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Abstract: Functionally graded materials (FGMs) structures are increasingly used in engineering due
to their superior mechanical and material properties, and the FGMs plate with cutouts is a common
structural form, but research on the vibration characteristics of FGMs plate with cutouts is relatively
limited. In this paper, the three-dimensional exact solution for the vibration analysis of FGMs
rectangular plate with circular cutouts subjected to general boundary conditions is presented based
on the three-dimensional elasticity theory. The displacement field functions are expressed as standard
cosine Fourier series plus auxiliary cosine series terms satisfying the boundary conditions in the
global coordinate system. The plate with circular cutout is discretized into four curve quadrilateral
sub-domains using the p-version method, and then the blending function method is applied to map
the closed quadrilateral region to the computational space. The characteristic equation is obtained
based on the Lagrangian energy principle and Rayleigh–Ritz method. The efficiency and reliability of
proposed method are verified by comparing the present results with those available in the literature
and FEM methods. Finally, a parametric study is investigated including the cutout sizes, the cutout
positions, and the cutout numbers from the free vibration characteristic analysis and the harmonic
analysis. The results can serve as benchmark data for other research on the vibration of FGMs plates
with cutouts.

Keywords: three-dimensional vibration; FGMs plate; plate with circular cutouts; three-dimensional
elasticity theory; Rayleigh–Ritz method; region mapping

1. Introduction

The laminated composites are widely used in various engineering applications—
such as aerospace, mechanical, civil, and automotive engineering—due to high specific
strength and stiffness, light weight, and good thermal stability. However, stress-induced
failures may occur through large in-plane stress, interlayer slip or transverse normal
stress [1,2]. In order to overcome the adverse effects of laminated composites in mechanical
properties, the engineering application of functionally graded materials (FGMs) was first
proposed in 1984 by a group of aerospace scientists, due to a need for a type of material
that can withstand high temperature difference in a space plane project [3]. The FGMs
are a new type of advanced composite materials which are generally formed by two
materials with smooth and continuous variation in specific direction from one surface to
another, thus eliminating inter-laminar problems. The FGMs have received major attention
since FGMs can effectively overcome these problems of traditional laminated composites.
The corresponding specific material properties are obtained by the gradual variation in
material properties and structure over volume fraction. The FGMs are designed to meet
varying functionalities, and the FGMs plates and shells are the major structures owing to the
wide variety of applications involved. Therefore, the study of the vibration characteristic
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analysis of FGMs plates and shells is an extremely important subject for engineers in
structural design.

With the wide application of FGMs structures, a large amount of research work has
been done on the vibration of FGMs plate and shell structures. The FGMs plate and
shell structures are three-dimensional elastic bodies, the most accurate and effective way
to solve the vibration problem is the three-dimensional elasticity theory; however, the
three-dimensional elastic analysis of the structure leads to a partial differential equation
system with three independent spatial variables, and the equation is often a transcendental
equation about the frequency parameter. Thus, it is difficult to solve the transcendental
equation, which requires the use of numerical root-finding algorithm. However, the
difficulty of the numerical root-finding algorithm is how to determine the initial trial
value, in addition, the algorithms cannot satisfy real-time requirements because of high
computational cost. As a substitute, some appropriate assumptions were made about the
displacement of the structure in the thickness direction, and the three-dimensional problems
were simplified into two-dimensional ones with sufficient accuracy. These theories mainly
include classical plate theory (CPT), first-order shear deformation theory (FSDT), and
high-order shear deformation theory (HSDT). A brief review of these theories in the context
of the FGMs structures will be presented in the following.

Chi and Chung [4,5] investigated three types of elastic, rectangular, and simply sup-
ported FGMs plates of medium thickness subject to transverse loading based on the
classical plate theory and Fourier series. The results showed that only the bending stiffness
formulations of FGMs plates are not similar with homogeneous plates due to their more
complicated combination of material properties. Abrate [6] treated the FGMs plates as
homogeneous plates, and selected a proper reference surface, the decoupling condition
of the motion equation was derived to eliminate the coupling effect between the in-plane
and bending deformations. Zhang and Zhou [7] used the physical neutral surface to
study the theoretical analysis of the FGMs thin plates based on the classical plate theory.
The stretching–bending coupling effect was eliminated, thus it is easier and simpler than
classical laminated plate theory based on geometric middle surface.

Zhao et al. [8] presented the element-free-Ritz method for the free vibration analysis of
FGMs plates. The first-order shear deformation plate theory was employed to account for
the transverse shear strain and rotary inertia, and mesh-free kernel particle functions were
used to approximate the two-dimensional displacement field. Hossenini-Hashemi et al. [9]
presented analytical solutions for the free vibration analysis of FGMs plates, and a new for-
mula for the shear correction factors used in Mindlin plate theory was obtained. In addition,
using the Reissner–Mindlin plate theory, an exact closed-form procedure was presented
by Hossenini-Hashemi et al. [10]. By introducing some new potential and auxiliary func-
tions, the displacement fields were analytical obtained for FGMs plates configuration.
Qu et al. [11] investigated a general formulation which was derived by means of a modi-
fied variational principle in conjunction with a multi-segment partitioning procedure on
the basis of the first-order shear deformation shell theory for free, steady-state and transient
vibration analysis of FGMs shells of revolution subjected to arbitrary boundary conditions.
Ferreira et al. [12] used the global collocation method, the first-order and the third-order
shear deformation plate theories, the Mori–Tanaka technique to homogenize material
properties, and approximated the trial solution with multiquadric radial basis functions to
analyze the free vibration of FGMs plates. Thai et al. [13] presented a simple first-order
shear deformation theory which containing only four unknowns for solving the bending
and free vibration analysis of FGMs plates by dividing the transverse displacement into
bending and shear parts. Fallah et al. [14] used the extended Kantorovich method together
with infinite power series solution to obtain semi-analytical solution for the governing
equations of moderately thick rectangular FGMs plates.

Neves et al. [15] dealt with the free vibration problems of FGMs shells by radial
basis functions collocation, according to a higher-order shear deformation theory that
accounted for through-the-thickness deformation. Isogeometric analysis (IGA) [16,17] is
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an effective method to investigate the static and dynamic behavior of functionally graded
carbon nanotube-reinforced composite plates. Phung-Van et al. proposed the higher-order
shear deformation theory model and isogeometric analysis method based on Non-Uniform
Rational B-Spline (NURBS) basis functions. Thanh et al. presented a size-dependent model
based on the modified couple stress theory (MCST) and isogeometric analysis. Dozio [18]
used the two-dimensional higher-order kinematic theories based on a powerful indicial
notation and the state-space approach to solve the free vibration analysis of thick FGMs
plates. Jodaei et al. [19] used the artificial neural network (ANN) method and the state-
space-based differential quadrature method (SSDQM) to study the free vibration of FGMs
annular plates. The results showed that the ANN method is a useful method to predict
natural frequency, and the SSDQM has fast convergence speed.

Nie and Zhong [20] proposed a semi-analytical approach which used the state-space-
method and one-dimensional differential quadrature method (SSM-DQM) to investi-
gate the three-dimensional free and forced vibration analysis of FGMs circular plates.
Malekzadeh [21] presented an accurate solution procedure based on the three-dimensional
elasticity theory and the differential quadrature (DQ) method for the free vibration anal-
ysis of thick FGMs plates on two parameter elastic foundations. Dong [22] extended the
Chebyshev–Ritz method proposed by Zhou [23,24] to the three-dimensional free vibration
of FGMs annular plates. Huang et al. [25] employed the three-dimensional elasticity theory
and a variational Ritz method to solve the vibration of rectangular parallelepipeds of FGMs
with side cracks. Jin et al. [26] developed a unified and accurate solution method to deal
with the free vibration of arbitrarily thick FGMs plates based on the linear, small-strain
three-dimensional elasticity theory. The same method was performed by Zhao et al. [27]
for the vibration analysis of thick functionally graded porous rectangular plates, and
three kinds of porosity distributions including even, uneven, and the logarithmic-uneven
were performed.

