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Abstract

The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer’s disease, is on the rise.
In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively
being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been
proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and
neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease. However, the safety profile of berberine remains
controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We
report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by
mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP
content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase
inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-
induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to
glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine,
especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of
increasing bioavailability of berberine.
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Introduction

The number of patients with diabetes has more than doubled in

three decades, and is currently estimated to be nearly 350 million

[1]. Management of hyperglycemia is a key intervention strategy

in diabetes. In addition to lifestyle-directed interventions, a variety

of oral pharmacological agents that improve insulin sensitivity are

used to treat type 2 diabetes (T2D) and the prediabetic state [2].

Similarly to diabetes, the prevalence of age-related neurodegen-

erative diseases, such as Alzheimer’s disease (AD), is on the rise,

affecting more than 34 million people worldwide [3]. For AD,

only symptomatic pharmacotherapies are available. In addition to

the industrial drug development efforts for T2D, AD and their

prodromal phases, complementary and alternative medicine

treatments are actively being explored.

The multifunctional natural compound berberine (BBR), a

nutraceutical used in traditional Chinese and native American

medicine for centuries, is the principal active component of

barberry, goldenseal and other root extracts [4]. Recently, the

pharmacological and bioactive properties of BBR have been

extensively studied in a variety of models, both in vitro and in vivo,

testing its potency against numerous indications, including

dyslipidemias [5], ischemia [6], diabetes [5], arrhythmias [7],

cancer [8], Parkinson’s disease, and Alzheimer’s disease [9,10].

The proposed actions of BBR in metabolic disorders include

insulin receptor upregulation, mitochondrial complex I inhibition,

AMP-activated protein kinase (AMPK) activation, low-density

lipoprotein (LDL) receptor upregulation, and proprotein con-

vertase subtilisin kexin 9 (PCSK9) downregulation ([11], reviewed

in [12]). Additionally, cholinesterase inhibition, monoamine

oxidase inhibition, BACE1 inhibition and antioxidant activity

comprise the proposed anti-AD effects of BBR [13–15]. Although

numerous mechanisms have been proposed, the pharmacological

actions of BBR remain incompletely understood, especially in the

central nervous system (CNS).

The lack of clarity within BBR literature is partially due to the

variability in the concentrations and formulations of BBR applied

in both cell- and animal model-based studies. The common

dosage range spans from 0.1 nM to 300 mM, and from 5 mg to

100 mg/kg/day in in vitro and in vivo studies, respectively

[13,16–19]. Pharmacological data suggest that berberine has

poor bioavailability and that only nanomolar plasma concentra-

tions are reached in both humans and animals [20]. According

to several reports, however, BBR accumulates in organs such as
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lungs, liver and the brain, resulting in effective concentrations in

the low micromolar range [13,20–22]. Additionally, pro-drug

development efforts aim at increasing BBR bioavailability

[11,23]. BBR is generally considered safe for use in humans,

but several reports have raised concerns over BBR toxicity and

side effects, especially with increasing BBR concentrations

[19,21,24–26].

The proposed anti- and pro-apoptotic roles of BBR are largely

dose-dependent. In general, nanomolar BBR is believed to protect

neuronal cells from ischemic insults, whereas cancer cell growth

and proliferation is inhibited by high micromolar BBR [8,16].

Similarly, in the TgCRND8 mouse model of AD, a higher dosage

(100 mg/kg/d versus 25 mg/kg/d) blunted the protective effects

of BBR against amyloid plaque pathology and gliosis [13]. The

mechanistic basis for the biphasic effects of BBR on neuronal

viability remains incompletely characterized [27]. The proposed

targets of BBR associated with neuronal viability include

modulation of mitochondrial and caspase pathways, N-methyl-

D-aspartate (NMDA) receptors, inhibition of potassium currents,

and transcriptional regulation of lipoprotein receptors [20].

The characterization of BBR effects on neuronal viability

remains incomplete. In this study, we assessed the effect of BBR

on neuronal viability using cultured primary neurons: cerebellar

granule neurons (CGN) and rat hippocampal neurons (HCN).

We found that concentrations exceeding 1 mM reduced neuronal

viability in a caspase-independent manner characterized by early

alterations of mitochondrial function and morphology. Cyclo-

sporine A (CsA), a mitochondrial permeability transition pore

(PTP) inhibitor, could partially prevent BBR toxicity indepen-

dently of its calcineurin inhibitor activity. However, NMDA

receptor antagonists MK-801 and memantine completely blocked

this acute toxicity, indicating a central role for NMDA receptors

in BBR-mediated cell death. Additionally, subtoxic nanomolar

BBR pretreatment sensitized neurons to both glutamate excito-

toxicity and rotenone-induced cell death. Our study provides

mechanistic evidence of a neurotoxic mechanism of BBR that

involves the NMDA receptors and mitochondria, predisposing

neurons to glutamate excitotoxicity and mitochondria-targeting

toxins.

Materials and Methods

Ethics statement
Animals were obtained from the Laboratory Animal Center,

University of Helsinki. Animals were housed in controlled

conditions (temperature +22uC, light from 08:00 to 18:00;

humidity 50–60%), with fresh food and water available ad libitum.

