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The novel immune‑related genes 
predict the prognosis of patients 
with hepatocellular carcinoma
Lunxu Li1, Shilin Xia2, Xueying Shi2, Xu Chen1 & Dong Shang1,2*

Hepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy 
is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify 
biomarkers for treatment response and prognosis prediction. We searched publicly available 
databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 
115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database 
to determine the immune‑related genes as well. Weighted gene correlation network analysis, Cox 
regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used 
to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set 
enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway between Immune high‑ and low‑risk score groups. Finally, 
we made a prognostic nomogram including Immune‑Risk score and other clinicopathologic factors. 
A total of 318 genes from prognosis related modules were identified through weighted gene 
co‑expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate 
Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction 
ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified 
between high‑ and low‑ risk score groups using GSEA analysis. This study identified and verified seven 
immune‑related prognostic biomarkers for the patients with HCC, which have potential value for 
immune modulatory and therapeutic targets.

Hepatocellular carcinoma (HCC) is known as the third cause of cancer death worldwide and its incidence con-
tinues to  rise1. HCC can be induced by various risk factors, such as hepatitis B/C virus infection, nonalcoholic 
steatohepatitis (NASH), alcoholism, and  smoking2. The patients with HCC often accompanying cirrhosis and 
many molecular pathways  deregulation3. Traditional treatment methods for HCC patients have shown poor 
clinical efficacy for a long  time4. Curative approaches for HCC including: surgical resection、orthotopic liver 
transplantation and locoregional therapies. While most HCC patients were already at advanced status when 
received the diagnoses and were not amenable to curative resection or ablation. Thus palliative treatments such 
as: trans-arterial approaches and systemic therapies are particularly important for such  patients5. Sorafenib has 
been the only first-line therapy for advanced HCC patients for more than 10 years, while the reduction in the 
risk of death was limited as the median time to progression was 5.5 months and median overall survival was 
10.7  months6–8. Recently immunotherapy is becoming the new standard treatment for advanced HCC patients 
all around the  world9. Some clinical studies have shown that Nivolumab therapy can provide demonstrable 
responses for a subset of advanced HCC  patients10. According to the 2020 American Society of Clinical Oncology 
guideline, Atezolizumab + bevacizumab has been recommended as the new first-line treatment for most advanced 
HCC  patients11. This management has shown superior efficacy including higher objective response rates and 
median survival compared with sorafenib based on a global, open-label, phase 3  trial12. Combination of immune 
checkpoint inhibitors and kinase inhibitors will soon become a  cornerstone13. While some early-phase clinical 
trials indicated that the combination therapy may increase the toxicity of individual  agents14,15. In addition, the 
response rate of immunotherapy at the present stage is limited, with the objective response rate generally failing 
to exceed 20%. Exploring strategies to maximize patient response 、striving to better predict and choose patients 
who are likely to respond are the development directions of HCC immunotherapy. Therefore, novel biomarkers 
for prediction of treatment response are critical to develop and optimize new management  strategies16.
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Gene microarrays and RNA-sequencing technology combined with bioinformatics analysis have identified 
several prognostic biomarkers for cancer diseases these  years17–21. Some immune-related prognostic signatures 
showed strong prediction ability. For example, Huang et al.22 constructed an immune related gene (IRG) prog-
nostic classifier consisting of PSME1, CDC42, CMTM6, CXCR6, CD8B, HLA-DQB1, HLA-C, and TNFSF13 
based on GEO data for melanoma patients. Similar IRGs prognostic signatures have been reported for colorectal 
 cancer23, lung  adenocarcinoma24 and gastric  cancer25, as well.

In this study, we analyzed the HCC gene expression profiles in The Cancer Genome Atlas (TCGA, http:// 
www. cancer. gov/ tcga) database using weighted gene co-expression network analysis (WGCNA). Genes from the 
significant prognostic-related modules were further computed for Cox regression and Lasso regression and con-
structed an IRG prognostic signature consisting of seven genes (NR1D1, HDGF, LMBR1, PRDX1, NR6A1, EPO 
and DCK). In addition, we analyzed the IRG signature by intergrating other clinical information like tumor stage, 
grade, patient’s age, gender and the IRG signature was confirmed as an independent prognostic indicator for 
HCC. The flow chart of this study was shown in (Fig. 1A). Our study established an immune-related signature for 
HCC patients and provided information of subsequent personalized diagnoses and treatment strategies of HCC.

