
1Scientific RepoRts | 6:35744 | DOI: 10.1038/srep35744

www.nature.com/scientificreports

An analog of photon-assisted 
tunneling in a periodically 
modulated waveguide array
Liping Li1, Xiaobing Luo2, Xiaoxue Yang1, Mei Wang1, Xinyou Lü1 & Ying Wu1

We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet 
state in a periodically driven lattice array without a static biased potential by studying a three-channel 
waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only 
periodically modulating the top waveguide and adjusting the distance between the bottom and its 
adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel 
waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, 
but they will become weak as the number of waveguides increases. With origin different from 
traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy 
(dark) Floquet states. It is readily observable under currently accessible experimental conditions and 
may be useful for controlling light propagation in waveguide arrays.

Controlling quantum tunneling and transport through a periodic driving field has been a subject of intense stud-
ies in the last decades, for its relevance to fundamental physics tests as well as to great potential application in 
nanoscale devices1,2. Among the most intriguing aspects of the subject, coherent destruction of tunneling (CDT)3 
and photon-assisted tunneling (PAT)4 represent two seminal results. CDT is a resonant effect discovered in the 
pioneering work, in which the coherent tunneling between states is almost completely suppressed when the sys-
tem parameters are carefully chosen at the isolated degeneracy point of quasi-energies3. It has so far generated 
great interests and has recently been observed experimentally in different physical systems5,6. Recently, CDT 
has been found to occur over a wide range of system parameters in odd-N-state systems where one state is peri-
odically driven with respect to others7. Such extension of destruction of tunneling to a finite parameter range, 
referred to as dark CDT, is attributed to the existence of localized dark Floquet state with zero quasi-energy7–9. 
Introduction of dark Floquet state and dark CDT, which are hitherto limited in the high-frequency regime, may 
offer benefits for all-optical switching and coherent quantum control.

Photon-assisted tunneling (PAT) refers to a phenomenon in which tunneling contact disabled by a static tilt 
(dc bias potential) can be restored when the system exchanges energy of an integer number of photons with the 
oscillating field10. The static tilt (dc bias potential) leads to suppression of tunneling which is related to local-
ized Wannier-Stark states11. When a multiple of the driving frequency of ac field matches the energy difference 
between adjacent rungs of the Wannier-Stark ladder, the system is able to absorb or emit photons with suffi-
cient energy to bridge the energy difference created by the dc bias potential, through which tunneling is (partly) 
restored (PAT). The appealing concept of PAT originated in the prototype system with a quantum particle con-
fined in a driven Wannier-Stark lattice. Recently it has found growing theoretical interest in many-body dynamics 
of bosonic systems12–16. So far, PAT has been experimentally observed in Josephson junctions17, coupled quantum 
dots18,19, semiconductor superlattices20,21 and Bose-Einstein condensates in optical lattices22.

In this article, we have studied the tunneling dynamics in lattice arrays with controllable boundary. Owing to 
the simplicity and flexibility offered by optical settings, the engineered photonic waveguides provide an ideal sys-
tem for exploration of tunneling phenomena, in which spatial propagation of light mimics the temporal dynamics 
of a quantum particle in a lattice array23,24. Generally, PAT occurs in a system with a static biased potential which 
strongly suppresses usual Josephson oscillations. But here we report an analog of photon-assisted tunneling in a 
periodically driven lattice array without static tilt (dc bias potential) by comprehensively studying a three-channel 
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waveguide system. Our numerical analysis discovers that dark CDT (strong suppression of tunneling) and dark 
Floquet state still exist in the three-channel waveguide system even in the non-high-frequency regimes where 
the modulation frequency of the periodically modulated top waveguide is roughly equal to or smaller than the 
coupling strength between the bottom and its adjacent (middle) waveguide. However, when integer multiples 
of the modulation frequency approximately equal to the coupling strength between the bottom and its adjacent 
(middle) waveguide, the light tunneling from the top waveguide to the others is restored as a clear signature of 
photon-assisted tunneling. In our previous two works (refs 7 and 8), we have addressed a novel extension of 
coherent destruction of tunneling (CDT) and its application for coherent control. In the current work, however, 
we report a series of photon-assisted tunneling (PAT) resonances in the considered model by moving the last 
waveguide (site) closer to its neighbor. Different from the PAT observed in the earlier studies which usually 
requires a static biased potential to initialize the system in a self-trapped state, this type of PAT is closely linked to 
a dark Floquet state with zero quasi-energy. Our results are applicable for the five-channel waveguide system and 
also extendable to waveguide arrays with an odd number of waveguides.