Plates or shells with cutouts are extensively used in engineering structures, cutouts
are made to optimize structures, reduce the weight, or provide operational access to
other parts of the structures. Comparatively speaking, most of the earlier investigations
on plates with cutouts have been confined to isotropic plates, not much research work
can be found for the analysis of FGMs plates with cutouts. Do and Lee [28] combined
the isogeometric analysis method with a new quasi-3D higher-order shear deformation
theory to analyze free vibration response of functionally graded material plates with
complex cutouts. Bansal et al. [29] studied the porous functionally graded plate with
geometric discontinuities and partial supports, the displacement field had been refined
by dividing the in-plane and out of the plane displacements into bending and shear
components. The geometric discontinuities had been incorporated in terms of a circular
cutout of different sizes at the center of the plate. Asemi et al. [30] applied the finite
element method and Rayleigh–Ritz energy formulation to analyze the static and free
vibration of FGMs plate with a circular hole. Rahimabadi et al. [31] studied the free
flexural vibration behavior of a centrally located circular or elliptical cutout and cracks
emanating from the cutout of FGMs plates in thermal environment, the discontinuity
surface was represented independent of the mesh by exploiting the partition of unity
method framework. Enab et al. [32] predicted the stress concentration factors (SCFs) at
the root of an elliptic hole in unidirectional functionally graded material (UDFGM) plates
under uniaxial and biaxial loads by using the FEM. Janghorban et al. [33] investigated the
free vibration of functionally graded non-uniform straightsided plates with circular and
non-circular cutouts in a thermal environment, including the square plates, skew plates,
and trapezoidal plates. Zhao et al. [34] investigated the FG plates that contain square
and circular cutouts at the center, and it was found that the size of the cutout presents
a considerable impact not only on the buckling loading, but also on the buckling mode
shapes of the plate.

Concerning the above review of literature, it can be noticed that there are only a few
papers available on the study of vibration analysis of FGMs plates with cutouts, and in the
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existing research, the main type of cutout is circular cutout. In addition, there is no report
which investigated the vibration solution of FGMs rectangular plate with cutouts based on
the three-dimensional elasticity theory. The novelty of the present paper lies in the attempt
to establish a unified theoretical analysis model of the vibration characteristics of the FGMs
rectangular plate with/without cutouts, and provide the three-dimensional exact solution
with general boundary conditions. The material properties of FGMs plates are supposed
to vary continuously along the thickness direction in power-law distributions in terms of
volume fraction. The highlight of the proposed approach is that the p-version method and
the blending function method are employed to discretize the domain and map the closed
region to the computational space. All displacements of the FGMs plates are expanded
in the form of standard cosine Fourier series plus auxiliary cosine series terms which can
improve the convergence speed and reduce the computational complexity. The three-
dimensional elasticity theory is combined with Rayleigh–Ritz method to solve the vibration
problem of FGMs plate with cutouts. Numerical examples have been studied to verify
the convergence, efficiency, and accuracy of the method and the predicted results have
been compared with the theoretical solutions. The effects of cutout ratios, cutout positions,
and cutout numbers on the natural frequencies are further explored by a parametric study
in detail.

2. Theoretical Formulations
2.1. Description of the Problem

In this paper, a FGMs rectangular plate with circular cutout composed of two isotropic
materials is considered. Figure 1a presents the three-dimensional geometric model of the
structure. In order to describe geometric model clearly, the two coordinate systems are
established independently on the mid-plane of the structure, the Cartesian coordinate
system (O-xyz) for the rectangular plate region which is located in the corner of the plate,
and the cylindrical coordinate system (Oc-xcyczc) for the cutout region which is located in
the center of the circular cutout. The x-coordinate is taken along the length of the plate
and y- and z-coordinates are taken along the width and thickness directions. The length,
width, and thickness of the plate are denoted by the symbols a, b, and h, respectively, and
the radius of the cutout is denoted by r. The symbols u, v, and w denote the displacement
components in the x, y, and z directions, respectively.
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Materials 2021, 14, 7088 5 of 22

For the FGMs composed of two types of isotropic components, such as ceramics and
metals, according to the Voigt mixing rule, the equivalent materials properties can be
expressed as

Ee f f (z) = (Ec − Em)Vf + Em (1)

µe f f (z) = (µc − µm)Vf + µm (2)

ρe f f (z) = (ρc − ρm)Vf + ρm (3)

where E is Young’s modulus, µ is Poisson’s ratio, and ρ is density, the subscripts c and m
represents the ceramic and metal material, Vf is the volume fraction.

The volume fraction, thus the variation of the material properties of each component
can be obtained by assuming to be different function distributions, such as power-law
functions (P-FGM), exponential functions (E-FGM), or sigmoid functions (S-FGM) [35].
In this paper, the FGMs with power-law scheme is selected as the research object.

The volume fraction Vf can be defined as

Vf = (
1
2
+

z
h
)

p
,−h

2
≤ z ≤ h

2
(4)

where z is the thickness coordinate, and p is gradient index and takes only positive values.
When p = 0, the FGMs degenerates into ceramic material and when p = ∞ indicates a
fully metal material. Figure 2 shows the curve of volume fraction variation along the
thickness direction corresponding to the different gradient index. The volume fraction can
be effectively controlled by changing the value of p, and different kinds of FGMs can be
designed by changing the above parameters according to different functional requirements.
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In this paper, the FGMs plate is considered to be made of aluminum (Al) and alumina
(Al2O3), the material properties for ceramic and metallic constituents of FGMs plate are
listed in Table 1.

Table 1. Material properties of the FGMs plate.

Properties Aluminum (Al) Alumina (Al2O3) Unit

E 70 380 GPa
ρ 2700 3800 Kg/m3

µ 0.3 0.3
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2.2. Kinematic Equations

The strain–displacement relations of the structure can be obtained as follows based on
the linear, small-strain three-dimensional elasticity theory

εx =
∂u
∂x

(5)

εy =
∂v
∂y

(6)

εz =
∂w
∂z

(7)

γyz =
∂w
∂y

+
∂v
∂z

(8)

γxz =
∂u
∂z

+
∂w
∂x

(9)

γxy =
∂u
∂y

+
∂v
∂x

(10)

where εx, εy, εz, γyz, γxz, and γxy are the normal and shear strain.
According to the theory of three-dimensional constraint of a linear elasticity, the

corresponding stress–strain relations of the three-dimensional structure are written as

σx
σy
σz
τyz
τxz
τxy


=



C11(z) C12(z) C13(z) 0 0 C16(z)
C12(z) C22(z) C23(z) 0 0 C26(z)
C13(z) C23(z) C33(z) 0 0 C36(z)

0 0 0 C44(z) C45(z) 0
0 0 0 C45(z) C55(z) 0

C16(z) C26(z) C36(z) 0 0 C66(z)





εx
εy
εz

γyz
γxz
γxy


(11)

where Cij(z) (i, j = 1, 2, . . . , 6) are material elastic constants, for isotropic materials, they can
be defined as

C11(z) = C22(z) = C33(z) =
Ee f f (z)(1− µe f f (z))

(1 + µe f f (z))(1− 2µe f f (z))
(12)

C12(z) = C13(z) = C23(z) =
Ee f f (z)µe f f (z)

(1 + µe f f (z))(1− 2µe f f (z))
(13)

C44(z) = C55(z) = C66(z) =
Ee f f (z)

2(1 + µe f f (z))
(14)

C16(z) = C26(z) = C36(z) = C45(z) = 0 (15)

2.3. Boundary Conditions

As illustrated in Figure 1b, three groups of boundary springs are factitiously dis-
tributed along the edges to simulate different boundary conditions. The symbols ku, kv,
and kw are used to indicate the stiffness of the springs, and through adopting appropri-
ate values of the boundary spring stiffness, the classical boundary conditions and elastic
boundary conditions can be achieved. The general boundary conditions mainly include
free (F), simply supported (S), clamped (C). The expressions of the different boundary
conditions along the edge x = 0 are given as follows.