Tissue extraction from NMRI mice and Wistar rats was performed

in accordance with the national and institutional guidelines

approved by the University of Helsinki Laboratory Animal Center

(permission number KEK11-019; approved 31.5.2011). Animals

were euthanized by approved methods (CO2 chamber and

cervical dislocation) prior to the extraction of brain tissue used

for primary neuronal culture preparation. A total of 65 P6–8

NMRI mouse pups and 4 Wistar pregnant rats and their litters

were sacrificed for the generation of the primary cell cultures used

to generate the data presented in this study.

Reagents
Berberine chloride, z-VAD-FMK, cyclosporine A, memantine,

MK-801, and resazurin sodium salt were purchased from Sigma.

FK506 (cat. no. Asc-223) was purchased from Ascent Technolo-

gies. Rotenone was a kind gift from Dr. Timo Myöhänen (Faculty

of Pharmacy, University of Helsinki). CellTiter-Glo Luminescent

Cell Viability Assay (cat. no. G7570) and CytoTox 96 Non-

Radioactive Cytotoxicity Assay (cat. no. G1780) kits were

purchased from Promega. JC-10 Mitochondrial Potential Assay

Kit (cat. no. ab112123) was purchased from Abcam. CM-

H2DCFDA General Oxidative Stress Indicator (cat. no. C6827)

was purchased from Life Technologies.

Molecular cloning
The GFP-tagged mitochondrial outer membrane protein-25

(GFP-OMP25) plasmid [28] was a kind gift from Dr. Brendan

Battersby (Faculty of Medicine, University of Helsinki). The GFP-

OMP25 fragment was cloned into the lentiviral expression vector

with synapsin (pLenSyn1) promoter for specific transduction into

neurons [29]. The GFP-OMP25 cassette was amplified by PCR

(primers used: 59-CGGGATCCGCCACCATGGTGAGCAA-

39and 59-CGCGCTCGCGCTATTAGAGCTGCTTTC-39).

Both the PCR fragment and the vector were digested with the

restriction enzymes BamHI and XhoI. Following the transforma-

tion of XL1 Blue E. coli with the new ligated plasmid, colonies

were screened by NheI digestion and confirmed by sequencing.

Lentivirus production
Lentiviral particles were produced as described previously [30].

Briefly, HEK-293T cells were cultured in DMEM (supplemented

with 10% FBS, 1% Penicillin/Streptomycin and 2 mM L-

glutamine) and grown on 10-cm plates to 60–80% confluency.

The cells were transfected using Fugene HD (Promega) with 6 mg

of total DNA per plate, including pLenSyn1-GFP-OMP25 (3 mg)

and the viral envelope and packaging plasmids pMD2.G (0.75 mg)

and pPAX2 (2.25 mg), respectively. The supernatant was collected

45 hours post-transfection and precleared by centrifugation at

900 rpm 3 times for 5 minutes. Viral particles were collected by

centrifugation at 50,0006g for 2 hours, resuspended in plain

DMEM and stored at 280uC prior to use.

Preparation of primary neurons and lentiviral
transduction

Cerebellar granule neurons (CGN) and hippocampal neurons

(HCN) were prepared as described previously [30]. Briefly, CGN

were prepared from P6–P8 NMRI mice and HCN from E18

Wistar rat embryos. Brain tissues were dissected and cleaned of

membranes in cold PBS supplemented with 0.25% glucose, 0.3%

bovine serum albumin (BSA), and 0.038% MgSO4. Tissues were

trypsinized for 15 minutes in a +37uC water bath. CGN were

plated on poly-L-lysine (Sigma) coated cell culture plates at a

density of 0.325–0.5 million cells per ml and HCN at a density of

0.15–0.2 million cells per ml. HCN were grown in Neurobasal

(Gibco) supplemented with 2% B27, 2 mM L-glutamine, and 1%

Penicillin/Streptomycin. CGN culture medium included addi-

tional 0.5% FBS and 25 mM potassium chloride, required for

sustaining CGN cultures in vitro. Neurons were cultured for 6–

7 days before the start of treatments. CGN were transduced at 4

DIV and cultured for 72–96 hours prior to the start of treatments.

Treatments
BBR was prepared freshly before each set of experiments by

dissolving in DMSO as a 20 mM stock solution. Culture

concentrations (0.01–10 mM) were made by serial dilutions into

plain Neurobasal medium with total DMSO content remaining

below 0.1%. Neurons were treated with BBR for 0.5–24 hours,

as indicated in the data. For cotreatment experiments, neurons

were pretreated with z-VAD-FMK (100 mM), FK-506 (1 mM),

CsA (1 mM), memantine (10 mM), and MK-801 (1 mM) for

NMDA Receptor-Dependent Neurotoxicity of Berberine
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1 hour before the addition of BBR for additional 6 hours. For

BBR preconditioning experiments, CGN were pretreated with 30

or 300 nM BBR for 18 hours before the addition of glutamate

(20–100 mM) or rotenone (0.1–1 mM) into the culture medium

for 6 hours. CGN were deprived by switching to low potassium/

serum medium for 6 hours (K5) to induce neuronal apoptosis

and caspase-3 activation (Neurobasal supplemented with 0.5%

FBS, 1% Penicillin/Streptomycin, 2 mM L-glutamine and 5 mM

KCl).

CellTiter-Glo cell viability assay
ATP-based CellTiter cell viability was measured according to

the manufacturer’s instructions (Promega). Briefly, CGN were

plated on 96-well white-walled clear-bottom plates and grown for

7 DIV. After completion of experiments, 100 ml of pre-mixed

CellTiter-substrate was added to each well and the plate was

shaken for 2 minutes at 200 rpm. The luminescence was then

measured (Ex/Em = 560/590 nm) with the Victor3 1420 Multi-

label counter.

