our method has a higher sensitivity (99.18%) than
PROSITE patterns (98.12%). (For sensitivity see equation
1 in Construction and Content).

We compared then compared MEROPS [28] active site
data to both our data and PROSITE data. MEROPS is the
definitive peptidase resource and uses literature data on
active site residues and metal binding residues, sequence
similarity, and manual analysis of alignments to classify
peptidases and non-peptidase homologues into families.
A sequence is considered to be a peptidase if it contains all
the active site and (where appropriate) metal binding res-
idues known for the family to which it belongs and a non-
peptidase homologue if it lacks any one of these residues.
We took the set of 22158 sequences that were common to
both Pfam and MEROPS, and the 25903 sequences com-
mon to MEROPS and the PROSITE matches, and analyzed
them to see if the two methods predicted active site resi-
dues/patterns on the peptidases but not on the non-pepti-
dase homologue sequences.

Comparing Pfam with MEROPS
13779 (51%) of the sequences common to Pfam and
MEROPS had Pfam active site predictions and were classi-
fied by MEROPS as being peptidases (TP). Only 900 (3%)
of the sequences containing active site predictions as
determined by our methodology were classified as non-
peptidase homologues by MEROPS (FPs). This propor-
tion is low compared to the documented FP rates outlined
in the Background section. The set of FPs is comprised

largely of sequences for which MEROPS identified a
greater number of functional residues than UniProtKB.
This means that if a sequence in a Pfam alignment con-
tains an active site residue pattern as defined by Uni-
ProtKB, but is missing any additional sites that are
classified as experimental active site residues or metal
binding residues in MEROPS, it will be predicted to have
active site residues using our methodology but MEROPS
will classify it as a non-peptidase homologue. For exam-
ple, sequence [Swiss-Prot:Q9YVR4] is predicted to have an
active site residue (E376) using our methodology.
MEROPS has identified this sequence as a non-peptidase
homologue because, even though it contains the active
site residue, it is missing one of the metal binding residues
(H385). The lack of comprehensive data available for
metal binding and/or substrate binding sites prevents us
from including this data as a discriminator in our meth-
odology. Despite this, our methodology still shows high
specificity as demonstrated by the low proportion of FPs.

3860 (14%) of the sequences common to Pfam and
MEROPS were classified in MEROPS as non-peptidase
homologues and had no active sites predicted using our
methodology (TNs). The remaining 8379 (31%)
sequences were those where our methodology did not
predict an active site but MEROPS classified them as being
true peptidases (FNs). In these cases UniProtKB did not
define any experimental active sites in the corresponding
Pfam alignments and hence there is no information from
which our methodology can infer active site information.
This gives our data a specificity of 82%, and a sensitivity
of 62%.

We took the set of Pfam predicted active site sequences
and for each sequence, we calculated the percentage iden-
tity to the nearest homologue with experimental active

A Venn diagram comparing the number of UniProtKB sequences that contain a Pfam active site to the number of sequences that match an active site PROSITE patternFigure 9
A Venn diagram comparing the number of UniProtKB sequences that contain a Pfam active site to the number of sequences 
that match an active site PROSITE pattern.
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site data in the corresponding Pfam alignment. We found
there were a few cases where a FP sequence can have a
sequence identity of >90% to a catalytically active
sequence, yet because one or more functional residues are
missing, it is catalytically inactive. Figure 10 shows the
fraction of Pfam sequences that are FP (as identified from
the MEROPS/Pfam comparison) against percentage iden-
tity. The FP set of sequences has a mean sequence identity
of 23.6% while the TP distribution is shifted slightly to the
right and has a mean of 32.3% (data not shown). Figure
10 shows that as percentage identity decreases, the chance
that we have incorrectly predicted active sites on a
sequence increases. Sequences with >30% identity have a
lower likelihood of being a false positive. This means the
rate of false positive predictions could be decreased by
restricting transfer of active site annotation to sequences
that have a percentage identity >30%.

Comparing PROSITE with MEROPS
To complete the comparison we compared the MEROPS
data to that of active site PROSITE patterns. Only 1212
(5%) of the sequences common to MEROPS and PROSITE
matched a PROSITE active site pattern and were defined in
MEROPS as a peptidase (TPs). A large proportion of
sequences (19979, 77%) were defined in MEROPS as a
peptidase, but did not match an active site PROSITE pat-
tern (FNs), which shows PROSITE patterns have a poor
coverage of peptidase enzymes.

4532 (17%) of the sequences did not match a PROSITE
pattern and were defined as a non-peptidase homologue
in MEROPS (TNs). 180 (0.7%) sequences matched a
PROSITE active site pattern but were defined as a non-
peptidase homologue in MEROPS (FPs) which shows that
of the active site sequences PROSITE does predict, it does
so accurately. This gives the PROSITE peptidase active site
patterns a high specificity of 96%, but a poor sensitivity of
6%.