Results
The physical model for periodically modulated waveguide system. As illustrated in Fig. 1, we 
present an optical implementation of our Hamiltonian in the form of a linear array of tunneling-coupled optical 
waveguides which is characterized in: (i) that the refractive index of the top boundary waveguide is modulated 
periodically along the propagation direction; and (ii) that the distance w2 between the bottom boundary wave-
guide and its nearest neighbor is different from other identical nearest-neighboring spacings w1. Thus, through 
adjustment of the distance w2, the coupling strength between the bottom boundary waveguide and its nearest 
neighbor can be tuned to be sufficiently large in comparison to the modulation frequency. The role of photon is 
played by a periodic modulation of the the top boundary waveguide with a certain modulation frequency. With 
the use of the coupled-mode approach, the optical-field dynamics in such structures are described by the follow-
ing set of equations9:
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where aj is field mode amplitude in the j-th waveguide, z the propagation distance, Ω1 the coupling strength 
between neighboring waveguides with spacing w1, Ω2 the coupling strength between the bottom boundary wave-
guide (j =  N) and its adjacent waveguide (j =  N− 1), and σ(z) the normalized difference between the propagation 
constants of the top boundary waveguide and the other waveguides of the array. As in ref. 9, instead of modulating 

Figure 1. Schematic diagram of the modulated waveguide system. (a) Schematic of a tunneling-coupled 
optical waveguide array with controllable boundary that realizes an analog of photon-assisted tunneling. (b) A 
typical triplet waveguide system. The refractive index of the top boundary waveguide is modulated periodically 
along the propagation direction. The space separation between the bottom boundary waveguide and its nearest 
neighbor w2 is adjustable by moving the bottom boundary waveguide towards the other waveguides, while the 
spacings w1 between other nearest-neighboring waveguides are fixed.
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an array of waveguide in a uniform fashion, modulating one certain waveguide selectively is implemented  
here. We consider a harmonic modulation of the linear refractive index of the top boundary waveguide along the 
propagation direction with σ(z) =  A sin (ωz), where A is the relative depth of the harmonic longitudinal  
modulation, and ω is the spatial modulation frequency. Such a periodic modulation is well within the capacity of 
current experiments23,24. In a different perspective, the above Equation (1) can be regarded as describing  
the system of a quantum wave in a periodically driven lattice array if z is viewed as time t. As is well  
known, the periodic time-dependent equation (1) admits solutions in the form of Floquet states 

ε ... =  ... −  a a a a a a i z( , , , ) ( , , , ) exp( )N
T

N
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are periodic with modulation period T =  2π/ω.

PAT in three-guide system. We start our consideration for the three-guide system, the minimal one for 
odd-N-state systems. In this case, the dynamical equations are of the form
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To study the system’s beam dynamics, we solve numerically the coupled-mode equations with the light ini-
tially localized in the 1-th waveguide (the top boundary waveguide). With the numerical solution, we compute 
the intensity of light staying in the initial waveguide by P1(z) =  |a1(z)|2 and measure the minimum value of P1(z) 
over a long-enough propagation distance. When Min(P1) is not zero, the tunneling is suppressed as the light is not 
allowed to be fully transferred from the 1-th mode (guide) to the other modes (guides). In Fig. 2(a), we display 
Min(P1) versus the coupling strength Ω2 at the fixed parameters A =  6.6, ω =  3, Ω1 =  1. For Ω2 =  0, the system is 
in fact a two-guide system in which the conventional CDT happens only at the isolated degeneracy point of the 
quasi-energies, and consequently Min(P1) takes a zero value because the ratio of driving amplitude and frequency 