Materials and methods
Data collection and immune related genes selection. The GSE76427 gene expression profiles were 
retrieved from the Gene Expression Omnibus (GEO: https:// www. ncbi. nlm. nih. gov/ geo/) database and the sam-
ples without follow-up information were excluded. The GEO expression file was normalized for further analy-
sis. The HCC RNA-seq data was retrieved from TCGA database including 407 HCC samples and 58 normal 
samples. The TCGA dataset was normalized using the FPKM  method26. To eliminate the batch effect of GEO 
and TCGA dataset, R package “sva” was applied. A total of 1811 IRGs (Table s1) related to human cancers were 
identified through the Immunology Databases and Analysis Portal (ImmPort) database (https:// www. immpo rt. 
org/ home27. The common immune-related genes among the three above datasets were chosen.

Weighted gene co‑expression network analysis. Weighted gene co-expression network analysis 
(WGCNA) was performed in TCGA dataset, and the power exponential weighting of gene correlation coef-
ficients was used to reveal the relationships among different  genes28. We also explored the relevance among the 
clinical phenotype with gene modules. Module Membership (MM) represented the Pearson correlation coef-
ficient of the module’s first principal component and module genes expression. Gene significance (GS) repre-
sented the level of linear correlation between clinical phenotype and module genes expression.

Construction and verification of the IRG signature. The HCC patients’ clinical information was 
retrieved from TCGA database and the samples without overall survival (OS) and survival state information 
were excluded. A total of 371 samples were brought into survival analysis. Aiming to make the established prog-
nostic signature have better generalization, the samples were divided into training dataset (186 samples) and 
test dataset (185 samples) randomly. In training dataset, univariate Cox regression was used with the survival 
R package (p < 0.01) to identify survival-related IRGS, the Least Absolute Shrinkage and Selection Operator 
(LASSO) regression was used to eliminate collinearity among  IRGs29 . Ultimately a prognostic model involv-
ing seven key IRGs was constructed by multivariate Cox proportional hatablezards regression  analysis30. The 
immune risk score was served as predictors of prognostic status. And we calculated the immune risk score with 
the following formula: risk score  = 

∑
n

i=1 exp i ∗ βi. .
We plotted the Kaplam-Meier survival curves to evaluate the model’s prediction effect. All of the samples were 

categorized into high-risk group and low-risk group according to the median value of the training dataset. Time-
dependent receiver operating characteristic (ROC) curves were plotted to appraise the prediction performance 
of 1-, 3-, 5-year  survival31 . We also calculated the Area Under roc curve (AUC) of the training dataset, testing 
dataset and GSE dataset via time ROC R package.

Relationship between IRGs signature and clinicopathologic features. The univariate Cox analysis 
determined the correlation between survival and clinicopathologic features while the indicators including: age, 
gender, TNM stage, tumor grade and Immune risk score. Then the independent prognostic indicators of HCC 
was identified by the multivariate Cox analysis. Finally we generated a prognostic nomogram using rms R pack-
age.

Relationship between IRGs signature and immune checkpoints expression. TIMER database 
(https:// cistr ome. shiny apps. io/ timer/) is a public resource to analyze and visualize the abundance of tumor-
infiltrating immune cells in a given cancer  type32. In order to explore the effect of the IRGs signature in HCC 
immunotherapy, the “Correlation” module was used to calculate the relationship between the IRGs signature 
and another 6 immune checkpoints’ expression including PDCD1, PDCD1LG2, CTLA4, CD247, HAVCR2, and 
IDO1. And Spearman’s correlation > 0.3 was considered to have a significant correlation.