Immunofluorescence microscopy
Immunofluorescence (IF) microscopy was performed as previ-

ously described [30]. Briefly, cells were grown on poly-L-lysine

coated coverslips and fixed for 20 minutes with 4% PFA in PBS

before permeabilization for 1 hour in blocking buffer (5% normal

serum [goat and donkey], 1% BSA, 0.1% gelatin, 0.1% Triton-

X, 0.05% Tween-20). Primary antibodies used were: b-tubulin

III (TUJ1; Covance, mouse and rabbit, 1:1000), TOM-20 (a kind

gift from Prof. Anu Wartiovaara [Faculty of Medicine, University

of Helsinki]; Santa Cruz, rabbit, 1:1000), and AIF (D39D2; Cell

Signaling, rabbit, 1:500). Primary antibodies were incubated

overnight at +4uC. The secondary antibodies used were:

AlexaFluor-conjugated antibodies (Invitrogen) 488-goat-anti-

mouse, 488-donkey-anti-rabbit, 350-goat-anti-mouse, and 568-

donkey-anti-rabbit, used at a dilution of 1:2000. Secondary

antibodies were incubated for 1 hour at room temperature. Cell

nuclei were stained with Hoechst 33342 (Invitrogen, 1:10,000).

Images were taken with a Zeiss Imager M1 microscope. ImageJ

software was used for cell counting and Adobe Photoshop for the

preparation of figures.

Neuronal cell viability
Neuronal cell viability was evaluated by assessing nuclear

morphology from immunofluorescence images taken at 20X and

40X magnifications from random fields. The nuclei of TUJ-1-

positive cells, identified as neurons, were counted and scored as

either normal or condensed as previously described [30]. Neuronal

viability was calculated by the following formula: (total neuronal

nuclei – condensed neuronal nuclei)/total neuronal nuclei. At least

300 cells per coverslip were counted for each data point.

Figure 1. Dose-dependent neurotoxicity of berberine in primary neurons. Primary neurons (cerebellar granule neurons [CGN; DIV7] and
hippocampal neurons [HCN; DIV7]) treated with BBR for 6 hours at concentrations between 0.01 and 10 mM indicate a clear dose-dependent loss of
neuronal cell viability with IC50 of roughly 3 mM. (A) CGN were stained for visualization of neurite (b-tubulin III, TUJ1) and nuclear (Hoechst 33342)
morphology at 20X magnification. (B) Neuronal cell viability assessed by visual scoring of CGN nuclear morphology after 6-hour treatment with BBR.
(C) Neuronal cell viability assessed by visual scoring of HCN nuclei morphology after 6-hour treatment with BBR. (D) Neuronal viability of CGN, as
assessed by CellTiter-Glo assay measuring cellular ATP content, for 6-hour treatments with the indicated BBR concentrations. (E) Neuronal viability of
CGN, as assessed by CellTiter-Glo assay for 24-hour treatments with the indicated concentrations. For A, green is b-tubulin III, blue is Hoechst; the
scale bar represents 100 mm. For panels B, D, E, n = 5. For C, n = 3. For B–E, * = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0107129.g001
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Western blotting
Western blotting (WB) was performed as previously described