Figure 2. PAT in three-guide optical system. (a) the minimum value of intensity of light at the initially 
populated guide-1, Min(P1) versus Ω2, with A =  6.6, ω =  3, Ω1 =  1; (b) the corresponding quasi-energy ε versus 
Ω2 with no level degeneracy and (c) the time-averaged population 〈 Fj〉  belonging to the zero-energy (dark) 
Floquet state versus Ω2.
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is set with small deviation from the isolated degeneracy point. When Ω2 is increased from zero, the value of 
Min(P1) becomes relatively large except at a series of very sharp dips. In general, periodic modulation of the top 
boundary waveguide will yield a significant suppression of the light tunneling in the three-guide system even with 
Ω1 ≠  Ω2, as shown in Fig. 2(a). However, at particular values of the coupling strength Ω2, Ω2 ≈  nω with n being 
integer, the value of Min(P1) exhibits a series of sharp dips, in analogy to the n-photon-like resonances which 
destroy the effect of suppression of tunneling. It also can be observed that as the coupling strength Ω2 is increased, 
the higher photon-like resonances become very weak and thus are almost not visible.

For a deep insight into the tunneling dynamics obtained in Fig. 2(a), we numerically compute the 
quasi-energies and Floquet states of this system as shown in Fig. 2(b,c). As shown in Fig. 2(b), this three-state 
system always possesses a Floquet state with zero quasi-energy regardless of the value of Ω2. The other two 
quasi-energies make a set of close approaches to each other as Ω2 is increased. At the points of close approach, 
namely, at Ω2 ≈  nω, the value of Min(P1) displays sharp dips and the tunneling is significantly restored. We also 
plot the time-averaged population distribution ∫〈 〉 = | |F dz a T( )/j

T
j0

2  for the zero-energy Floquet state  
(a1, a2, a3)T in Fig. 2(c). Considering that the dynamic is determined by the Floquet states, self-trapping (suppres-
sion of tunneling) of light intensity initially populating at the 1-th mode (guide) will take place if 〈 F1〉  >  0.5 holds. 
As seen in Fig. 2(c), the zero-energy Floquet state has negligible population at the central mode (guide) while the 
population 〈 F1〉  is much larger than 0.5 for all values of Ω2 except those in the vicinity of Ω2 ≈  nω. 
Correspondingly, suppression of tunneling (CDT) occurs for all values of Ω2 except the locations of photon reso-
nances, as shown in Fig. 2(a). The Floquet state with zero quasi-energy is essentially the dark Floquet state, not 
only for its zero quasi-energy but also for its negligible population at the central waveguide; the suppression of 
tunneling (CDT) is of the dark CDT as it is caused by the dark Floquet state rather than level degeneracy (as seen 
in the inset on the right side of Fig. 2(b)). In fact, the CDT-PAT transition found in Fig. 2(a) is closely related to 
the sharp localization-delocalization transition of population 〈 F1〉  for the zero-energy (dark) Floquet state. Note 
that the dark Floquet state originally discovered and defined in the high-frequency limit can be reduced to the 
well-known dark state by means of high-frequency averaging method7,8. However, the dark Floquet state and the 
associated CDT can still exist in the non-high-frequency regimes where the coupling strength Ω2 is much larger 
than the modulation frequency and the high-frequency averaging method is invalid. These results will greatly 
enrich our understanding of dark Floquet state and dark CDT.

To get further study of n-photon-like resonances, we show how the value of Min(P1) varies under condi-
tions that the modulation amplitude is increased, while its frequency is held constant at ω =  3 and the coupling 
strength held Ω2 =  nω, Ω1 =  1. At multiphoton resonances, the tunneling is restored in general. However, CDT 
will occur at certain values of the amplitude of the driving field10,12. It means possibility of moving the system 
between PAT and CDT through variation of the amplitude of the driving field. Figure 3(a) shows the case of 
n =  1 photon resonance. For A =  0, the system is self-trapped in the 1-th waveguide due to the existence of an 
imbalanced dark state (− Ω2/Ω1, 0, 1)T with Ω2/Ω1 >  1, and thus the value of Min(P1) is nonzero. When the 
periodic driving is applied, as A is increased from zero, the value of Min(P1) rapidly drops to zero, which indi-
cates that the photon resonance destroys the self-trapping effect. When A/ω is increased further, Min(P1) takes 
extremely low values about zero except at a sequence of very narrow peaks. These peaks are precisely centered 
at A/ω =  3.83, 7.01, .… , the zeros of J1(A/ω). In Fig. 3(b,c), we plot the quasi-energies and the population dis-
tributions of the dark Floquet state for the first photon resonance (n =  1). Apparently, the quasi-energies are 
degenerate when J1(A/ω) =  0, and when away from A =  0 the dark Floquet state has averaged population at the 
1-th mode (guide) well below the value of 0.5. Therefore it can be concluded that the well-defined quasienergy 
crossings instead of the dark Floquet state are the origin of the extremely sharp peaks (CDT resonances) seen 
in Fig. 3(a). The occurrence of CDT resonances centered at the degeneracy points of quasienergies (zeros of 
Bessel functions) is a feature commonly found in the periodically driven systems10,12, even in the case that the 
conditions of multiphoton resonances are satisfied.