Gene set enrichment analysis (GSEA). The differences of signaling pathway were integrated through 
the Kyoto Encyclopedia of Genes and Genomes (KEGG)  database33, and determined by gene set enrichment 
analysis (GSEA) using the software GSEA 4.0.3 (http:// www. gsea- msigdb. org) with FDR < 0.01 and normalized 
enrichment score (NES) > 1.9.

http://www.cancer.gov/tcga
http://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/home
https://www.immport.org/home
https://cistrome.shinyapps.io/timer/
http://www.gsea-msigdb.org


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10728  | https://doi.org/10.1038/s41598-021-89747-7

www.nature.com/scientificreports/

Figure 1.  (A) Flow chart of the present study. (B) The common IRGs were visualized by Venn diagram and 
Histogram.
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Results
Identification of prognosis‑related modules by WGCNA. Weighted Gene Correlation Network 
Analysis (WGCNA) was performed on 1284 overlapping immune-related genes (Fig. 1B). Firstly, we removed 
one sample, TCGA-FV-A4ZP, as the height in the hierarchical clustering tree is greater than 20,000 (Fig. 2A). 
The soft-thresholding power to construct a gene regulatory network was established basing on a scale-free 
 R2 = 0.9 (Fig. 2B). Eight modules were identified using dynamic pruning method and similar modules has been 
merged (Fig. 2C). The highest correlation with survival status was shown in green module while the red and blue 
modules showed the highest correlation with the overall survival of HCC patients (Fig. 2D). Finally, we chose a 
total of 318 IRGs from the three modules for further analysis.

Construction of prognostic signature based on immune related genes. As the result of univariate 
Cox regression analysis, 46 survival related genes of the above three modules were identified with the cut-off 
value of P < 0.01 (Table s2). In order to eliminate collinearity between IRGs, Lasso regression analysis was per-
formed (Fig. 3). In the end, a total of 7 genes (NR1D1, HDGF, LMBR1, PRDX1, NR6A1, EPO and DCK) were 
included in multivariate Cox regression to establish a prognostic signature. The hazard ratio and 95%CI of the 
seven IRGs are presented (Fig. 4). The Kaplan–Meier curves were plotted in the training dataset according to the 
immune risk score and the high-risk group showed a poor overall survival compared to low-risk group (Fig. 5A). 
The time-dependent ROC curves revealed the prognostic signature had a superior predictive accuracy as the 
AUC was 0.8473 for 1-year, 0.7575 for 3-year, 0.6872 for 5-year in the training dataset (Fig. 5B).

Verification of the prognostic signature in testing dataset and GSE cohort. The clinical char-
acteristics of patients from TCGA and GEO database are shown in Table 1. In the TCGA testing dataset, the 
Kaplan–Meier analysis revealed that the high-risk patients showed a worse survival (Fig. 5C). The time-depend-
ent ROC curves are plotted (Fig. 5D). We also used an independent cohort (GSE76427) to verify the predictive 
ability of the seven-gene signature. The Kaplan–Meier curve in GSE cohort was plotted (Fig. 5E) and the ROC 
curve showed the signature still had a good accuracy as the AUC was 0.6887 for 1-year, 0.604 for 3-year and 
0.6332 for 5-year (Fig. 5F). Moreover, the immune-risk signature was an independent prognostic indicator for 
overall survival (OS) in multivariate Cox analysis with p < 0.01 (Fig. 6). We also constructed a prognostic nomo-
gram which integrating the clinical features with immune-risk score as a quantitative tool for predicting OS of 
HCC patients (C index = 0.714, 95% CI = 0.651–0.777, Fig. 7A). The calibration plots presented that the nomo-
gram performed a moderate accuracy (Fig. 7B).

The IRGs signature’s effect in HCC immunotherapy. We used the TIMER database to further explore 
the relationship between the IRGs signature and the expression of another 6 immune checkpoints including 
PDCD1, PDCD1LG2, CTLA4, CD247, HAVCR2, and IDO1. The expression scatterplots were plotted (Fig. 8). 
According to the results, the expression of DCK was significantly associated with PDCD1LG2 (cor = 0.319, 
P < 0.05) and HACVR2 (cor = 0.382, P < 0.05). And the expression of EPO was significantly associated with 
PDCD1 (Spearman’s correlation = 0.302, P < 0.05), which indicates that DCK and EPO might play a important 
role in the response to immunotherapy in HCC.