Free boundary condition:

σx = τxz = τxy = 0 (16)
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Simply supported boundary condition:

σx = v = w = 0 (17)

Clamped boundary condition:

u = v = w = 0 (18)

Elastic restraint boundary condition:

u 6= v 6= w 6= 0 (19)

2.4. Energy Equations

In the light of Hamilton’s principle, the governing equation of the structure and the
boundary conditions are derived in the following work. In this paper, the plate domain
and the cutout domain are separated, and the energy functions of the FGMs plate and the
cutouts are established independently. The kinetic energy function of the FGMs plate and
cutouts can be expressed as

T =
1
2

y

V
[(

∂u
∂t

)
2
+ (

∂v
∂t

)
2
+ (

∂w
∂t

)
2
]dV (20)

The total linear elastic strain energy function is depicted as

U = 1
2
t

V [σxεx + σyεy + σzεz + τyzγyz + τxzγxz + τxyγxy]dV

= 1
2
t

V

{
Q11(z)

[
( ∂u

∂x )
2
+ ( ∂v

∂y )
2
+ ( ∂w

∂z )
2]

+ 2Q12(z)
[

∂u
∂x

∂v
∂y + ∂u

∂x
∂w
∂z + ∂v

∂y
∂w
∂z

]
+Q22(z)

[
( ∂w

∂y + ∂v
∂z )

2
+ ( ∂u

∂z + ∂w
∂x )

2
+ ( ∂u

∂y + ∂v
∂x )

2]}
dV

(21)

The potential energy stored in the boundary springs is expressed as

V = 1
2
s

yz
{[

ku
x0u2 + kv

x0v2 + kw
x0w2]

x=0 +
[
ku

xau2 + kv
xav2 + kw

xaw2]
x=a

}
dydz

+ 1
2
s

xz

{[
ku

y0u2 + kv
y0v2 + kw

y0w2
]

y=0
+
[
ku

ybu2 + kv
ybv2 + kw

ybw2
]

y=b

}
dxdz

(22)

2.5. Region Mapping

As described in the above model, the coordinate system of the plate is Cartesian
coordinate system, and the coordinate system of the cutout is cylindrical coordinate sys-
tem. The expression of the displacement components is different for the plate and cutout
domain, which leads to the complexity of the energy integration. In order to simplify
the solution process, a unified coordinate system is needed. The main purpose of this
paper to deal with the vibration of rectangular plate with circular cutout is region mapping.
The p-version of the finite element method is applied to discretize the plate with cutout
into four curve quadrilateral sub-domains as presented in Figure 3a. The length and width
of the rectangular plate are a and b, and the radius of the circular cutout is r, respectively.
The sub-domain 1 is regarded as a closed region composed of four curves in the x-y coordi-
nate system. The purpose of region mapping is to map the closed quadrilateral region into
a unit square region, as described in Figure 3b,c.

The closed quadrilateral region consists of four curves, and the curve sides are in the
parametric form: C1 : X1(ξ), Y1(ξ), C2 : X2(η), Y2(η), C3 : X3(ξ), Y3(ξ), C4 : X4(η), Y4(η),
where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1; the four vertex-nodes are xi, yi (i = 1, 2, 3, 4), respectively.
The blending function method proposed by Gordon and Hall [36] is well suited for the
purpose to map the closed quadrilateral region to the computational space.
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Figure 3. Discretization of rectangular plate with circular cutout: (a) geometric region; (b) closed quadrilateral region;
(c) calculation region.

The mapping functions are given as

x(ξ, η) = ( 1−η
2 )X1(ξ) + ( 1+ξ

2 )X2(η)

+( 1+η
2 )X3(ξ) + ( 1−ξ

2 )X4(η)

−[( (1−ξ)(1−η)
4

)
x1+( (1−ξ)(1+η)

4

)
x2

+
(
(1+ξ)(1+η)

4

)
x3 +

(
(1+ξ)(1−η)

4

)
x4]

(23)

y(ξ, η) = ( 1−η
2 )Y1(ξ) + ( 1+ξ

2 )Y2(η)

+( 1+η
2 )Y3(ξ) + ( 1−ξ

2 )Y4(η)

−[( (1−ξ)(1−η)
4

)
y1+( (1−ξ)(1+η)

4

)
y2

+
(
(1+ξ)(1+η)

4

)
y3 +

(
(1+ξ)(1−η)

4

)
y4]

(24)

Substituting the circular equations and the three linear equations into Equations (23)
and (24), the following results can be obtained by

x(ξ, η) = 1
4 X1(ξ) + X2(η)(

ξη
4 −

η
4 )

+X3(ξ)(
1
4 + η

4 + ξ
4 + ξη

4 )

+
r cos( πη

4 )
2 − ξr cos( πη

4 )
2

(25)

y(ξ, η) = ( 1−η
2 )Y1(ξ) + ( 1+ξ

2 )Y2(η)

+( 1+η
2 )Y3(ξ) + ( 1−ξ

2 )Y4(η)

−[( (1−ξ)(1−η)
4

)
y1+( (1−ξ)(1+η)

4

)
y2

+
(
(1+ξ)(1+η)

4

)
y3 +

(
(1+ξ)(1−η)

4

)
y4]

(26)

In the light of above region mapping and coordinate transformation relationship, the
displacement components of transformation matrix from the global coordinate system to
the local coordinate system are related by

∂Ω(x,y,z)
∂x

∂Ω(x,y,z)
∂y

∂Ω(x,y,z)
∂z

 = J


∂Ω(ξ,η,γ)

∂ξ

∂Ω(ξ,η,γ)
∂η

∂Ω(ξ,η,γ)
∂γ

 (27)
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where J is the Jacobian transformation matrix, and the mathematical expression of Jacobian
matrix is

J =

 J1,1 J1,2 J1,3
J2,1 J2,2 J2,3
J3,1 J3,2 J3,3

 =


∂x(ξ,η,γ)

∂ξ

∂y(ξ,η,γ)
∂ξ

∂z(ξ,η,γ)
∂ξ

∂x(ξ,η,γ)
∂η

∂y(ξ,η,γ)
∂η

∂z(ξ,η,γ)
∂η

∂x(ξ,η,γ)
∂γ

∂y(ξ,η,γ)
∂γ

∂z(ξ,η,γ)
∂γ

 (28)

The inverse of the Jacobian transformation matrix is

J−1 =
1
|J| J

∗ (29)

|J| = J1,1 J2,2 J3,3 + J1,2 J2,3 J3,1 + J1,3 J2,1 J3,2
−J1,1 J2,3 J3,2 − J1,2 J2,1 J3,3 − J1,3 J2,2 J3,1

(30)

J∗ =

 J2,2 J3,3 − J2,3 J3,2 J2,3 J3,1 − J2,1 J3,3 J2,1 J3,2 − J2,2 J3,1
J1,3 J3,2 − J1,2 J3,3 J1,1 J3,3 − J1,3 J3,1 J1,2 J3,1 − J1,1 J3,2
J1,2 J2,3 − J1,3 J2,2 J1,3 J2,1 − J1,1 J2,3 J1,1 J2,2 − J1,2 J2,1

 (31)