[30]. Briefly, cells were lysed in extraction buffer containing

10 mM Tris-HCl, pH 7.6, 2 mM EDTA, 0.15 M NaCl, 1%

Triton-X, inhibitor cocktail (1 pill/10 ml; Roche), and 0.25% NP-

40 (Sigma). Lysates were cleared by centrifugation at 13,0006g for

10 minutes. Samples were denatured with b-mercaptoethanol and

heated at 70uC for 10 min before running them in NuPAGE 4–

12% Bis-Tris gels (Invitrogen) at 160 V for 60 minutes using the

X-Cell SureLock (Invitrogen) gel apparatus. Proteins were

transferred to PVDF membranes with a Bio-Rad Trans-Blot

Turbo for 25 minutes at 25 V. Membranes were blocked for

Figure 2. Berberine alters mitochondrial function and morphology, and causes caspase-independent cell death. BBR causes rapid
reduction in cell viability independent of caspase-3 activation, and changes in mitochondrial function and morphology. (A) Neuronal cell viability
assessed by visual scoring of nuclear morphology reveals the largest drop in viability to take place between 4 and 6 hours. Pan-caspase inhibitor z-
VAD-FMK does not affect BBR toxicity after cotreatment for 6 hours. (B) Western blot (WB) of CGN cell lysates shows caspase-3 cleavage and
phosphorylation of c-Jun in serum/potassium deprived-neurons (K5) but not in BBR-treated neurons. Cotreatment with z-VAD-FMK prevents caspase-
3 cleavage, but c-Jun remains phosphorylated as it functions upstream of caspase-3 in the neuronal apoptosis pathway. (C, D) WB of CGN lysates
show that treatment with 10 mM BBR for 0.5–6 hours (C) or with 0.01–10 mM BBR for 6 hours (D) does not induce cleavage of caspase-3 or
phosphorylation of c-Jun. (E) CGN were stained with TOM-20 (top row) or transduced with GFP-OMP25 lentivirus (bottom row) to visualize all
mitochondria and neuronal mitochondria, respectively. Glial cells, marked with `, display larger nuclei, and lack of TUJ1-staining (top row).
Mitochondria in untreated neurons display an elongated shape, and the proportion of rounded mitochondria (white arrows) is increased by BBR
treatment. (F) BBR lowers mitochondrial membrane potential in CGN as evaluated by the increased JC-10 monomer/aggregate ratio (515/590 nm).
(G) BBR at 3 and 10 mM causes a sharp increase in oxidative stress after 2 hours of treatment as assessed by the CM-H2DCFDA assay. (H) BBR
treatment lowers the rate of resazurin reduction, but does not have an additive effect when coupled with maximal complex I inhibition with 10 mM
rotenone. Orange *** indicate significant difference between control and BBR, blue *** indicate significant difference between control and rotenone,
and red *** between BBR and BBR + rotenone-treated CGN. For E: (top row) blue is Hoechst, green is TOM-20 and red is b-tubulin III and (bottom row)
blue is b-tubulin III, green is GFP-OMP25 and red is AIF; the scale bar represents 20 mm. For panels A, F, H, n = 4. For panel G, n = 5. For A, F, G and H,
* = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0107129.g002
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1 hour in 5% non-fat milk powder (Valio) diluted in TBST (TBS +
0.1% Tween-20 [Sigma]) before overnight incubation with

primary antibodies at +4uC. The primary antibodies used were:

cleaved caspase-3 (Asp175; Cell Signaling, rabbit, 1:1000),

phospho-c-Jun (Ser65; Cell Signaling, rabbit, 1:1,000), b-tubulin

I+II (Sigma, mouse, 1:1000), and GAPDH (6C5; Millipore,

mouse, 1:1000). On the next day, membranes were washed

3 times for 10 minutes with TBST and an appropriate secondary

antibody was added for 1 hour. Horseradish peroxidase-linked

anti-mouse (GE Healthcare, LNA931V) and anti-rabbit (GE

Healthcare, LNA934V) secondary antibodies were used at a

1:6000 dilution in TBST. After washing, membranes were soaked

for 3 minutes with Pierce ECL reagent (Thermo Scientific, 32106).

Protein bands were detected with the LAS-3000 imaging system

(Fujifilm). Quantity One software (Bio-Rad) was used for the

optical density quantification of Western blots.

CM-H2DCFDA oxidative stress assay
CM-H2DCFDA is a probe sensitive to oxidation by reactive

oxygen species (ROS) and was used to measure oxidative stress

according to the manufacturer’s instructions (Life Technologies).

Briefly, CGN were cultured on 96-well white-walled clear-bottom

plates in phenol-red free Neurobasal media until 7 DIV. Before

the start of experiments, all wells were washed once with

prewarmed PBS and the cells were loaded with 100 ml per well

of CM-H2DCFDA (50 mg diluted in 6 milliliters of PBS) for

30 minutes at 37uC. Fresh phenol-red free Neurobasal media and

BBR treatments (BBR 0.01–10 mM) were added to the wells after

loading. The fluorescence was measured (Ex/Em = 485/515 nm)

with the Victor3 1420 Multilabel counter after 0.5, 1, 2, 4 and

6 hours post-treatment.

JC-10 mitochondrial membrane potential assay
Mitochondrial membrane potential was measured according to

the manufacturer’s instructions (Abcam). Briefly, CGN were

cultured on 96-well white-walled clear-bottom plates in phenol-

red free Neurobasal until 7 DIV. Thirty minutes before the end of

the treatment, 50 ml of JC-10 dye-loading solution was added to

each well and incubated for 30 minutes before measuring

fluorescence intensities (Ex/Em = 485/515 nm and Ex/Em

= 540/590 nm). The change of mitochondrial membrane poten-

tial was measured as the ratio between aggregate (Em = 515 nm)

and monomeric forms (Em = 590 nm) of JC-10. Increasing ratios

indicate mitochondrial membrane depolarization.

Mitochondrial metabolic activity assay
The rate of mitochondrial metabolic activity was assessed with

the resazurin reduction assay [31]. Briefly, CGN were cultured on

96-well white-walled clear-bottom plates until 7 DIV. Resazurin

was added to each well to yield a final concentration of 0.1 mM.

BBR and rotenone treatments were added to appropriate wells and

the fluorescence intensity of reduced resazurin (Ex/Em = 540/

590 nm) was measured hourly with the Victor3 1420 Multilabel

counter for 6 hours, with the maximal reduction (100%) measured

after 24 hours from vehicle-treated control wells. Rotenone was

used to block complex I activity in order to determine the

resazurin reduction rate independent of complex I activity.

LDH cytotoxicity assay
LDH measurements were performed as described in the

manufacturer’s instructions (Promega). Briefly, 50 ml of condi-

tioned media from CGN cultures were transferred into 96-well

white-walled clear-bottom plates (PerkinElmer) in duplicate and

50 ml of LDH substrate was added to each well. The plate was

incubated for 30 minutes at room temperature in the dark before

the addition of 50 ml stop solution. Freshly prepared culture

medium was included as a negative control. After gentle mixing on

a plate shaker, absorbance was measured at 490 nm with the

Victor3 1420 Multilabel counter (PerkinElmer).

Statistical analyses
A minimum of three repetitions from at least two different

batches of cells were used for each experiment. Microsoft Excel

and GraphPad Prism software were used for statistical analyses

and generation of graphs. Statistical significance was evaluated

with the Student’s t-test and ANOVA, with the significance

threshold set at p,0.05 (*).

