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Abstract

In this review, we highlight the current advancements in the field of triplet sensitization by

three-dimensional (3D) perovskite nanocrystals and bulk films. First introduced in 2017, 3D

perovskite sensitized upconversion (UC) is a young fast-evolving field due to the tunability

of the underlying perovskite material. By tuning the perovskite bandgap, visible-to-ultravio-

let, near-infrared-to-visible or green-to-blue UC has been realized, which depicts the broad

applicability of this material. As this research field is still in its infancy, we hope to stimulate

the field by highlighting the advantages of these perovskite nanocrystals and bulk films, as

well as shedding light onto the current drawbacks. In particular, the keywords toxicity, repro-

ducibility and stability must be addressed prior to commercialization of the technology. If

successful, photon interconversion is a means to increase the achievable efficiency of pho-

tovoltaic cells beyond its current limits by increasing the window of useable wavelengths.

1. Introduction

Wavelength interconversion applications by photon upconversion (UC) bear great potential

in a wide variety of optoelectronics ranging from photocatalysis, biological imaging, photovol-

taics (PVs), low-cost night vision or infrared sensing and communications. Photon UC for PV

applications has shown its greatest potential through the approach of triplet-triplet annihila-

tion (TTA) due to the low incident light densities required, since the energy is stored in long-

lived spin triplet states [1–4]. However, the largest drawback of these triplet states is that their

direct optical excitation is ‘spin-forbidden’ and thus, it is difficult to directly excite them. To

circumvent this issue, researchers have turned to a wide variety of triplet sensitizers ranging

from metal-organic complexes with high spin-orbit coupling [5–13], semiconductor quantum

dots [14–18] and more recently, lead halide perovskites [19–27] and other spin-mixing materi-

als such as transition metal dichalcogenides [28,29]. While each of these approaches bears

their own benefit, we will in the following focus on the emerging field of three-dimensional

(3D) perovskite-sensitized UC.

Organic- and inorganic-based lead halide perovskites have exhibited unprecedented success

in optoelectronics [30–33] such as PVs, light emitting diodes (LEDs), and more recently in

photon interconversion applications [19,23,34–37]. Their successful application in optoelec-

tronics is in large parts based on their rich photophysical properties such as long carrier
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lifetimes, high absorption cross sections, and compositional tunability of the bandgap. How-

ever, the unique advantages of lead halide perovskites, in particular, their high defect-tolerance

[38,39] and facile solution-processability may also prove to be their biggest disadvantages in

low-cost device fabrication where high repeatability and reproducibility are key to enabling

up-scaling processes.

First introduced in 2017 [19], 3D perovskite-sensitized UC is a young fast-evolving field

due to the tunability of the underlying perovskite material. For example, by tuning the perov-

skite bandgap, visible-to-ultraviolet [20,21], green-to-blue [19] or near-infrared-to-visible [22–

24] UC has been realized which depicts the uniqueness of this absorber material. In this

review, we will seek to highlight the recent advances in the field of 3D perovskite-based triplet

sensitization (Fig 1). In particular, we will review the field in respect to nanocrystals (NCs)

[19,20] and bulk film sensitization [22,23], discuss the main underlying processes for the crea-

tion of carriers and elucidate how they influence the energy transfer cascade resulting in UC.

In the last section of the review, we will speculate on further advancements in the field of

3D perovskite-sensitized UC. We noticed, that despite the recent advances in the field of 3D

perovskite UC many research questions remain unanswered which currently hinder an imple-

mentation into existing technologies and prevent a scale-up of the technology. Drawbacks in

the field can be summarized by the following key words: i) singlet fission, the reverse process

of TTA, and singlet back-transfer to the sensitizer can limit the obtained UC efficiency in

some annihilators, ii) trap states in the perovskite structure prevent an efficient energy transfer

into the UC species, iii) optimizing the UC architecture and materials design to align energy

levels of the perovskite and the annihilator for an efficient energy transfer, and iv) toxicity,

long-term stability and reproducibility. We will critically discuss these issues which could in

the future help to improve the current device UC architectures as well as could help material

researchers to explore novel perovskite compositions and dimensionalities which can be used

in UC applications.