Gene set enrichment analysis (GSEA). GSEA analysis identified 16 significant KEGG pathways includ-
ing: oocyte meiosis, cell cycle, ubiquitin mediated proteolysis, neurotrophin signaling pathway, glycosylphos-
phatidylinositol (GPI) anchor biosynthesis, pyrimidine metabolism, inositol phosphate metabolism, nucleotide 
excision repair, insulin signaling pathway, RNA degradation, purine metabolism, progesterone mediated oocyte 
maturation, regulation of autophagy, excision repair and non-small cell lung cancer. All of these pathways were 
differentially activated between high- and low-risk groups (Fig. 9).

Discussion
HCC is one of the most deadly cancers all around the world, whose incidence and mortality rates are predicted 
to continue  rising34. Liver resection, liver transplantation and radiofrequency ablation have been the potential 
curative treatments for HCC patients at a relatively early stage for a long  time35–38. Transarterial chemoemboliza-
tion and Tyrosine kinase inhibitor targeting agent Sorafenib have been demonstrated having survival benefits 
advanced HCC patients. While the improvement of overall survival is still limited. Sorafenib can only prolong 
the overall survival of advanced HCC patients by 3 months, and it also has significant side reaction.

Immunotherapy is developing rapidly and has formed part of the standard treatment regimen for many cancer 
 diseases39. The normal liver is a tolerogenic immune organ in order to prevent the abnormal immune response 
caused by continual pathogen  exposure40. Chronic inflammatory, which can inhibit the antigen-specific immune 
surveillance, is an important process in the development of  HCC41. Chronic inflammatory state also leads to the 
overexpression of immune checkpoint  molecules42. Therefore, activate the immune reaction to HCC can be help-
ful to the treatment. Several studies showed that increasing the level of activated peripheral blood mononuclear 
cells and dendritic cells benefited in both early and advanced stage  HCC43–45. The blockade of immune check-
points is the most successful immunotherapeutic in various cancer diseases. Programmed cell death-1(PD-1) 
antibodies including nivolumab and pembrolizumab have already shown promising efficacy in advanced HCC 
 patients46. However, the reliable predictive biomarkers for immunotherapy are still lacking.

High throughput sequencing technology, gene expression databases and bioinformatics analysis provided pos-
sibility for systematic profiling of immune signatures in solid cancer. Wang et al.22 constructed an immune-related 
prognostic signature including FGF2, SCL10A2, NDRG1, CCL28, UCN, ESM1, UTS2 and TRDC for colorectal 
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Figure 2.  Weighted gene correlation network analysis. (A) The samples hierarchical clustering tree, height greater than 20,000 
has been removed. (B) The scale‐free fit index for soft‐thresholding powers. The soft‐thresholding powers was identified based 
on a scale‐free R2 = 0.9. (C) The cluster dendrogram plotted by dynamic pruning method. Each branch in the figure represents 
one gene, each color below represents one co‐expression module. (D) The heatmap for the correlation between clinical traits 
and gene module.
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cancer. Another bioinformatics research which analyzed three circRNA datasets and one miRNA dataset found 
that UBE2L3 was the key gene in the pathogenesis of  HCC47. In this study, we identified a seven-gene signature 
comprising NR1D1, HDGF, LMBR1, PRDX1, NR6A1, EPO and DCK that was closely related to the prognosis. 
NR6A1 and NR1D1 were members of the nuclear hormone receptor  family48. NR6A1 was reported as a novel 
biomarker associated with migration and invasion of prostate  cancer49. The overexpression of NR6A1 in prostate 
cancer cells could reduce G0/G1 phase cell cycle arrest and promoted tumor  growth50. Hepatoma-derived growth 
factor (HDGF) played an important role in the development and progression in many solid cancers including 
 HCC51,52. HDGF stimulated the differentiation of neutrophils in gastric cancer patients and relayed Hp-induced 
inflammatory signaling, which was involved in gastric  carcinogenesis53. High HDGF levels in serum of non-small 