In Fig. 3(d), we show the values of Min(P1) in the three-guide optical system for the n =  2 resonances. As 
is expected, the values of Min(P1) exhibit a number of extremely sharp peaks centered on the zeros of J2(A/ω) 
where the quasi-energies will be degenerate; see Fig. 3(e). Similar to the case of n =  1 resonance, the sharp peaks 
in the n =  2 resonance is also caused by the level degeneracy rather than the dark Floquet state, as it is shown in 
Fig. 3(f) that the population 〈 F1〉  belonging to the dark Floquet state is well below 0.5 at the points of quasi-energy 
crossings.

In order to observe the n-photon-like resonances from a different angle, we also plot Min(P1) as a function of 
the modulation frequency ω for two fixed parameters Ω2 =  2 and Ω2 =  3 in Fig. 4(a,b) respectively, for the case of 
the system parameters Ω1 =  1 and A =  6.6. We can readily observe that the n-photon-like resonances occur at 
comparatively broad interval around ω =  Ω2/n. The width of such photon-assisted tunneling resonances is much 
larger than those of PAT resonances observed in the literature. We now elaborate the physics underlying this 
photon-assisted tunneling resonances. The actual resonance condition does not refer directly to Ω2 =  nω but 
rather to the tunneling frequency of the model (2) without periodic modulation. The unmodulated three-guide 
optical system admits three energy level as ± Ω + Ω0, 1

2
2
2 , and the space of two neighboring energy levels is 

ω = Ω + Ω0 1
2

2
2 . In such a system, the existence of imbalanced dark state with zero energy results in the suppres-

sion of tunneling when the periodic modulation is switched off. The periodic modulation effectively creates “pho-
tons” that bridge the energy gap between neighboring energy levels. Thus, a photon-assisted tunneling resonance 
can occur at a modulation frequency which satisfies the resonance condition ω0 =  nω. When Ω2 is considerably 
larger than Ω1, the energy difference ω0 of the unmodulated system will become principally characterized by Ω2 
and therefore the resonance condition is approximately given by Ω2 =  nω. As clearly seen in the inset in Fig. 4(c), 
the position of n-photon-like resonance does slightly shift with increasing Ω1 due to the dependence of the energy 
difference (tunneling frequency) ω0 on Ω1.
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PAT in five-guide system. We now turn to the case of the five-guide optical system and investigate the 
beam dynamics by direct integration of the time-dependent Schrödinger equation (1) (j =  2, 3 and N =  5) with 
the light initially localized at the guide 1. In Fig. 5, fixing the parameters A =  6.6, ω =  3, Ω1 =  1 as before, we show 
the value of Min(P1) as a function of Ω2 which exhibits a sequence of PAT resonances with similar behavior as 
that of a three-guide system. The higher n-photon resonances with n ≥  3 become very weak, almost invisible, as 
illustrated in the inset of Fig. 5(a). By comparison of Fig. 2(a) with Fig. 5(a), it is apparent that the same order PAT 
resonance for the five-guide system is much narrower and weaker than for the three-guide system. Like the case 
of the three-guide system, this five-guide system also possesses a dark Floquet state with zero quasi-energy and 
negligible population at all of the even j-th guides (modes), as illustrated in Fig. 5(b,c). Reason for the existence of 
the analog of PAT resonances in the five-guide system lies in that population distribution 〈 F1〉  for the dark Floquet 
state simultaneously displays a series of sharp dips at the positions of PAT resonances [see Fig. 5(c)].