2.6. Solution Procedure

In this paper, the Rayleigh–Ritz method is used due to it is applicable to arbitrary
boundary conditions without requiring any special procedures. Thus, it is very impor-
tant to construct an admissible displacement function field because the accuracy and the
convergence of the solution depend on the accuracy of the expression of the admissible
displacement function. In this paper, the improved Fourier series method is further ex-
tended to the three-dimensional vibration analysis of FGMs rectangular plate with cutouts.
According to the author’s previous research, the admissible displacement functions are
consistent with [37], and expressed in the form of complete trigonometric Fourier series,
thus the auxiliary terms are also in the form of trigonometric Fourier series. The three-
dimensional admissible displacement functions of the FGMs plate are expressed as three
variables separated along the x, y, and z directions as

U(x, y, z) =
M
∑

m=0

N
∑

n=0

Q
∑

q=0
Amnq cos λmx cos λny cos λqz

+
M
∑

m=0

N
∑

n=0
[au_zξ1c(z) + bu_zξ2c(z)] cos λmx cos λny

+
M
∑

m=0

Q
∑

q=0

[
au_yξ1b(y) + bu_yξ2b(y)

]
cos λmx cos λqz

+
N
∑

n=0

Q
∑

q=0
[au_xξ1a(x) + bu_xξ2a(x)] cos λny cos λqz

(32)

V(x, y, z) =
M
∑

m=0

N
∑

n=0

Q
∑

q=0
Bmnq cos λmx cos λny cos λqz

+
M
∑

m=0

N
∑

n=0
[av_zξ1c(z) + bv_zξ2c(z)] cos λmx cos λny

+
M
∑

m=0

Q
∑

q=0

[
av_yξ1b(y) + bv_yξ2b(y)

]
cos λmx cos λqz

+
N
∑

n=0

Q
∑

q=0
[av_xξ1a(x) + bv_xξ2a(x)] cos λny cos λqz

(33)
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W(x, y, z) =
M
∑

m=0

N
∑

n=0

Q
∑

q=0
Cmnq cos λmx cos λny cos λqz

+
M
∑

m=0

N
∑

n=0
[aw_zξ1c(z) + bw_zξ2c(z)] cos λmx cos λny

+
M
∑

m=0

Q
∑

q=0

[
aw_yξ1b(y) + bw_yξ2b(y)

]
cos λmx cos λqz

+
N
∑

n=0

Q
∑

q=0
[aw_xξ1a(x) + bw_xξ2a(x)] cos λny cos λqz

(34)

where λm = mπ/a, λn = nπ/b, λq = qπ/h, and Amnq, Bmnq, Cmnq, au, av, aw, bu, bv, bw are
the unknown Fourier coefficients, M, N, and Q are the truncation numbers with respect to
variables x, y, and z directions, respectively. In order to unify the form of the admissible
displacement functions and simplify the mathematical processing, the supplementary
functions are defined as

ξ1a(x) =
1
2
[sin(2πx/a) + sin(πx/a)] (35)

ξ2a(x) =
1
2
[cos(3πx/2a)− cos(πx/2a)] (36)

ξ1b(y) =
1
2
[sin(2πy/b) + sin(πy/b)] (37)

ξ2b(y) =
1
2
[cos(3πy/2b)− cos(πy/2b)] (38)

ξ1c(z) =
1
2
[sin(2πz/h) + sin(πz/h)] (39)

ξ2c(z) =
1
2
[cos(3πz/2h)− cos(πz/2h)] (40)

The total energy of the FGMs rectangular plate with circular cutout is defined by
subtracting the energy of cutout domain part from the entire plate domain. Thus, the
Lagrangian energy function of the structure can be expressed as

∏ = ∏p−
n

∑
i=1

∏i (41)

The subscripts “p” and “i” denote the energy of the plate and cutout domains, respectively.
For the plate without cutout, the energy equation is

∏ = Tp −Up −Vp (42)

Substituting Equations (20)–(22), (27), and (32)–(34) and into Equation (41), and by
minimizing the Lagrangian energy functional ∏ with respect to each unknown coefficients
to be zero, we can get the equation

∂ ∏
∂X

= 0(X = Amnq, Bmnq, Cmnq, au, av, aw, bu, bv, bw) (43)

The standard eigenvalue equation of motion for rectangular plate with circular cutout
can be expressed in the form of matrix

[(Kp −
n

∑
i=1

Ki)−ω2(Mp −
n

∑
i=1

Mi)]X = (K−ω2M)X = 0 (44)

where K, M, and X are the stiffness matrices, mass matrices and the unknown Fourier
coefficients matrices, respectively. All of the natural frequencies and mode shapes of
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the three-dimensional FGMs rectangular plates with circular cutouts can be obtained by
solving Equation (44).

3. Results and Discussion

In this section, according to the unified theoretical analysis model established above,
several examples for the three-dimensional vibration analysis of FGMs plate with/without
cutouts are presented to illustrate the accuracy and reliability of the proposed method.
Firstly, a suitable spring stiffness value is investigated, and then the convergence, efficiency
and validation are checked. Secondly, the vibration modal experiment of an aluminum
square plate with a center circular cutout is conducted to verify the correctness of the
proposed method. Finally, a parametric study of the FGMs plate with cutouts is carried out
from free vibration characteristics and harmonic response analysis, including the cutout
sizes, cutout positions, and cutout numbers.

For simplicity, the boundary conditions of the structure are described in the form
of character combination, unless other stated, the non-dimensional frequency parame-
ter is expressed as: Ω = ωa2

√
ρch/Dc, where Dc is the flexural stiffness of Alumina,

Dc = Ech3/12(1− µ2).

3.1. Determination of the Spring Stiffness

In this paper, three groups of linear springs are introduced to simulate different
kinds of boundary conditions by changing the values of spring stiffness. The accuracy of
the solutions is strongly affected by the selection of appropriate spring stiffness values.
Therefore, in this section, the FGMs square plate without cutout is taken as an example
to study the determination of the spring stiffness. The variations of the first three non-
dimensional frequency parameters of FGMs square plate versus different spring stiffness
are given in Figure 4. The geometric dimensions and the material parameters are as follows:
a = b = 1 m, h = 0.05 m, and p = 1. The boundary conditions of the plate are defined as:
the edge y = 0 and y = b are completely free and the x = 0 and x = a are elastic supported
by one group of spring constrain varying from 10−3Dc to 1012Dc. From Figure 4, it can
be seen that the non-dimension frequency parameters are unchanged and approaches 0
when the spring stiffness is smaller than 10−1Dc, and when the spring stiffness is varied
from 10−1Dc to 107Dc, the frequency parameters increase rapidly. Finally, when the spring
stiffness exceeds 107Dc, the frequency parameters will approach their utmost and tend to
be stable. Therefore, we can arrive at the conclusion that the free boundary conditions and
clamped boundary conditions can be simulated by assigning the spring stiffness value to
be 0 or 107Dc.
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3.2. Convergence of the Method

Convergence property for the free vibration analysis of FGMs plate with circular
cutout is examined in terms of the limited number of terms in the displacement expressions
in actual calculation to verify the accuracy and efficiency of the proposed method. Table 2
shows the convergence studies of the first six non-dimensional frequency parameters of a
FGMs square plate with a central circular cutout with different truncated numbers, and the
data of [38] are also given out in Table 2. The truncated number of admissible displacement
function components in Fourier series expansion is expressed as M × N × Q, and the
truncated number of this paper is from 3 to 10. It can be observed that the maximum error
with [38] is 1.7898%, and the main reason of the error is that the first order shear theory
is adopted by [38]. It can be concluded that the proposed method has fast convergence
and good stability, and the truncation numbers will be set as M = N = Q = 10 in the
following studies.

Table 2. Non-dimensional frequency parameters of FGMs square plate with a central circular cutout under FFFF-F boundary
condition (Ω = ωa2√ρch/Ec, a = b = 1 m, r = 0.1 m, h = 0.01 m, p = 1).