Results

Dose-dependent effects of berberine on the viability of
primary neurons

We evaluated the effects of BBR on primary neuron viability by

immunofluorescence (IF)-based morphological analysis and the

CellTiter-Glo ATP-based cell viability assay. We treated CGN

with BBR concentrations ranging from 10 nM to 10 mM for

6 hours and assessed neuronal viability by visualizing nuclear

morphology with Hoechst staining. As shown in Figure 1A, lower

(0.3 mM and under) concentrations of BBR did not significantly

affect the gross morphology of the CGN neuritic network,

comprising both neuronal dendrites and axons. Treatment with

0.1 mM BBR caused a modest increase in cell viability determined

by nuclear staining (Figure 1B) but not ATP content (Figure 1D).

However, concentrations exceeding 1 mM caused a severe

disruption of neuritic and nuclear integrity (Figure 1A). These

concentrations reduced cell numbers and increased the percentage

of condensed nuclei observed in culture (Figure 1B). In HCN,

BBR treatments yielded a similar reduction of viability (Fig-

ure 1C), indicating a general neurotoxic property for BBR.

Additionally, we assessed cell viability by measuring the ATP

content of the neuronal cultures. Treatments with BBR (0.01–

10 mM) showed a similar decrease in ATP levels after both 6-

and 24-hour treatments (Figure 1D, E). Similar to cell viability

assessment by nuclear morphology, BBR significantly reduced

the neuronal ATP content at concentrations between 1 to

10 mM, with an IC50 of <3 mM for both 6- and 24-hour

treatment periods. Ten micromolar BBR caused the largest

decrease, 81.2610.2% in ATP levels (Figure 1D), and a

87.063.0% (Figure 1B) decrease in neuronal cell viability, and

a dramatic disruption of neuritic integrity (Figure 1A). Conse-

quently, 10 mM BBR was used as the most potent toxic dose in

further experiments.

Berberine causes functional and morphological
alterations of neuronal mitochondria independent of
caspase-3 activation

BBR triggers both caspase-dependent and -independent path-

ways of apoptosis [32–34]. Hence, we assessed the time frame of

cell death, and the role of caspases and mitochondria to elucidate

the mechanisms of BBR neurotoxicity. In a time interval trial,

10 mM BBR steadily reduced CGN viability, with the most robust

loss of viability taking place between 4 and 6 hours of treatment,

dropping from 46.067.6% to 9.062.3% (Figure 2A). Additional-

ly, this loss of viability was insensitive to pan-caspase inhibitor z-

VAD-FMK (100 mM), indicating a caspase-independent pathway

(Figure 2A). We verified the efficacy of z-VAD-FMK caspase

NMDA Receptor-Dependent Neurotoxicity of Berberine
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inhibition from cell lysates by WB (Figure 2B). The induction of

caspase-3 cleavage, the main executioner caspase in neurons, was

blocked by z-VAD-FMK during neuronal apoptosis caused by

serum/potassium deprivation (K5) leaving the upstream c-Jun

phosphorylation unaffected, whereas CGN treated with 10 mM

BBR for 6 hours showed no phosphorylation of c-Jun or caspase-3

cleavage (Figure 2B). Additionally, we detected no caspase-3

cleavage or phosphorylation of c-Jun in CGN treated with 10 mM

BBR between 0.5–6 hours (Figure 2C) or with BBR concentra-

tions 0.01–10 mM (Figure 2D). These data indicate that BBR-

induced neuronal cell death is a rapid caspase-independent

process.

Mitochondria are a known target of BBR and a central player in

multiple cell death pathways [35]. We assessed the morphological

changes of mitochondria by visualizing outer mitochondrial

membrane protein TOM-20 by IF-staining (Figure 2E; top row).

To better selectively visualize neuronal mitochondria, we trans-

duced CGN with synapsin-promoter driven expression of GFP-

OMP25 [28,29] coupled with IF-staining (Figure 2E; bottom row).

BBR treatment induced mitochondrial morphological changes in

TUJ1-positive cells resembling swelling already after one hour

(white arrows in Figure 2E). In contrast to control cells, BBR

increased the proportion of spherical mitochondria (Figure 2E).

These morphological changes indicate that BBR induces mito-

chondrial swelling, known to associate with the opening of the

mitochondrial permeability transition pore (PTP), a drop in the

mitochondrial membrane potential and loss of mitochondrial Ca2+

retention [22,35].

In order to elucidate a possible mechanism for mitochondrial

swelling, we further explored the effects of BBR on the

mitochondrial membrane potential and oxidative stress. Mito-

chondrial membrane potential was assessed by fluorescent JC-10

that selectively enters the mitochondria forming reversible

aggregates as the mitochondrial membrane becomes more

polarized, shifting the emitted light from 515 nm (monomeric

form) to 590 nm (aggregate form). The mitochondrial membrane

potential in CGN treated with 10 mM BBR dropped already after

30 minutes as indicated by the increase in monomer/aggregate

ratio (Figure 2F). Treatments with 10 mM rotenone and 100 mM

glutamate show a similar loss of membrane potential after 6 hours

(Figure 2F). In contrast, oxidative stress increased in neurons

treated with 3 and 10 mM BBR only after 2 hours (Figure 2G),

coinciding with a decrease in viability seen in Figure 2A. Lastly,

the effect of BBR on mitochondrial metabolism was assessed by

resazurin reduction assay. BBR lowered the rate of resazurin

reduction during 2 to 6 hours of treatment (yellow *) from

18.060.4% to 15.560.5% at 2 hours, and from 51.060.6% to

44.061.0% at 6 hours (Figure 2H). Full inhibition of mitochon-

drial complex I with 10 mM rotenone significantly reduced the

rate of resazurin reduction but was not further lowered by BBR

treatment (Figure 2H) suggesting that BBR and rotenone do not

have an additive effect on mitochondrial metabolism. These data

indicate that mitochondrial membrane depolarization and mito-

chondrial swelling precede an increase in oxidative stress and loss

of cell viability in neurons exposed to BBR.