In Fig. 5(d), we plot Min(P1) obtained in the five-guide system as a function of the modulation parameter 
A/ω for the 1-photon resonance Ω2 =  2.8, ω =  3, Ω2 ≈  ω. As discussed before, we can observe that the values of 
Min(P1) are peaked at the zeros of J1(A/ω), at which CDT occurs, while between the peaks Min(P1) take extremely 
low values as result of PAT. However, compared with the case of three-guide system, the peaks in Min(P1) are 
considerably lower and broader. As can be clearly seen from Fig. 5(e,f), the peaks in Min(P1) are indeed centered 
at the points of closest approach of the quasi-energies where the dark Floquet state has a population 〈 F1〉  >  0.5. 
The numerical results establish again a firm link between PAT and dark Floquet state in our considered systems.

Figure 3. Transition between PAT and CDT for one-photon and two-photon resonances in three-guide 
optical system. The left column: (a) Min(P1) versus A/ω for the 1-photon resonance ω =  3, Ω2 =  3, Ω1 =  1;  
(b) the corresponding quasi-energy ε versus A/ω and (c) the time-averaged population 〈 Fj〉  belonging to 
the zero-energy (dark) Floquet state versus A/ω. The right column: (d) Min(P1) versus A/ω for the 2-photon 
resonance ω =  3, Ω2 =  6, Ω1 =  1; (e) the corresponding quasi-energy ε versus A/ω and (f) the time-averaged 
population 〈 Fj〉  belonging to the zero-energy (dark) Floquet state versus A/ω.
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Tunneling dynamics in the four- and six-guide optical systems and beyond. Finally, we briefly 
discuss the case of the four- and six-guide systems. The dynamics for N =  4 and N =  6 are presented in Fig. 6 
on the basis of a full numerical analysis of Equation (1) with the light initially populated in the guide 1. It tells 
the existence of a sharp transition from CDT to complete tunneling for both cases of N =  4 and N =  6 when the 
coupling strength Ω2 is increased from zero. A close examination of the tunneling dynamics at Ω2 =  nω shows 
that the value of Min(P1) displays narrow peaks nearly at zeros of J0(A/ω) where a pair of quasi-energies become 
degenerate. This closely resembles the case of the high-frequency modulation ω ≫  max(Ω1, Ω2) where CDT is 
dominated by the zeros of J0(A/ω). As shown in Fig. 6(b,e), the localization centered nearly at zeros of J0(A/ω) is 
fairly smaller for the four-guide system, but still generates high peaks for the six-guide system.

Moreover, we have simulated multiwaveguide systems of other numbers of waveguides. The numerical 
results, which are not displayed here, show that the PAT resonances probably occur in all the odd-N-guide opti-
cal systems, while the PAT resonances become weaker with the increase of number of guides. However, all the 
even-N-guide optical systems exhibit CDT to complete tunneling transition without appearance of n-photon-like 
resonance when the coupling strength Ω2 is increased from zero, which is totally different from the case of 
odd-N-guide system.

Possibility of experimental realization. Now, we discuss the experimental possibility of observing our 
theoretical predictions based on the coupled-mode equations. A more rigorous dynamics for our system can be 
simulated by the Schrödinger equation for the dimensionless field amplitude E, which describes the light propa-
gation along the z axis of an array of N waveguides25,26

∂
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Here x and z are the normalized transverse and longitudinal coordinates, p describes the peak contrast (variation) 
in the refractive index between the unmodulated guiding structure and the substrate. The dimensionless variables 
x ,  z  and p  are related to the corresponding physical quantities x′ ,  z′   and p′   by the scaling 
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Figure 4. Dependence of PAT location on modulation frequency ω and coupling strength Ω1. (a,b) The 
minimum value of population distribution P1, Min(P1), as a function of the modulation frequency ω with Ω2 =  2 
and Ω2 =  3 respectively. Other parameters are chosen as Ω1 =  1 and A =  6.6. (c) Min(P1) versus Ω2 with different 
values of Ω1. Other parameters are chosen as ω =  3 and A =  6.6.
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in the experiments25,26. The normalized dimensionless power is defined by ∫=
−∞