M × N × Q
Modes

1 2 3 4 5 6

3 × 3 × 3 10.1684 14.8912 18.6946 27.6210 27.7461 49.5969
4 × 4 × 4 10.0023 14.4524 17.7520 26.5533 26.5588 46.3665
5 × 5 × 5 9.9825 14.4184 17.6390 26.4671 26.4685 46.0454
6 × 6 × 6 9.9729 14.4053 17.5977 26.4291 26.4292 45.9154
7 × 7 × 7 9.9640 14.3993 17.5772 26.4032 26.4036 45.8507
8 × 8 × 8 9.9589 14.3969 17.5719 26.3910 26.3912 45.8319
9 × 9 × 9 9.9597 14.3961 17.5695 26.3918 26.3923 45.8232

10 × 10 × 10 9.9564 14.3944 17.5670 26.3846 26.3849 45.8131
Ref. [38] 9.9070 14.4660 17.8200 26.4110 26.4120 46.6480
Error(%) 0.4984 0.4947 1.4196 0.1001 0.1028 1.7898

3.3. Validity of the Method
3.3.1. Numerical Examples Study

In this section, in order to verify the proposed method is also suitable for solving the
vibration characteristics of FGMs plate without cutouts, the comparison study of a FGMs
square plate under SSSS boundary condition will be carried out by the present method and
other method presented in [25]. Table 3 shows the first eight non-dimensional frequency
parameters of FGMs square plate which was studied by Huang et al. The values of the
gradient indexes are taken to be 0, 1, 2, 5, 10. The symbol ‘-’ indicates that the frequencies
were not considered in the reference work. In the table, the thickness–length ratio is taken
as 0.1 and 0.2, it is moderate–thick plate structure. From the comparison, we can see a
consistent agreement of the results taken from the current method and the referential data.
From the tables, it is obvious that these data show a similar behavior, that is the frequency
parameters decrease with the increase of gradient index. When the thickness–length ratio
is 0.1, the gradient index increases from 0 to 10, the first-order non-dimensional frequency
parameter decreases by 36.95%, and when the thickness–length ratio is 0.1, the first-order
non-dimensional frequency parameter decline rate is 38.44%. The main reason is that the
increase of gradient index leads to the decrease of the volume fraction of the corresponding
ceramic components, which reduces the stiffness of the structure, and finally leads to the
decrease of frequency. In addition, the increase of thickness–length ratios leads to decrease
of the frequency parameters for all of the cases considered. By way of illustration, as
the thickness–length ratio increases, the first-order non-dimensional frequency parameter
drops by 8.19% when the gradient index is 0. According to the relationship between
the non-dimensional frequency parameters calculation formula and thickness, it can be
known that the natural frequencies increase with the increase of thickness. The increase
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of thickness will increase the stiffness and mass of rectangular plate, but the increase of
stiffness plays a decisive role in the influence of natural frequency.

Table 3. The first eight non-dimensional frequency parameters of FGMs square plate without cutout under SSSS boundary
condition (Ω = ωa2/h

√
ρc/Ec, a = b = 1 m).

h/a p Methods
Modes

1 2 3 4 5 6 7 8

0.1

0
Present 5.7771 13.8062 13.8062 19.4833 19.4833 21.2174 25.8742 25.8742
Ref. [25] 5.7770 13.8100 13.8100 19.4800 19.4800 - - -

1
Present 4.4267 10.6291 10.6291 16.2033 16.2033 16.4006 20.0477 20.0478
Ref. [25] 4.4260 10.6300 10.6300 16.2000 16.2000 - - -

5
Present 3.7728 8.9308 8.9308 12.6410 12.6410 13.6246 16.5482 16.5482
Ref. [25] 3.7720 8.9270 8.9270 12.6400 12.6400 - - -

10
Present 3.6424 8.5886 8.5886 11.5282 11.5282 13.0602 15.8326 15.8326
Ref. [25] 3.6410 8.5870 8.5870 11.5200 11.5200 - - -

0.2

0
Present 5.3037 9.7417 9.7417 11.6456 11.6456 13.7768 16.8826 19.4833
Ref. [25] 5.3040 9.7420 9.7420 11.6500 11.6500 - - -

1
Present 4.0996 8.0899 8.0899 9.1088 9.1088 11.4184 13.3121 15.8149
Ref. [25] 4.0990 8.0890 8.0890 9.1070 9.1070 - - -

5
Present 3.4057 6.2979 6.2979 7.3454 7.3454 8.8643 10.5497 12.4190
Ref. [25] 3.4050 6.2960 6.2960 7.3430 7.3430 - - -

10
Present 3.2647 5.7508 5.7508 6.9751 6.9751 8.1082 9.9525 11.3994
Ref. [25] 3.2640 5.7490 5.7490 6.9750 6.9750 - - -

For the next comparison study, a FGMs rectangular plate with a central circular cutout
under CCCC-F boundary condition is examined. In Table 4, the first fix non-dimensional
frequency parameters are obtained. It is observed that the frequencies are in excellent
agreement with those given in [38], which verifies the accuracy and efficiency of the
proposed model. The effect of gradient index on the frequency parameters of structure
with cutout is consistent with that structure without cutout also can be concluded from
the table below. Therefore, the effect of material parameters on structure with cutout is
independent of the geometric size of the structure. In addition, it can be seen that the
frequency parameters show an increasing trend with the increase of the structural aspect
ratio, but it is not a linear trend. Take the gradient index is 0 as an example, when the
aspect ratio is 1.5, the first-order non-dimensional frequency parameter is 1.67 times that
when the aspect ratio is 1, while it is 2.7 times when the aspect ratio is 2. This is mainly
because when the aspect ratio increases, the overall mass and stiffness of the structure will
also increase, and the stiffness is the main factor affecting frequency parameters.

Numerous results of the first six non-dimensional frequency parameters are demon-
strated in Table 5 for the FGMs square plate with central circular cutout under different
boundary conditions. The square plate with boundary restrains, including SSSS-F, SCSC-F,
SFSF-F, FCFC-F, FFCF-F, FCCC-F, FSCS-F, and FCCF-F are considered. From the table below,
the influence of boundary conditions on the frequency parameters is obvious, the stronger
the boundary restrains, the higher the corresponding frequency parameters, this can be
clearly confirmed from SFSF-F, SSSS-F, and SCSC-F boundary conditions. Comparing three
groups of boundary conditions—FCFC-F, FCCF-F, and FCCC-F—it can be concluded that
the clamped boundary constrain plays an important role in the frequency parameters,
while frequency parameter of the opposite side constraint is larger than that of the adjacent
side constraint.
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Table 4. The first six non-dimensional frequency parameters of FGMs rectangular plate with central circular cutout under
CCCC-F boundary condition (b = 1 m, r = 0.1 m, h = 0.01 m).

a/b p Methods
Modes

1 2 3 4 5 6

1

0
Present 36.5358 71.4352 71.4386 105.4876 127.5262 138.6374
Ref. [38] 36.4200 71.1900 71.1900 105.1500 127.0900 138.1200

0.5
Present 31.1424 60.8977 60.9032 89.9195 108.7118 118.1773
Ref. [38] 31.2000 61.0800 61.0800 87.5700 106.3200 116.2600

1
Present 27.8990 54.5626 54.5691 80.5628 97.4015 105.8843
Ref. [38] 28.1200 55.0500 55.0500 78.9700 95.8300 104.7800

2
Present 25.3673 49.6041 49.6103 73.2430 88.5495 96.2584
Ref. [38] 25.5700 50.0500 50.0500 71.7600 87.1200 95.2600

10
Present 22.6006 44.1827 44.1910 65.2574 78.8860 85.7766
Ref. [38] 23.4400 45.8800 45.8900 65.7700 79.8800 87.3300

1.5

0
Present 61.1085 92.9936 146.0148 149.5540 177.0082 221.1563
Ref. [38] 60.9700 92.7900 145.6600 149.2100 176.5700 220.6000