1.1 Photon interconversion

Briefly, in photon UC higher energy photons are created from lower energy photons, effec-

tively shortening the wavelength of the light emitted upon irradiation. To comply with energy

conservation laws, photon UC relies on the combination of two or more low energy photons

to one higher energy photon. While there are multiple routes to photon UC [40–42], we will

focus on perovskite-sensitized triplet fusion (TF) UC in organic polyacenes, as this process

bears the advantage of becoming efficient at sub-solar irradiances [19,23].

Fig 1. 3D perovskite-sensitized UC. Visible-to-ultraviolet UC using CsPbX3 perovskite NCs to sensitize PPO via TTA. Reproduced with permission from Ref. [21].

Copyright 2019, The Chemical Society of Japan (CSJ). Green-to-blue UC using CsPbX3 perovskite NCs to sensitize DPA. Adapted from Ref. [19] with permission from

The Royal Society of Chemistry. Near-infrared-to-visible UC using a bulk perovskite film to sensitize rubrene/DBP. Adapted from Ref. [23], Copyright 2019 Elsevier.

https://doi.org/10.1371/journal.pone.0230299.g001
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In sensitized TTA-UC two components are required: a sensitizer which is directly optically

excited, and an annihilator, in which the triplet state is indirectly populated by a spin-allowed

Dexter-type triplet energy transfer (TET) process or by direct charge injection. In the follow-

ing, we will review the field and illuminate the use of 3D perovskite NCs and bulk films as sen-

sitizers and discuss the different sensitization routes of the annihilator.

2. Review of the field

2.1 3D perovskite NCs-sensitized UC

Fig 2A shows a schematic of the perovskite NCs-sensitized UC process via TTA. Solution-

based 3D perovskite NCs-sensitized UC is based on TET from the perovskite NCs to a surface-

bound transmitter ligand. A second TET step from the transmitter ligand to freely diffusing

annihilator molecules populates the triplet state and enables the TTA-UC process. The first

demonstration of this process using 3D perovskite NCs-sensitized UC was reported in 2017,

where Kimizuka and co-workers [19] employed quantum-confined 3D CsPbX3 (X = Br/I)

perovskite NCs to sensitize 9,10-diphenylanthracene (DPA), achieving green-to-blue UC with

a low efficiency threshold Ith = 25 mW/cm2 (Fig 2B). Wu and co-workers investigated the trip-

let sensitization mechanism of 1-pyrenecarboxylic acid (PCA) by varying the size of CsPbBr3

perovskite NCs finding a strong correlation between the NC size and the TET rate [26].

Concurrent studies of both groups resulted in the first demonstration of efficient visible-to-

ultraviolet UC [20,21]. 3D perovskite NCs (CsPb(Cl/Br)3 and CsPbBr3) were used by both

groups to sensitize triplet states in 2,5-diphenyloxazole (PPO) using a transmitter ligand based

on 1-naphthalene carboxylic acid (NCA). Whereas Kimizuka and co-workers tuned the NC

composition, Wu and co-workers studied the influence of NCs size on the UC properties. A

similar efficiency threshold for the UC emission was calculated by both groups of 4.7 W/cm2

and 1.9 W/cm2 for the CsPb(Cl/Br)3 and CsPbBr3 NC systems, respectively (compare Fig 2C).

A record visible-to-ultraviolet UC efficiency above 10% was reported for these 3D perovskite

NCs systems [20].

In 2020, Castellano/Wu and co-workers [43] investigated the transfer mechanism across

the inorganic perovskite NC/organic molecule interface. They used NCA and 5-tetracene car-

boxylic acid (TCA) as triplet acceptors to investigate the TET mechanism. As previously

reported, naphthalene triplets can be populated via direct bound TET from CsPbBr3 NCs.[25]

Fig 2. a) Schematic of TTA-UC using 3D perovskite NCs. b) Power-dependence of the upconverted emission of DPA/CsPbX3 (X = Br/I) NCs achieving green-to-blue

UC with a low efficiency threshold of Ith = 25 mW/cm2. Adapted from Ref. [19] with permission from The Royal Society of Chemistry. c) Power-dependence of the UC

emission using PPO/CsPbBr3 NCs exhibiting an efficiency threshold of Ith = 1.9 W/cm2 for visible-to-ultraviolet UC. An UC efficiency above 10% was reported.

Adapted with permission from Ref. [20]. Copyright 2019 American Chemical Society. d) TET models via CT-mediated or ‘direct’/virtual CT-mediated TET in NCs.