∞P E dx2 . After a transforma-
tion of dimensionless field intensity to the physical field intensity defined by ρ′ = ′E k P P E( / (0)/ )2 2, we get the 
physical input power (in W/m) ∫′ = ′ ′

−∞

∞P E dx(0) 2 . Therefore, the dimensionless field amplitude E is normal-
ized in unit of ρ ′k P P( / ) (0)/1/4 . For our system, the refractive index of the first waveguide is harmonically mod-
ulated along the propagation direction, while all other N− 1 waveguides are unmodulated. The corresponding 
refractive index distribution of this kind of waveguide system is given by
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with the position of each waveguide being xj, the channel width wx, the longitudinal modulation amplitude μ, and 
the modulation frequency ω. Therein the super-Gaussian function −x wexp( / )x

6 6  describes the profile of a single 
waveguide with width wx. In our discussion, all the waveguide spacings [xj −  xj−1] are identical except that the 
spacing between the bottom boundary waveguide and its neighbor is variable.

In what follows, we will illustrate our main results with a triplet waveguide system (N =  3) by directly inte-
grating the field propagation Equation (3) with realistic experimental parameters. We set wx =  0.3, p =  2.78, 

Figure 5. PAT in five-guide optical system. The left column: (a) the minimum value of population distribution 
at guide 1, Min(P1), versus Ω2 with A =  6.6, ω =  3, Ω1 =  1; (b) the corresponding quasi-energy ε versus Ω2 and 
(c)the time-averaged population 〈 Fj〉  belonging to the zero-energy (dark) Floquet state versus Ω2. The right 
column: (d) Min(P1) versus A/ω for the 1-photon resonance ω =  3, Ω2 =  2.8, Ω1 =  1; (e) the corresponding 
quasi-energy ε versus A/ω and (f) the time-averaged population 〈 Fj〉  belonging to the zero-energy (dark) 
Floquet state versus A/ω.
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μ =  0.2 and ω =  3.45 ×  (π/100). We characterize two distinct waveguide spacings as w1 and w2 respectively, 
where w1 =  x1 −  x0 stands for the separation between the top waveguide and the middle waveguide and 
w2 =  x0 −  x−1 the separation between the bottom waveguide and the middle waveguide. Further we set w1 =  3.2 
and choose different values of w2 to observe PAT resonance. As in the experiments25,26, wx and xj are in units 
of 10 μm, and p =  2.78 corresponds to a real refractive index of 3.1 ×  10−4 (weakly guided). The small change 
of index between the guide (core) and the substrate, which can be fabricated by using a femtosecond-writing 
method27, allows the weak-guidance approximation to be employed for obtaining the scalar wave equation (3). 
In all simulations we excited the top channel at z =  0, using the fundamental linear mode of the isolated wave-
guide. It is instructive to normalize the modulation frequency to the beating frequency of the unmodulated 
linear dual-core coupler with spacing w1, Ωb =  2Ω1 =  2π /Zb, where Zb is a beating period representing the 
shortest distance for the light returning to the input waveguide. For our set of parameters one has Zb =  100 and 
thus ω =  3.45 Ω1.

The beam dynamics of a three-guide optical system are visualized in Fig. 7 for three values of w2, which firmly 
verifies the predictions from the coupled-mode Equation (2). In Fig. 7. the left column shows the refractive index 
distribution R(x, z) and the right column shows the evolution of light intensity |E(x, z)|2 along the propagation 
direction. It can be readily observed from Fig. 7(a,b) that the light tunneling is almost completely suppressed, as the 
three-channel waveguide system has equal channel spacing w1 =  w2 =  3.2. At w2 =  2.22, the light coupling between 
the waveguide channels is restored [see Fig. 7(c,d)]. The revival of light tunneling is a signature of PAT resonance 
predicted by the coupled-mode theory. In fact, our numerical simulation (not shown here) reveals that the beating 
period of an unmodulated linear dual-core coupler with a channel spacing 2.22 is about 100/3.45. As such, we have 
Ω2 ≈  3.45Ω1 and Ω2 ≈  ω, which is in fact the position of the first photon resonance. As the channel spacing w2 is 

Figure 6. The left column: the characteristics of four-guide optical system; The right column: the 
characteristics of six-guide optical system. (a,d) Min(P1) versus Ω2 at A =  6.6, ω =  3, Ω1 =  1; (b,e): Min(P1) 
versus A/ω at Ω2 =  3, ω =  3, Ω1 =  1; (c,f): quasi-energies ε versus A/ω at Ω2 =  3, ω =  3, Ω1 =  1.
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reduced further, it is expectable to observe again the strong suppression of light tunneling [see Fig. 7(e,f)]. These 
results are in good qualitative agreement with those in Fig. 2(a) based on the coupled-mode equation.