Cyclosporine A partially protects neurons from BBR
toxicity

Cyclosporine A (CsA) is a potent PTP inhibitor used as an

immunosuppressant and to prevent cardiac hypertrophy following

ischemic or reperfusion injuries. Moreover, CsA has been

proposed to interact with herbal supplements, such as berberine

[36,37]. We used CsA to elucidate whether BBR-induced

neurotoxicity is dependent on the PTP formation. Our data

indicate that CsA can partially protect neurons from BBR-induced

neurotoxicity (Figure 3A), as cell viability improved from

13.362.8% to 63.5611.4% in the presence of 1 mM CsA as

assessed by nuclear morphology (Figure 3B). The release of LDH

was also reduced from 168620.7% to 12460.3% (Figure 3C).

Since CsA also inhibits calcineurin activity, we also assessed the

effect of FK506, a specific calcineurin inhibitor that has no effect

on PTP, on the viability of BBR-treated CGN. FK506 failed to

protect CGN from BBR neurotoxicity (Figure 3B, C). These data

further highlight the importance of mitochondria in BBR-

Figure 3. Cyclosporine A partially blocks berberine toxicity. Pretreatment with CsA partially protects CGN against BBR toxicity. (A)
Representative images of CGN pretreated 1 hour with and without 1 mM CsA or FK506 before the addition of 10 mM BBR. (B) Quantification of CGN
cell viabilities shown in A. (C) LDH release assay from the conditioned media for the described treatments shows partial protection by CsA, but not for
FK506. For A, green is b-tubulin III, blue is Hoechst; the scale bar represents 100 mm. For panel B, n = 4 and for C, n = 3. For B and C, * = p,0.05,
** = p,0.01.
doi:10.1371/journal.pone.0107129.g003
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mediated toxicity and suggest that PTP formation is involved in

mediating the neurotoxic effects of BBR.

NMDA receptor antagonists memantine and MK-801
prevent berberine toxicity

Excitotoxic neuronal cell death is often accompanied by

formation of the mitochondrial PTP and release of pro-apoptotic

factors from mitochondria to cytosol [38,39]. NMDA receptors

and mitochondria are functionally coupled in many types of

neuronal cell death [40]. The time course of BBR-induced cell

death is faster than in programmed apoptosis and resembles

mixed necroptosis occurring during excitotoxic injury [30,41,42].

Glutamate excitotoxicity in neurons is characterized by mito-

chondrial defects, increased intracellular Ca2+ and activation of

caspase-independent cell death pathways, and can be prevented

by blocking NMDA receptors [43,44]. To elucidate whether

BBR toxicity is dependent on NMDA receptor function, we

pretreated CGN with NMDA receptor antagonists MK-801 or

memantine for 1 hour before the addition of 10 mM BBR for

6 hours. Both NMDA receptor antagonists preserved neuritic

network morphology and completely blocked BBR-induced cell

death (Figure 4A, B). Similarly to CGN cultures, NMDA

receptor antagonists also prevented BBR toxicity in HCN

(Figure 4A, C). These pharmacological data suggest that NMDA

receptors are centrally involved in BBR neurotoxicity.

Berberine pretreatment sensitizes neurons to glutamate
excitotoxicity

Although our results suggest that BBR is neurotoxic at low

micromolar concentrations, previous research indicates that low

nanomolar BBR pretreatment can elicit neuroprotection in

neuronal-type cells against hypoxic and ischemic insults [16]. As

glutamate excitotoxicity is the primary cause of neuronal cell death

in ischemic stroke, we tested whether nanomolar BBR can either

sensitize neurons to or protect them from glutamate excitotoxicity.

Previous research has determined a subtoxic range of glutamate

exposure in CGN between 20–50 mM, whereas 100 mM glutamate

produces prominent excitotoxicity within 6 hours [45,46]. We

pretreated CGN for 18 hours with 30 or 300 nM BBR (well-

tolerated concentrations; Figure 1) before the addition of 20, 50,

or 100 mM glutamate for an additional 6 hours. When pretreated

with 300 nM BBR, CGN became more susceptible to glutamate

excitotoxicity, as evidenced by neuritic degeneration (Figure 5A),

nuclear condensation (Figure 5B), and LDH release (Figure 5C).

Although displaying a similar trend of sensitization as 300 nM

BBR, pretreatment with 30 nM BBR did not significantly either

increase or reduce neuronal viability. These data suggest that

subtoxic nanomolar BBR concentrations are sufficient to sensitize

neurons to glutamate excitotoxicity [47].