Adapted with permission from Macmillan Publishers Ltd.: Nature Communications from Ref. [43], Copyright 2020.

https://doi.org/10.1371/journal.pone.0230299.g002
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On the other hand, the band alignment in the case of TCA would allow for either a direct TET

mechanism, or a hole transfer to a charge transfer state (CT) and subsequent electron transfer

to populate the triplet state. Due to the fact that hole transfer outcompetes both exciton recom-

bination and hole trapping, the CT-mediated TET is found to be the preferred sensitization

pathway in the case of exothermic hole transfer. The two TET mechanisms are summarized in

Fig 2D.

2.2 3D perovskite bulk film-sensitized UC

3D bulk perovskite films were first introduced as light-harvesting antennas to funnel energy

into PbS quantum dots (QDs), which acted as spin-mixers to sensitize the triplet state of

rubrene, allowing for UC to occur [27]. This approach was used to increase the limited absorp-

tion possible in QD-based solid-state devices [17,18]. In this study, methylammonium (MA)

tin triiodide (MASnI3) was used in a trilayer device structure: MASnI3/PbS/rubrene.

Encouraged by the sub-bandgap onset of electroluminescence of rubrene-based organic

light-emitting diodes (OLEDs), lead halide perovskite thin films based on methylammonium

formamidinium (FA) lead triiodide (MAFA) were then investigated by our group as direct

rubrene triplet sensitizers due to their favorable band alignment for direct injection into the

rubrene triplet state, foregoing the quantum dot layer as a spin mixer [22–24,44]. This novel

bilayer architecture bears three-fold advantages over previous approaches: a fully solution-pro-

cessed device is possible for the first time, no surface-bound transmitter ligands are required

and triplet generation occurs through free carrier injection. This carrier injection pathway

removes the requirement of excitonic spin-mixing, and rather allows for a very high electron

transfer yield, as strong spin-orbit coupling in the perovskite film will scramble the electron

spin, enabling the electron to adopt the proper spin required for triplet generation.

Triplet-sensitization by free carrier injection is an emerging field, and as the field matures,

more unanswered questions are solved, shedding light on the mechanism of TTA-UC in these

devices [45]. Thus far, it has been established that the triplets stem from non-geminate charge

carriers [23], and UC occurs via TTA (Fig 3A) [22].

Perovskite thickness-dependent studies show the underlying perovskite recombination

dynamics directly dictate the UC process and trap filling and triplet sensitization are competing

processes (Fig 3B). Sub-solar efficiency thresholds have been observed [23], potentially enabling

real-world applications of solid-state UC (Fig 3C) in PVs. Two rates of triplet generation have

been observed, which can be traced back to slow diffusion-mediated TTA far from the interface

and rapid TTA close to the perovskite/rubrene interface, leading to a triplet-population depen-

dent UC efficiency [24]. Lastly, an unusual effect occurs in these UC devices. Upon initial illu-

mination, there is a rapid ‘photobleach’ of the upconverted light intensity [24], followed by a

plateau of the UC efficiency, determined by the underlying perovskite recombination dynamics.

Recent results have been able to attribute this effect to a space charge region created in the dark

due to band bending at the interface (Fig 3D). This space charge region enables a high triplet

generation upon initial illumination which diminishes until a new steady-state has been

achieved [44]. Careful band engineering may be able to yield devices which can readily take

advantage of this space charge region, boosting the overall performance.

The main advantage of employing bulk perovskite sensitizers over quantum-confined NC

approaches is that the sensitization mechanism relies on free carrier injection. Charge transfer

and diffusion are known to be faster than excitonic processes [46–48], allowing the triplet sen-

sitization to outcompete rapid singlet backtransfer [17,49]. This enables the implementation of

more optically dense sensitizers than in previously reported PbS NC-based solid-state devices,

where the near-infrared (NIR) absorption was limited to<1%.
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3. Outlook

3.1 Current shortcomings

As common in all immature technologies, there are still a vast number of issues in 3D perov-

skite-sensitized UC that must be addressed prior to commercialization. Most importantly,

Fig 3. a) Schematic of photon UC using perovskite bulk films. b), c) Power dependence of the underlying perovskite PL (b) and UC emission (c) for a

100 nm thick perovskite film with a rubrene/DBP layer as upconverted on top. Adapted from Ref. [23], Copyright 2019 Elsevier. d) Band alignment

diagram of a perovskite—rubrene interface. Adapted with permission from Ref. [44]. Copyright 2020, American Chemical Society.

https://doi.org/10.1371/journal.pone.0230299.g003
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issues of reproducibility, device inhomogeneity, long-term device stability and toxicity are cru-

cial to the future of perovskite-sensitized TTA-UC (Fig 4).