Discussion
We have theoretically reported an analog of PAT in a three-channel waveguide system, in which the 
space separation between the bottom and the middle waveguides is adjustable and the refractive index 
of the top waveguide is modulated periodically along the light propagation direction. With the standard 
coupled-mode theory, the system can be described by a driven three-state discrete model with two distinct 
coupling strengths Ω1 and Ω2, where Ω1 stands for the coupling strength between states 1 and 2, and Ω2 
between states 2 and 3. In studying the three-state discrete model, we have found that (i) a strong suppres-
sion (CDT) associated with the zero-energy (dark) Floquet state persists even in the non-high-frequency 
modulation regimes where ω ≤  max(Ω1, Ω2) except at a series of resonance positions; (ii) at particular values 
of the coupling strength Ω2, Ω2 ≈  nω with n being integer, the tunneling dynamics is (partly) restored, analo-
gous to the n-photon-like resonances which overcome the effect of suppression of tunneling. The numerical 
calculations illustrate that the PAT resonances exist in the five-state system and also probably exist in the 
systems with arbitrary odd number of coupled states. In particular, the PAT resonances will become weaker 
with the increase of number of states (modes). This type of PAT found in our work has a different origin 
from traditional PAT. It is closely related to the existence of the dark Floquet state. The main results are 
demonstrated by the direct numerical simulations of propagation dynamics based on the full continuous 
model with realistic experimental parameters, which indicates that the PAT found in our work can be readily 
tested in the current experimental setup. Because of the equivalence between the Schrödinger equation and 
the optical wave equation, we select the engineered photonic lattice as our model system due to its robust 
and feasibility in the realistic experiment and, obviously, our results can also be applied to the quantum 
systems such as cold atom or trapped ion in optical lattices and electron transport in quantum dot chains.

Methods
To calculate the Floquet states and corresponding quasienergies of the coupled-mode Equation (1), we carry out 
a procedure that runs in principle as follows. We first numerically integrate Eq. (1) from z =  0 to T with the initial 

Figure 7. Light propagation in three-guide optical systems with different spacings between the bottom 
and the middle waveguide for the input beam centered at the top waveguide. First row: (a,b): the refractive 
index distribution R(x, z) and the light propagation |E(x, z)|2 for a three-guide system with equal channel 
spacing w1 =  3.2; Second row: (c,d): the refractive index distribution R(x, z) and the light propagation |E(x, z)|2 
for a three-guide system with unequal channel spacing w1 =  3.2, w2 =  2.22; Third row: (e,f): the refractive index 
distribution R(x, z) and the light propagation |E(x, z)|2 for a three-guide system with unequal channel spacing 
w1 =  3.2, w2 =  1.2.
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conditions aj(0) =  δjm, m =  1, 2, 3, …  N. The time evolution operator over one modulation period U(T, 0) is given 
by a N ×  N propagator matrix, where the matrix element Uj,m is the value aj(T) obtained by solving Eq. (1) with the 
initial condition al(0) =  δjm. Given that the Floquet states are eigenstates of U(T, 0) with eigenvalues exp(− iεT), 
the quasienergies and corresponding Floquet eigenmodes are numerically computed by direct diagonalization 
of U(T, 0).

In our numerical simulations, the coupled-mode equation is numerically solved with Runge-Kutta method 
and the simulations of propagation dynamics based on the continuous wave equation are implemented with the 
use of the split-step Fourier method. In the meantime, imaginary-time evolution method is used in finding the 
fundamental mode of the isolated top waveguide which is taken as input beam for numerical demonstrations of 
PAT in the continuous model.
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