Nanomolar BBR sensitizes neurons to rotenone injury
The interlinked roles of NMDA receptors and mitochondria are

central to excitotoxic injuries resulting from glutamate exposure

Figure 4. NMDAR antagonists memantine and MK-801 block BBR-induced cell death. NMDA receptor antagonists memantine and MK-801
block toxicity caused by 10 mM BBR in CGN and HCN cultures. (A) Representative IF images of CGN (upper row) and HCN (lower row) pretreated with
memantine and MK-801 before the addition of 10 mM BBR for 6 hours. (B) Quantification of CGN viabilities shown in A. (C) Quantification of neuronal
cell viability of IF images of HCN. For A, green is b-tubulin III, blue is Hoechst; the scale bars represent 100 mm. For panels B and C, n = 3. For B and C,
* = p,0.05, *** = p,0.001.
doi:10.1371/journal.pone.0107129.g004
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and perturbations in the respiratory chain [40,41,48]. Mitochon-

drial complex I is a common target of pesticides, including

rotenone, which is a potent mitochondrial complex I inhibitor with

an IC50 of <2 mM [49,50]. Moreover, BBR is suggested to directly

interfere with mitochondrial complex I [11]. Rotenone is

particularly toxic to dopaminergic neurons and is commonly used

in Parkinson’s disease models [51]. In CGN, rotenone causes acute

toxicity within an hour at 5 mM [52] and 10–20 nM levels severely

restrict the oxidative respiration rate [40]. BBR has properties

similar to these known mitochondria-targeting toxins, as discussed

by Shin et al. [19]. We investigated the effects of BBR

pretreatment on rotenone toxicity. Our data indicated that

1 mM rotenone caused rapid toxicity within 6 hours, whereas

0.1 mM rotenone did not significantly affect CGN gross morphol-

ogy and cell viability following a 6-hour treatment (Figure 6A).

However, 30 nM BBR pretreatment for 18 hours dramatically

sensitized CGN to rotenone treatment, decreasing cell viability

from 88.364.3% down to 16.067.2% in the presence of 0.1 mM

rotenone as assessed by nuclear morphology (Figure 6B) and LDH

release assay (Figure 6C). Interestingly, the neuronal network

remained relatively intact following rotenone treatment, suggesting

a more prominent effect on the neuronal soma than the neuritic

network. These data indicate the central role of NMDA receptors

and mitochondria in BBR neurotoxicity and that subtoxic levels of

BBR can sensitize neurons to excitotoxicity and mitochondrial

toxins [53].

Discussion

In this study, we explored the concentration-dependent effects

of BBR, a widely used nutraceutical, on the viability of cultured

primary neurons. In contrast to the general view of BBR as a

neuroprotective nutraceutical, we report that BBR causes neuro-

toxic effects on cultured cerebellar granule neurons (CGN) and

hippocampal neurons (HCN). Low micromolar BBR concentra-

tions induced rapid caspase-independent cell death, which was

associated with functional and morphological alterations of

mitochondria. Neurotoxicity of BBR was completely blocked by

the NMDA receptor antagonists memantine and MK-801, with

partial protection achieved with the mitochondrial PTP inhibitor

Figure 5. Berberine sensitizes neurons to glutamate toxicity.
Pretreating CGN 18 hours with 300 nM BBR exacerbates glutamate
excitotoxicity. (A) Representative IF images for CGN pretreated with
300 nM BBR for 18 hours before the addition of 20 or 50 mM glutamate
for 6 hours. (B) Quantification of CGN cell viabilities shown in A. (C) LDH
release assay from the conditioned media for the described treatments
shows exacerbation of toxicity by 300 nM BBR with glutamate co-
treatments. For A, green is b-tubulin III, blue is Hoechst; the scale bar
represents 100 mm. For panels B, n = 3 and panel C, n = 4. For B and C,
* = p,0.05, *** = p,0.001.
doi:10.1371/journal.pone.0107129.g005

Figure 6. Berberine sensitizes neurons to rotenone-induced
injury. Pretreatment with 30 nM BBR is sufficient to sensitize CGN to
rotenone toxicity. (A) Representative images of CGN pretreated for
18 hours before the addition of 0.1 or 1 mM rotenone for 6 hours. (B)
Quantification of CGN cell viabilities shown in A. (C) LDH release assay
shows exacerbation of toxicity by BBR pretreatment. For A, green is b-
tubulin III, blue is Hoechst; the scale bar represents 100 mm. For panels
B and C, n = 3. For B and C, * = p,0.05, *** = p,0.001.
doi:10.1371/journal.pone.0107129.g006
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cyclosporine A. Additionally, BBR pretreatment sensitized neu-

rons to glutamate and rotenone injury at similar concentrations

previously associated with neuroprotection [16]. Our study raises

concerns of acute BBR neurotoxicity due to its prominent effects

on mitochondria and NMDA receptors, especially when applied at

micromolar concentrations close to the levels suggested to be

attainable by oral dosing.