3.1.1 Reproducibility, inhomogeneities and stability. The properties of solution-fabri-

cated perovskite NCs are highly dependent on the fabrication conditions. Slight variations in

the precursor concentration or injection temperature can influence the particle size and shape

thus, result in changes in the optoelectronic properties of 3D perovskite NCs. The ligand bind-

ing strength and ligand binding groups chosen, as well as the solvent can influence the under-

lying perovskite surface trap density. Work by Wu and co-workers has shown that quantum

confinement in lead halide perovskite NCs enables the triplet sensitization process [26]. As a

Fig 4. Overview of the current shortcomings of 3D perovskite-sensitized UC.

https://doi.org/10.1371/journal.pone.0230299.g004
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result, slight variations in particle size and energetics of the NCs can greatly influence the

energy transfer to the triplet state. Furthermore, due to the bulky ligands required to stabilize

the particles and passivate surface trap states in such NCs, tightly bound transmitter ligands

are required to facilitate an efficient triplet transfer to the surrounding triplet acceptors.

Contrary, in bulk perovskite sensitization schemes, there is no need for stabilizing ligands.

The film quality depends on the precursor concentration and stoichiometry, fabrication tech-

nique as well as the annealing time and temperature. While this inherent issue is able to be mit-

igated by careful fabrication practices, slight changes in the ambient environment, e.g.

pressure, moisture or temperature are much more difficult to control precisely. As a result,

perovskite films with slightly different trap densities are created with each device fabrication.

As of now, successful TTA-UC schemes have been reported in solution and as solid-state

devices for perovskite NCs and bulk perovskite films, respectively. In solution-based

approaches using perovskite NCs, one major drawback is related to the required ligands.

These ligands are only weakly adsorbed to the surface, and an excess is needed in solution to

maintain equilibrium conditions. Upon purification, ligands are commonly removed exposing

surface defects which in turn reduce the PL quantum yield (QY) [50]. Recently, a huge

research effort was centered to enhance the stability of these perovskite NCs. Approaches are

based on surface manipulation which would allow the use of perovskite NCs without the need

for passivating shells [51–54] or zwitterionic and bifunctional ligands [55,56]. Further, ‘bulk’

films made of NCs would be desirable for the use in solid-state applications. However, using

approaches of shorter ligand moieties to form stable inks [54] in addition to bridging the NCs

electronically [57,58] would be prerequisite.

For solid-state device fabrication, usually the bulk perovskite film as well as the upconvert-

ing species are solution-processed. However, this additional second solution-processed step to

deposit the organic upconverter introduces additional trap states in the perovskite film, which

is likely due to a slight dissolution of the topmost perovskite layer [44]. Although the addition

of organic molecules is able to passivate surface trap states by non-covalent interactions, the

exact interactions between the organic and the perovskite cannot be controlled. To address

this issue, it will be beneficial to investigate the difference in the UC properties of the current

generation of solution-processed devices, post-fabrication annealed devices, as well as devices

in which the organic layer is thermally evaporated as in previous QD-based devices [17,59].

This may shed additional light on the role of surface trap states, as well as give insight on the

importance of the packing of the organic layer, as this could be tuned by thermal annealing.

Additionally, one of the main unknowns in such solid-state UC devices is related to perov-

skite film inhomogeneities which are introduced during the fabrication process [60,61] or by

the migration of ions. Upon illumination, the ions in this soft material can migrate, changing

the local properties. In particular, this effect is known to change the bandgap of mixed-halide

perovskites, which can greatly influence the local band structure and bandgap. In addition,

time- and intensity-dependent trap filling and resulting ‘self-healing’ effects make it difficult to

draw direct conclusions with regards to the UC efficiency. We have shown in the past that the

UC efficiency is dependent on both the power of illumination and the time after illumination

the measurement is taken [24]. As a result, a detailed measurement protocol, similar to the

standardized photovoltaic power conversion efficiency (PCE) measurement is required. This

effect may also indicate that the UC devices would benefit from long-term illumination, as

would occur under daily use in a photovoltaic cell.