Conclusion
Our automated rule based methodology allows us to
accurately transfer active site annotation between
sequences within a Pfam alignment and other members
within the same Pfam family. Using this methodology we
have substantially increased the number of active site

Fraction of Pfam predicted active site sequences that are false positives plotted against percentage identity to the nearest homologue with active site data within a Pfam alignmentFigure 10
Fraction of Pfam predicted active site sequences that are false positives plotted against percentage identity to the nearest 
homologue with active site data within a Pfam alignment.
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Table 1: Comparison of sequences matching an active site 
PROSITE pattern with the manual annotation of these 
sequences by PROSITE

Pfam 
active 
site 

predictio
ns (%)

PROSITE 
active 
site 

predictio
ns (%)

TP 99.50 95.87
Manual annotation FN 0.32 2.45
of PROSITE match FP 0.15 1.36

Potential 0.00 0.32
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annotations in Pfam. Our active site data are available
through a variety of methods (see Utility for further
details on how to access our prediction data). The tool we
have   developed for predicting active site residues is also
available for   download (see Availability and require-
ments).

On comparing our predicted active site data to the Uni-
ProtKB predicted data, we found we are predicting signif-
icantly more active sites. When we compare both CSA
predictions and UniProtKB/Swiss-Prot predictions to our
active site predictions, we find that the sets overlap, but
each contains additional novel predictions. Ultimately,
the source of experimental data (which is different for
UniProtKB and CSA) determines the success and coverage
of any method that uses similarity for transferring active
site information. We have chosen UniProtKB over CSA as
our source of experimental active sites as it includes both
sequences with and without known structures. Since Pfam
alignments are built from UniProtKB sequences, each of
our active site predictions can be easily traced back to the
experimental reference sequence.

On comparing our data to PROSITE patterns we find our
methodology detects three times more active site
sequences. Within the UniProtKB/Swiss-Prot portion of
UniProtKB (for which there is manual annotation for all
of the PROSITE matches), we find our predictions have a
lower FP rate (0.15%) than PROSITE patterns (1.36%).

The comparison with the MEROPS data showed our
methodology to have a low FP rate (3%), a good specifi-
city (82%), and a reasonable sensitivity (62%). This sug-
gests our conservative, automated methodology allows us
to confidently predict a substantial number of active site
residues at the expense of losing some sensitivity. Investi-
gating the percentage identity showed that below 30%,
there is an increased chance of mis-predicting an inactive
sequence as being catalytically active. This means we
could further increase the specificity of our method by
only transferring annotation to sequences that are >30%
identical at a cost to sensitivity.

Our methodology fails for sequences which contain the
catalytic residues but are missing any other residues that
are essential for catalysis. Incorporating additional data
such as the presence of metal binding and substrate bind-
ing residues into our methodology could improve our
specificity, however this data is not consistently available
for all sequences. The necessity for metal or substrate
binding residues can also be particular to each mecha-
nism of catalysis and hence is difficult to encapsulate in a
simple set of rules.

In addition to finding new active site residues, the meth-
odology draws attention to sequences that are members of
an enzymatic family but which do not contain the active
site residue patterns shared by enzymatic members of the
family. This subset includes sequences which have a simi-
lar but non-identical amino acid at an active site position.
In these cases the user is able to inspect the alignment
along with other evidence in order to make a more
informed judgement on its activity. The subset also
includes non-enzymatic homologous sequences and
novel enzymatic subfamilies that should be prioritized for
biochemical characterization.

The catalogue of Pfam entries has a relatively high cover-
age of UniProtKB sequences which allows our active site
prediction data to be comprehensive. New sequences that
are added to UniProtKB are incorporated into Pfam at
each release, and, by re-calculating our active site predic-
tions, we ensure our data are regularly updated. As Pfam
continues to grow through the addition of new families
and the expansion of existing families, we expect the
number of active site predictions to increase. The forth-
coming release of Pfam 22.0 contains 100,000 more Pfam
active sites than Pfam 20.0. Our active site dataset is the
largest single resource of active site annotation currently
available.

Availability and requirements
The Pfam website from is accessible from http://
pfam.sanger.ac.uk/.

The Pfam flatfiles, MySQL database and the Perl script that
implements the rules of the methodology are available
from the Pfam ftp site (see ftp://ftp.sanger.ac.uk/pub/
databases/Pfam/current_release/, ftp://ftp.sanger.ac.uk/
pub/databases/Pfam/database_files/ and ftp://
ftp.sanger.ac.uk/pub/databases/Pfam/Tools/ActSitePred/
respectively). Note that the Perl script requires BioPerl 1.4
to be installed. The Perl script is freely available and can
be redistributed or modified under the terms of the GNU
General Public License.

Programmatic access is available via the DAS features
server http://das.sanger.ac.uk/das/pfamOtherFeatures. To
access the data, use the UniProtKB accession in the form
http://das.sanger.ac.uk/das/pfamOtherFeatures/fea
tures?segment=P00784, where P00784 is the UniProtKB
accession.

Abbreviations
Catalytic Site Atlas (CSA), Evolutionary Trace (ET), Dis-
tributed Annotation System (DAS), hidden Markov
model (HMM), true positive (TP), false positive (FP), true
negative (TN), false negative (FN), potential (P)
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