BBR is generally well tolerated, as evidenced by its long history

of traditional use and several controlled clinical trials in metabolic

disorders [5], although use restrictions have been enforced in

certain countries, such as Singapore [54,55]. Current literature

supports the use of BBR against various indications, ranging from

antibiotic and anti-diabetes to anti-cancer and neuroprotection

[20]. However, the range of concentrations, treatment times, cell

lines, animal models and application methods vary greatly

between studies, making direct comparison between published

reports difficult. Pharmacological studies on animals and humans

suggest that BBR has poor bioavailability. However, while plasma

concentrations only reach low nanomolar range, BBR can

accumulate in numerous organs, including the brain, reaching

low micromolar concentrations [13]. Current attempts to increase

the bioavailability of BBR may enhance efficacy when used in

metabolic indications, but our study highlights the importance of a

thorough safety assessment of BBR in the nervous system. This

would be especially important considering the potential long-term

use of BBR in the aging population suffering from metabolic

diseases, which themselves may increase the risk of ischemic injury

and neurodegenerative diseases such as Alzheimer’s disease [56].

Our findings support recent evidence that BBR may exacerbate

neurotoxicity in dual-hit conditions, as proposed by Myung Koo

Lee et al. in Parkinson’s disease models [19,57]. Contrary to this

view, BBR has been proposed to act as a neuroprotective

nutraceutical against various apoptotic insults arising from

neurodegenerative conditions such as ischemia and Alzheimer’s

disease, based on both animal models and several cell lines,

including SH-SY5Y, NSC34, and PC12 cells [13,16,18,58–61].

Based on previous literature, however, the effects of BBR on cell

viability are highly variable. For example, at low nanomolar

concentrations (0.1–10 nM), BBR protects PC12 cells against

apoptosis by decreasing caspase activation and ROS generation

[27]. However, PC12 cells differ significantly from the primary

neurons used in this study. Neurons are generally more sensitive to

changes in energy metabolism, excitation and ionic balance in

comparison to cell lines [40]. Moreover, PC12 cells lack functional

NMDA receptors [62]. These crucial inherent cell physiological

differences could explain the robust BBR toxicity observed in

primary neurons, leaving many other cell types unaffected at low

micromolar concentrations. Whether the protective effects of BBR

in PC12 and other cell lines could also be seen with micromolar

BBR remains to be seen.

Pro-apoptotic and anti-cancer effects are attributed to high

micromolar concentrations of BBR that efficiently inhibit tumor

cell proliferation, DNA synthesis, and induce cell cycle arrest

[27]. There is evidence for both caspase-dependent and -

independent pro-apoptotic roles for BBR [32,33]. We describe

BBR-mediated neurotoxicity as a rapid, caspase-independent

process. With an IC50 of roughly 3 mM, BBR caused rapid

nuclear condensation and fragmentation of neuronal dendrites

and axons within 4–6 hours. The radical drop in ATP levels and

reduced mitochondrial metabolic activity after micromolar BBR

application indicates that BBR causes a severe energy depletion

in neurons, resulting in caspase-independent cell death, as ATP

would be needed for programmed apoptotic cell death [63]. This

is further supported by the insensitivity of BBR-treated cells to

pan-caspase inhibitor z-VAD-FMK and the absence of c-Jun

phosphorylation and cleavage of caspase-3, a major executioner

caspase.

Mitochondrial targeting is a property of BBR already noted in

the 1970s [64,65]. The crucial involvement of mitochondria is

evident from the rapid alterations of mitochondrial function and

morphology following BBR addition. BBR, and its derivative

dihydroberberine, have been shown to specifically target the

mitochondrial complex I [11]. Recently, Pereira et al. character-

ized the effects of BBR on melanoma cell mitochondria as well as

isolated mitochondrial fractions [22,35]. They demonstrated that

BBR can accumulate in mitochondria causing mitochondrial

depolarization and fragmentation, mitochondrial PTP induction,

increased oxidative stress, decreased cellular ATP content, and cell

cycle arrest [35]. Our results from primary neurons support these

findings. While these effects may be desirable for antitumor agents,

they may also cause toxicity in neurons, which are sensitive to

metabolic disturbances and thus particularly sensitive to mito-

chondrial dysfunction [40,41,63,66]. Our current results suggest

that mitochondria are centrally involved in the toxic effects of BBR

in neurons.

In addition to mitochondrial effects, BBR has been reported to

modulate ionic currents, particularly via potassium channels [67].

At concentrations similar to the IC50 of <3 mM for CGN viability,

BBR inhibits delayed rectifier currents and HERG channels

[15,25,68]. At higher concentrations, BBR also inhibits a variety of

potassium currents, including inward and outward rectifier,

voltage sensitive, and K+ channel currents [25,67–69]. The IC50

for outward rectifier current is around 10 mM. Moreover, BBR

blocks ATP-sensitive potassium (KATP) channels with an IC50 of

13 mM, which may cause further depolarization [69]. Interesting-

ly, NMDA receptor composition can be modulated by BBR [70].

We found that the neurotoxic effects of BBR can be completely

blocked by inhibition of NMDA receptors, suggesting that

modulation of cellular excitability by BBR significantly contributes

to its neurotoxic mechanisms.

Our study confirms previous reports on the neurotoxicity of

BBR [19,57] and suggests a mechanistic basis to understand how

BBR could enhance neurodegenerative processes. These findings

raise concerns over the CNS safety profile of BBR, particularly

when used in the long-term in the aging population, in patients at

risk of silent strokes or ischemic episodes [71], or in people at risk

of chronic systemic pesticide exposure [50,72]. Importantly, our

results also suggest that memantine, a clinically available NMDA

receptor antagonist, may be used to protect neurons against BBR

toxicity. Widely available nutraceuticals and dietary supplements

have gained considerable interest due to their potential health

effects and presumed safety. However, more attention should be

paid to both regulatory and research needs in this field.
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