Figure 3.  Construction of the immune-related prognostic signature in HCC. (A) Lasso regression analysis to 
eliminate collinearity. (B) Partial likelihood deviance for different numbers of variables. (C) The distribution of 
risk score. (D) The survival status and duration of patients.
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cell lung cancer patients also indicated bone metastasis and unfavorable  prognosis54. LMBR1 was related to the 
preaxial polydactyly in human and mouse. Its role in the tumor progression is still unclear. While according to a 
gene expression study about gastrointestinal stromal tumor, LMBR1 might be a tumor progression promoter in 
GISTs by regulating the expression of nuclear  BMI155. PRDX1 was a member of peroxiredoxin  family56, whose 
overexpression was associated with lymph metastasis, histopathological grading and the tumor size in head and 
neck squamous cell carcinoma  patients57. Bajor et al.58 also found that the downregulation of PRDX1 could sig-
nificantly impaired the growth rate of breast cancer cells and was a potential target for breast cancer treatment. 
Erythropoietin (EPO) was a biomarker of predicting prognosis in patients with Acute-on-chronic liver failure 
(ACLF), and patients without bleeding showed a lower level of  EPO59. Deoxycytidine kinase (DCK) was well-
known for its association with resistance to chemotherapeutic agents. Based on the research of Shang et al.60, the 
knock down of DCK inhibited proliferation and tumorigenicity of cervical cancer cells.

PDCD1 encodes the Programmed cell death protein-1 (PD-1), which expresses in the activated T cells. The 
interaction between PD-1 and its ligand PD-L1 (encoded by PDCD1LG1) suppresses the activation of lympho-
cytes and cytokine  production61. Inhibitors of PD-1 and PD-L1 have shown great clinical benefits in some types 
of  cancer62. Our study analyzed the correlation between the expression of IRGs and immune check point and 
found that the expression of PDCD1/PDCD1LG2 was in positive correlation with the expression of DCK and 
EPO, which revealed that the overexpression of DCK and EPO may upregulate the expression of PD-1/PD-L1, 
and lead to a suppression of anti-tumor immune response. The expression of DCK was also in positive correlation 
with the expression of HAVCR2. HAVCR2, which also known as TIM3, plays an important role in inhibiting 
the Th1 response and the expression of cytokines, some preclinical researches have shown that vivo blockade 
of Tim-3 leading to the enhance of anti-tumor immunity and the inhibition of tumor  growth63. The expression 
level of DCK was positively related to TIM3, indicating a potential correlation with the immunological tolerance 
in HCC. Thus, the DCK and EPO from IRGs may regulate the expression of some specific immune checkpoints 
and promote the tumor escape mechanisms in HCC. Further researches are needed to explore whether DCK 
and EPO could be the potential targets in immune checkpoint inhibitor therapy.

Gene set enrichment analysis (GSEA) indicated 16 significant differential KEGG pathways among high-and 
low-risk groups. Cell cycle is accomplished through a series of events including S phase, M phase, G1 and G2 
 phases64. The check point network controlled by ATM/ATR and CHK2/CHK1 can prolong cell-cycle progression 
in G1, G2 or S phases in respond to DNA  damage65–68. However, mutations in checkpoint pathway provide the 
opportunity for the continued growth of genomic abnormalities cells, thereby increasing the chance of malig-
nant  transformation69. Glycosylphosphatidylinositol (GPI)-anchored proteins has been reported associated with 
a range of  cancer70. Trink et al. found the first oncogenic GPI-T subunit, PIG-U, in bladder cancer. Another 
research showed that the level of cell surface GPI-anchored protein is high in breast cancer  cells71. Nucleotide 
Excision Repair pathway plays a crucial role in cancer  prevention72. And the defects of the global genome NER 
(GG-NER) sub pathway result in cancer  predisposition73. Autophagy plays an important role in controlling 
protein and organelle quality and  quantity74,which can promote cancer progression by suppressing P53 expres-
sion and inhibiting cell death, senescence, and an anti-tumor immune response. In addition, the homologous 
recombination repair (HRR) pathway provides high-fidelity repair of double-strand DNA breaks. The deficiency 
in HRR is a target for a new selective therapy for high-grade ovarian  cancer75.