0.5
Present 52.0759 79.2583 124.4491 127.4684 150.8639 188.5330
Ref. [38] 52.1800 78.3200 123.7200 126.1200 147.0100 187.3000

1
Present 46.6604 71.0142 111.5217 114.2040 135.1729 168.9314
Ref. [38] 47.0300 70.5900 111.5100 113.6600 132.5000 168.8900

2
Present 42.4268 64.5684 101.3901 103.8366 122.8967 153.5787
Ref. [38] 42.7500 64.1800 101.3800 103.3300 120.4500 153.5300

10
Present 38.2502 58.1810 91.3882 93.5478 110.7397 138.2982
Ref. [38] 39.2200 58.8500 92.9500 94.8000 110.4300 140.6000

2

0
Present 98.7524 126.9054 178.8877 250.1018 252.4322 282.2987
Ref. [38] 98.5100 126.6400 178.5500 249.6700 251.7700 281.5500

0.5
Present 84.1596 108.1565 152.4540 213.1582 215.1543 240.6124
Ref. [38] 83.9400 106.4700 151.3800 210.3000 212.7000 234.3100

1
Present 75.4040 96.9035 136.5945 190.9989 192.7910 215.5763
Ref. [38] 75.6500 95.9500 136.4300 189.5400 191.7000 211.1900

2
Present 68.5630 88.1106 124.1989 173.6566 175.2810 196.0024
Ref. [38] 68.7700 87.2400 124.0300 172.3300 174.2800 191.9900

10
Present 61.7974 79.4025 111.9418 156.5118 157.9518 176.5748
Ref. [38] 63.1300 80.0100 113.8000 157.9200 159.8000 176.0800

Table 5. The first six non-dimensional frequency parameters of the FGMs square plate with central circular cutout under
different boundary conditions (a = b = 1 m, r = 0.1 m, h = 0.2 m).

p Modes
BC

SSSS-F SCSC-F SFSF-F FCFC-F FFCF-F FCCC-F FSCS-F FCCF-F

1

1 13.3179 17.9178 6.7214 14.0532 2.5402 14.8664 8.7123 4.7443
2 27.4857 27.5032 10.8235 15.7097 5.5009 22.8422 12.9261 14.5219
3 27.4857 30.1875 20.8144 24.0629 8.7486 31.9077 19.9885 16.5373
4 28.7276 34.5120 21.9500 25.0945 13.3916 32.4554 25.2352 20.8138
5 28.7276 44.1081 23.9487 31.6279 16.8760 37.6186 26.8349 26.2324
6 31.7165 46.3976 24.1150 34.1495 18.5060 38.5433 34.1060 26.5989

2

1 12.0147 16.0673 6.0818 12.6100 2.3036 13.3293 7.8648 4.2878
2 24.7467 24.7801 9.7578 14.0563 4.9551 20.3974 11.6737 12.9999
3 24.7467 27.0203 18.7829 21.4707 7.9140 28.7278 17.9049 14.8286
4 25.7677 30.7681 19.6557 22.6303 12.0132 28.9185 22.6299 18.8357
5 25.7677 39.6501 21.4900 28.1874 15.1534 33.6924 24.2132 23.4904
6 28.5742 41.3629 21.7518 30.3788 16.5759 34.2556 30.4527 23.9566
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Table 5. Cont.

p Modes
BC

SSSS-F SCSC-F SFSF-F FCFC-F FFCF-F FCCC-F FSCS-F FCCF-F

5

1 11.1106 14.4756 5.6752 11.3425 2.1641 11.9720 7.2773 3.9791
2 21.3820 21.3939 9.0126 12.5809 4.5625 18.2732 10.0846 11.7849
3 21.3820 24.0287 16.2282 19.3610 6.8440 24.8314 16.2413 13.4594
4 23.0528 26.9232 17.9878 19.5523 10.9596 25.3154 20.4136 16.2938
5 23.0529 34.1756 18.7834 24.6607 13.9533 29.7157 20.9315 20.5253
6 24.6644 36.2624 19.4196 26.6505 14.9960 29.9962 27.1231 21.2598

10

1 10.6718 13.7473 5.4669 10.7539 2.0888 11.3491 6.9882 3.8236
2 19.5447 19.5491 8.6564 11.9249 4.3773 17.3586 9.1971 11.2591
3 19.5447 22.6779 14.8131 17.8576 6.2340 22.7150 15.5103 12.8460
4 21.8196 25.2270 17.1491 18.4902 10.4910 23.7362 19.1146 14.8380
5 21.8197 31.2776 17.2891 23.1096 13.4264 27.8644 19.4074 18.7537
6 22.5428 33.9918 18.4730 25.0619 14.2976 28.1971 25.6807 20.1745

The first six mode shapes of the FGMs square plate with central circular cutout under
SSSS-F boundary condition when the thickness–length ratio is 0.01 and 0.2 are presented
in Figures 5 and 6, respectively. From the graphs below, for thin plate structure, the
lower order mode shapes are mainly transverse vibration, while for moderate thick plate
structure, the shear deformation along the thickness direction gradually appears. The three
dimensions of the elastic plate structure have complex deformation forms for different
modes, therefore the analysis based on the three-dimensional elastic theory can fully
consider the influence of the shear deformation in the thickness direction on the vibration
characteristics of the structure.
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3.3.2. Experimental Study

In this part, an experimental study of plate with central cutout is conducted to fur-
ther verify the validity of the proposed method. The experimental setup—including the
hammer, accelerometer sensor, charge adapter, dynamic data acquisition instrument, and
computer—is shown in Figure 7. In view of the available situation, the gradient index
is considered to be infinity, thus the functionally graded material degenerates to be com-
pletely aluminum. A square plate with central circular cutout under FFFF-F and CCCC-F
boundary condition are examined. It is impossible to realize the complete free boundary
condition in the actual experimental environment, two small holes are opened on the edge
of the structure, and elastic rubber ropes are used to hang the structure on the frame, as
shown in Figure 8a. For the CCCC-F boundary condition, the experimental model adopts
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two thicker L-shaped plates and arranges bolts uniformly around the rectangular plate
structure to simulate the fixed boundary condition, as shown in Figure 8b. The parameters
of dimension and the material of the structure are given in Table 6. Table 7 shows the first
six natural frequencies of the structure obtained by the present method and the experiment.
Through the comparative analysis of experiments and the calculation of the proposed
method, the difference is 4.754% for the worst case, which is acceptable. The main reason
for the error lies in two aspects. Firstly, the difference of boundary restrains between the
experimental simulation and the theoretical calculation will cause a certain error. Secondly,
when knocking with a hammer, it requires that the knocking direction is completely per-
pendicular to the panel surface, the knocking force should be constant, and the hammer
shall be evacuated quickly when the knocking is finished to avoid secondary knocking,
which is difficult to ensure in the process of experiment. The experimental frequency values
are obtained from the vibration analysis software by searching the peak within a certain
range of the frequency, and three are some interference items near desired the frequency
value, the peak value is automatically identified and selected by the computer, this is also
the reason for the error. The experimental values are smaller than the theoretical value,
the main reason is due to the additional mass of the accelerometer which is attached to
the panel.

Materials 2021, 14, x FOR PEER REVIEW 16 of 22 
 

 

   
(a) First Mode (b) Second Mode (c) Third Mode 

   
(d) Fourth Mode (e) Fifth Mode (f) Sixth Mode 

Figure 5. The first six mode shapes for SSSS-F FGMs square plate with central circular cutout (h/a = 0.01, p = 1). 

   
(a) First Mode (b) Second Mode (c) Third Mode 

   
(d) Fourth Mode (e) Fifth Mode (f) Sixth Mode 

Figure 6. The first six mode shapes for SSSS-F FGMs square plate with central circular cutout (h/a = 0.2, p = 1). 

3.3.2. Experimental Study 
In this part, an experimental study of plate with central cutout is conducted to further 

verify the validity of the proposed method. The experimental setup—including the ham-
mer, accelerometer sensor, charge adapter, dynamic data acquisition instrument, and 
computer—is shown in Figure 7. In view of the available situation, the gradient index is 
considered to be infinity, thus the functionally graded material degenerates to be com-
pletely aluminum. A square plate with central circular cutout under FFFF-F and CCCC-F 
boundary condition are examined. It is impossible to realize the complete free boundary 
condition in the actual experimental environment, two small holes are opened on the edge 
of the structure, and elastic rubber ropes are used to hang the structure on the frame, as 
shown in Figure 8a. For the CCCC-F boundary condition, the experimental model adopts 
two thicker L-shaped plates and arranges bolts uniformly around the rectangular plate 
structure to simulate the fixed boundary condition, as shown in Figure 8b. The parameters 
of dimension and the material of the structure are given in Table 6. Table 7 shows the first 
six natural frequencies of the structure obtained by the present method and the experi-
ment. Through the comparative analysis of experiments and the calculation of the pro-
posed method, the difference is 4.754% for the worst case, which is acceptable. The main 

Figure 6. The first six mode shapes for SSSS-F FGMs square plate with central circular cutout (h/a = 0.2, p = 1).

Materials 2021, 14, x FOR PEER REVIEW 17 of 22 
 

 

reason for the error lies in two aspects. Firstly, the difference of boundary restrains be-
tween the experimental simulation and the theoretical calculation will cause a certain er-
ror. Secondly, when knocking with a hammer, it requires that the knocking direction is 
completely perpendicular to the panel surface, the knocking force should be constant, and 
the hammer shall be evacuated quickly when the knocking is finished to avoid secondary 
knocking, which is difficult to ensure in the process of experiment. The experimental fre-
quency values are obtained from the vibration analysis software by searching the peak 
within a certain range of the frequency, and three are some interference items near desired 
the frequency value, the peak value is automatically identified and selected by the com-
puter, this is also the reason for the error. The experimental values are smaller than the 
theoretical value, the main reason is due to the additional mass of the accelerometer which 
is attached to the panel. 

 
(a) (b) (c) (d) (e) 

Figure 7. The experimental setup: (a) hammer; (b) accelerometer sensor; (c) charge adapter; (d) dynamic data acquisition 
instrument; (e) computer. 

  
(a) (b) 

Figure 8. The FGMs plate with central circular cutout: (a) FFFF-F boundary condition; (b) CCCC-F 
boundary condition. 

Table 6. Dimensions and material parameters of the structure. 

Parameter Value Unit Parameter Value Unit 
length 245 mm E  70 Gpa 
width 245 mm ρ  2700 Kg/m3 

thickness 5 mm μ  0.3  
radius 15 mm    

Table 7. The first six natural frequencies of the square plate with a central cutout. 

BC Methods 
Modes 

1 2 3 4 5 6 

FFFF-F 
Present 264.661 386.901 484.493 694.383 694.432 1235.285 

Experiment 257.680 375.950 469.310 674.490 678.260 1176.560 
Error(%) 2.638 2.830 3.134 2.865 2.329 4.754 

CCCC-F 
Present 732.448 1489.322 1489.796 2179.902 2642.341 2678.284 

Experiment 724.370 1448.740 1453.420 2102.870 2584.650 2608.280 
Error(%) 1.103 2.725 2.442 3.534 2.183 2.614 

Figure 7. The experimental setup: (a) hammer; (b) accelerometer sensor; (c) charge adapter; (d) dynamic data acquisition
instrument; (e) computer.



Materials 2021, 14, 7088 17 of 22

Materials 2021, 14, x FOR PEER REVIEW 17 of 22 
 

 

reason for the error lies in two aspects. Firstly, the difference of boundary restrains be-
tween the experimental simulation and the theoretical calculation will cause a certain er-
ror. Secondly, when knocking with a hammer, it requires that the knocking direction is 
completely perpendicular to the panel surface, the knocking force should be constant, and 
the hammer shall be evacuated quickly when the knocking is finished to avoid secondary 
knocking, which is difficult to ensure in the process of experiment. The experimental fre-
quency values are obtained from the vibration analysis software by searching the peak 
within a certain range of the frequency, and three are some interference items near desired 
the frequency value, the peak value is automatically identified and selected by the com-
puter, this is also the reason for the error. The experimental values are smaller than the 
theoretical value, the main reason is due to the additional mass of the accelerometer which 
is attached to the panel. 

 
(a) (b) (c) (d) (e) 

Figure 7. The experimental setup: (a) hammer; (b) accelerometer sensor; (c) charge adapter; (d) dynamic data acquisition 
instrument; (e) computer. 

  
(a) (b) 

Figure 8. The FGMs plate with central circular cutout: (a) FFFF-F boundary condition; (b) CCCC-F 
boundary condition. 

Table 6. Dimensions and material parameters of the structure. 

Parameter Value Unit Parameter Value Unit 
length 245 mm E  70 Gpa 
width 245 mm ρ  2700 Kg/m3 

thickness 5 mm μ  0.3  
radius 15 mm    

Table 7. The first six natural frequencies of the square plate with a central cutout. 

BC Methods 
Modes 

1 2 3 4 5 6 

FFFF-F 
Present 264.661 386.901 484.493 694.383 694.432 1235.285 

Experiment 257.680 375.950 469.310 674.490 678.260 1176.560 
Error(%) 2.638 2.830 3.134 2.865 2.329 4.754 

CCCC-F 
Present 732.448 1489.322 1489.796 2179.902 2642.341 2678.284 

Experiment 724.370 1448.740 1453.420 2102.870 2584.650 2608.280 
Error(%) 1.103 2.725 2.442 3.534 2.183 2.614 

Figure 8. The FGMs plate with central circular cutout: (a) FFFF-F boundary condition; (b) CCCC-F
boundary condition.

Table 6. Dimensions and material parameters of the structure.

Parameter Value Unit Parameter Value Unit

length 245 mm E 70 Gpa
width 245 mm ρ 2700 Kg/m3

thickness 5 mm µ 0.3
radius 15 mm

Table 7. The first six natural frequencies of the square plate with a central cutout.

BC Methods
Modes

1 2 3 4 5 6

FFFF-F
Present 264.661 386.901 484.493 694.383 694.432 1235.285

Experiment 257.680 375.950 469.310 674.490 678.260 1176.560
Error(%) 2.638 2.830 3.134 2.865 2.329 4.754

CCCC-F
Present 732.448 1489.322 1489.796 2179.902 2642.341 2678.284

Experiment 724.370 1448.740 1453.420 2102.870 2584.650 2608.280
Error(%) 1.103 2.725 2.442 3.534 2.183 2.614

3.4. Parametric Study

In this section, the parametric study of three-dimensional vibration characteristics of
the FGMs plate with cutouts is carried out. Based on the existing literature, the structural
vibration characteristics of different functionally graded material parameters are different,
and the predecessors have done a lot of research on this. This section emphasizes the study
of the influence of the parameters of the cutout on the free vibration characteristics and
harmonic response analysis of the structure, including the cutout sizes, cutout positions,
and number of the cutout. The FGMs square plate with circular cutouts under CCCC-F
boundary conditions is taken as the analysis object, and the geometric parameters and
materials parameters are set as follows: a = b = 1 m, h = 0.1 m, p = 1.