Figure 4.  The IRGs in prognostic signature identified by multivariate Cox regression.
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Figure 5.  (A) Kaplan–Meier plots of TCGA training cohort. (B) ROC curve for the TCGA training cohort. (C) 
Kaplan–Meier plots curve of TCGA testing cohort. (D) ROC curve for the TCGA testing cohort. (E) Kaplan–
Meier plots curve of GSE cohort. (F) ROC curve for the GSE cohort.
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Table 1.  The clinical characteristics of patients from TCGA and GEO database.

Variable Train (n = 176) Test (n = 169) GSE (n = 114) P value

Median age (IQR) 61 (20–84) 59 (16–85) 64 (14–93) 0.0020

Gender

Male 116 (65.9%) 118 (69.8%) 93 (80.9%) 0.0039

Female 60 (34.1%) 51 (30.2%) 21 (19.1%) 0.0251

Grade

Gl–G2 112 (63.6%) 103 (60.9%) – 0.0138

G3–G4 64 (36.4%) 66(39.1%) – 0.0228

BCLC stage

A – – 77 (67.5%)

B–C – – 37 (32.5%)

TNM stage

T1–T2 134 (76.1%) 121 (71.6%) 90 (78.9%) 0.0008

T3–T4 42 (23.9%) 48 (28.4%) 24 (21.1%) 0.0075

Median overall survival (years) 1.3 (0–9.5) 1.5 (0–10.1) 1.2(0–7.8) 0.3610

Events

Live 118 (67.0%) 115 (68.0%) 91 (79.8%) 0.0033

Death 58 (33.0%) 54 (32.0%) 23 (20.2%) 0.0203

Figure 6.  The univariate (A) and multivariate (B) Cox proportional hazards regression for Immune risk score 
and clinical factors.
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Our study has following limitations. Firstly, the number of samples we retrieved from TCGA database and 
GSE76427 are relatively small, so that the prediction ability of our IRGs prognostic signature should be verified 
in a large prospective clinical cohort. Secondly, as the clinical information released in publicly available datasets 
is limited, the clinicopathological parameters that included in nomogram were not comprehensive. The overall 
survival of HCC patients are significantly impacted by some other clinical factors as well. Including the aetiol-
ogy of HCC (HBV/HCV infection), the status of liver failure and portal hypertension, the treatment received 
by HCC patients and so on. Based on this limitation, the immune-related signatures may not be an absolute 
independent risk factor for the overall survival for HCC patients. Variables not included in our study may have 
potential relevance to the immune-related signatures, which need to be further explored in specific research. 
Thirdly, our study was a retrospective analysis based on the data from published studies rather than real-word 
treatment experience, therefore the clinical application value of the IRGs prognostic signature needed further 
evaluation. What’s more, the IRGs prognosis signature in this study was established by pure bioinformatics 
analysis. Therefore, further experiments are needed to validate our results.

In conclusion, we successfully recognized a novel IRGs prognostic signature with high predictive value and 
accuracy for patients with HCC, which may contribute to the decision making of clinical management. Moreover, 
this study provides additional information for further research on HCC pathogenesis and targeted therapies.

Figure 7.  (A) A prognostic nomogram including Immune-Risk score and other clinical factors. (B) The 
calibration plot comparing predicted and actual 1-, 3-, 5-year overall survival. The graph relative to the 45 
diagonal reveals the model relative to perfect prediction.
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Figure 8.  The expression scatterplots of IRGs and another 6 immune checkpoints based on TIMER database 
analysis.
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Data availability
The datasets supporting the conclusions of this article are available in the public databases TCGA database (http:// 
www. cancer. gov/ tcga) and Gene Expression Omnibus (https:// www. ncbi. nlm. nih. gov/ gds/) with the accession 
numbers: GSE76427.
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