First, the variation of the non-dimensional frequency parameters with respect to
diverse cutout sizes is investigated. Table 8 presents the first six frequency parameters
of the FGMs square plate with a central circular cutout, and the cutout size ratios (r/a)
vary from 0 to 0.25. For the small values of cutout size ratio, the frequency parameters
of the structure with and without cutout are almost the same. It is found that the change
trend of the low-order modal frequency parameters of the structure is relatively simple, a
minimum value for the first five modes exists and the frequency parameters first decrease
and then increase when the cutout ratio rise, while the change of the high-order frequency
parameters is more complicated. The reason may be due to the weight of mass loss and
stiffness loss on the frequency parameters is different with the increase of cutout size ratio.
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Table 8. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout sizes.

Cutout Size Ratio r/a
Modes

1 2 3 4 5 6

0 25.5012 49.1018 49.1093 69.2248 81.9838 82.7225
0.025 25.4001 48.9005 48.9060 68.7938 81.4039 82.0926
0.05 25.3638 48.6206 48.6221 68.4080 80.8594 82.0073

0.075 25.4796 47.9396 47.9450 67.9465 80.2203 83.0599
0.1 25.8668 46.8228 46.8359 67.3965 79.4324 85.4772

0.125 26.6235 45.5138 45.5164 66.7080 78.3640 89.1572
0.15 27.8147 44.3487 44.3506 65.7601 76.8849 93.7810

0.175 29.5120 43.6500 43.6633 64.5325 75.1048 95.0332
0.2 31.8213 43.7553 43.7609 63.2576 73.5462 94.6269

0.225 34.8721 44.7776 44.7829 62.1695 72.6640 93.7299
0.25 38.8206 46.9072 46.9150 61.6343 73.0458 92.8681

Then, the harmonic analysis is used to analyze the steady-state response of the FGMs
plate with cutouts under simple harmonic excitation. In order to overcome the problem
of numerical instability caused by structural resonance at the modal frequency of the
external excitation, the damping factor will be introduced in the form of complex Young’s
modulus, thus E = E(1 + jη), η = 0.01. Assuming that a simple harmonic force is applied
to point A along the z-axis, and the magnitude of the force is 1 N. The coordinates of
the excitation force application point A and the selected response observation point B are
(0.5 m, 0.8 m, 0.05 m) and (0.8 m, 0.8 m, 0.05 m), respectively. Figure 9a,b provide the
results obtained from the preliminary analysis of the displacement response curve of the
excitation force application point and the response observation point with frequency in the
range of 0–5000 Hz. The range of the cutout size ratio is from 0 to 0.25 with a step of 0.025,
and the displacement response is H = 20 ∗ log(w). From the graph below we can see that
there has been a slight rise in the displacement response with the gradual increase of the
cutout size rate. This is mainly because the stiffness of the excitation force application point
and the observation point is weakened by the introduction of the cutout. The resonance
peak of the displacement response will shift left and right with the increase of cutout size
ratio. To further explain, in Figure 9a, the first-order resonance peak frequency is 1225 Hz
when the structure is without cutout, the first-order resonance peak frequency is 1221 Hz
when the cutout ratio is 0.05, and the first-order resonance peak frequency is 1246 Hz when
the cutout ratio is 0.1, in the case of a larger cutout ratio, it can be clearly seen that the
first-order resonance peak frequency is increasing, which is consistent with the change
trend of the data in Table 8.
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Figure 9. The displacement response for FGMs square plate with diverse cutout sizes.
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The following part of the study is concerned with the position of the cutout. The radius
of the cutout is 0.1 m, and the position of cutout varies along the x-axis. The table below
illustrates the first six non-dimensional frequency parameters of the FGMs square plate
with different cutout positions. In Table 9, when the cutout position xc = 0.5, it means
that the cutout is located in the center of rectangular plate. The table reveals that as the
cutout position gradually approaches the edge of the structure, the fundamental frequency
parameter of the structure gradually declines, the second order frequency parameters of
the structure gradually increases, while the higher order frequency parameters changes are
more complicated.

Table 9. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout positions.

Cutout Position xc
Modes

1 2 3 4 5 6

0.5 25.8668 46.8228 46.8359 67.3965 79.4324 85.4772
0.55 25.8376 46.8694 47.1622 67.3042 79.1040 83.9540
0.6 25.7714 47.0096 48.0869 67.1039 77.9703 82.3428
0.65 25.6586 47.2151 49.2026 66.8924 77.2401 82.1270
0.7 25.5036 47.4987 49.8348 66.8156 78.4654 82.8420
0.75 25.2945 47.8175 49.5779 66.9872 80.1950 84.1670
0.8 25.0313 48.1433 48.6649 67.4224 81.0591 83.9047

The results of the correlational analysis of displacement response for FGMs square
plate with different cutout positions are shown in Figure 10. From the graph below we
can see that in the frequency range of 0–3000 Hz, the vibration displacement response
at the resonance peak changes slightly, for the excitation force application point, the
amplitudes of the first-order resonance peaks are −378.658 dB, −378.957 dB, −379.589 dB,
and −379.962 dB, respectively. While the excitation frequency is greater than 3000 Hz, the
vibration displacement response at the resonance peak changes obviously.
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Figure 10. The displacement response for FGMs square plate with diverse cutout positions.

In actual engineering structures, it is often necessary to evenly arrange multiple
cutouts on the structure, so in the final part of the study, the influence of the number of
cutout on the vibration characteristics of the structure is investigated. Table 9 provides the
first six non-dimensional frequency parameters of the FGMs square plate with different
cutout numbers, the cutouts are evenly distributed along the x-axis direction. The radius of
the cutouts is 0.05 m, and the other parameters remain the same with the previous data.
What can be clearly seen in Table 10 is the decrease with the increasing in the number of
cutouts for the frequency parameters of all orders. The results of the harmonic response
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correlational analysis of are presented in Figure 11. The graph shows that there has been a
small change for the amplitude of the displacement response with the increasing of the
cutout numbers, while all resonance peaks gradually shift to the left.

Table 10. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout numbers.

Cutout Numbers
Modes

1 2 3 4 5 6

0 25.5012 49.1018 49.1093 69.2248 81.9838 82.7225
1 25.3638 48.6206 48.6221 68.4080 81.4594 82.0073
2 25.4322 48.4312 48.7497 68.2540 81.1932 81.7552
3 25.3848 48.0834 48.4720 67.6411 80.7516 80.8624
4 25.3126 47.8140 48.3909 67.1717 80.3960 80.4916
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Figure 11. The displacement response for FGMs square plate with different cutout numbers.

4. Conclusions

The aim of the present research is to establish a unified three-dimensional solution
to deal with the vibration characteristics of FGMs plate with/without circular cutouts.
The material properties vary continuously along the thickness direction according to the
power-law distribution. The artificial spring technology is used to simulate the general
boundary conditions by setting three groups of linear springs and assigning them with
appropriate spring stiffness values. Due to relatively complicated governing differential
equations and domain of the problem, the p-version of the finite element method is applied
to discretize the plate with cutout into four curve quadrilateral sub-domains, and then
map the closed quadrilateral region to the computational space by the blending function
method. The independent coordinate coupling relationship is used to derive the Jacobian
relationship matrix of the rectangular plate domain and the circular cutout domain, finally
the Lagrangian energy equation is used to solve the differential equation. In the analysis
of numerical examples, it is found that the calculation results of this method are in good
agreement with other results through comparison with the existing literature and finite
element simulation analysis results, which verifies that the method proposed in this paper
is reliable. Then the effects of cutout sizes, cutout positions, and cutout numbers on the
frequency parameters of FGMs plate with cutout are studied and discussed, and all of
these factors will have an impact on the frequency parameters. The proposed method can
be applicable to solve the vibration of complex shape plate with cutouts, and the numerical
results can be useful for future research.
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