3.1.2 Long-term stability. (Long-term) stability is an inherent issue of lead halide perov-

skites for both NCs and bulk films. Here, instability issues can be divided into the following

sub-groups: hygroscopicity, thermal instability, and ion migration [62,63]. Under ambient

conditions, perovskites decompose into PbI2 and the organic counterparts, due to their
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sensitivity to oxygen and moisture. To address this, perovskites are commonly encapsulated

under air-free conditions, e.g. in a glovebox. However, even encapsulated, solid-state UC

devices slowly degrade over time, which in turn can be correlated to a loss in efficiency.

Approaches to stabilize the perovskite film structure are related to a substitution or doping of

A-, B-, or X-site ions [64–68], or engineering of defects, interface and microstructure [69–71].

Similarly, solution-based perovskite NCs are inherently unstable, in particular, redder

iodide-exchanged perovskite NCs readily degrade into non-emissive species. To address this NC

degradation, an inorganic metal oxide shell [72] can be included, or improved ligands as shown

by Kovalenko and co-workers [56,73]. Further, engineering of crystal symmetry and dimensional-

ity could improve the long-term stability by forming ‘quasi-2D’ perovskites [74–76].

Air-free conditions are also crucial to the UC process, as the desired triplet states are rapidly

quenched by oxygen (3O2), due to the diradical nature of the ground state of the oxygen molecule.

T1 þ
3O2 ! S0 þ

1O2
�

The triplet state T1 is quenched to form the singlet ground state S0, while the triplet oxygen 3O2

is excited to its singlet state 1O2
� [77,78]. Long-term stability measurements have been performed

for perovskites, yet are still lacking in the field of perovskite-sensitized UC. In contrast to previ-

ously fabricated PbS QD-based devices, which degraded rapidly [17,79], the current generation of

perovskite-sensitized are stable for up to several months. Future efforts will be directed at under-

standing the changes in the device properties over time, both with respect to the perovskite and

organic semiconductor degradation.

3.1.3 Toxicity. One of the largest issues facing the implementation of lead halide perov-

skites into industrial relevant devices is the water-solubility and toxicity of the materials used.

While there is a large push in perovskite-based photovoltaics to become lead-free, currently

there have only been reports of lead-based perovskites in UC applications. This is in great part

due to the inherent instability of e.g. tin-based halide perovskites [80–82], but more impor-

tantly due to the absolute band energies of the materials. Lead-based perovskites have the ‘cor-

rect’ band alignment for exothermic hole transfer, as well as slightly exothermic electron

transfer. The desired low bandgap tin-based perovskites have shallower valence and conduc-

tion bands [83], which disallow free carrier sensitization, and would only enable triplet sensiti-

zation by bound excitons. However, excitons rapidly dissociate in these materials, therefore

this pathway is not expected to be efficient. Further investigation into Ruddlesden-Popper

type perovskite-inspired materials [84–86] and less toxic double perovskites, combined with

machine learning approaches [87–90] to find suitable materials has the potential to break the

field wide open. In sensitized UC, not only the perovskite can be tuned, rather, we can also

tune the energetics of the upconverting species. Electron withdrawing or electron donating

side-groups on the polyacene backbone can vary the highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO) alignment, thus, allowing us to

create a vast library of upconverting molecules which can be tailored to the specific perovskite

of interest.

3.2 Future advancements

As mentioned previously, 3D perovskite-sensitized UC is an immature field. We hope to stim-

ulate the field by highlighting both the advancements and current drawbacks. One of the great-

est future advancements in perovskite-sensitized UC would be to increase the gains achievable

by UC and shift the wavelengths to higher or lower energies. Currently, we are able to upcon-

vert ~800 nm light to ~600 nm using lead iodide bulk perovskites films. However, in photovol-

taic or imaging applications, it is desirable to upconvert light beyond the silicon bandgap of 1.1
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eV. We have been able to show efficiency thresholds of less than 8 mW/cm2 at 780 nm,

enabling the inclusion of UC into wider bandgap photovoltaics such as bromide-based perov-

skites under solar fluxes. The broad-band absorption of the perovskites will enable the capture

of the 2.3–1.55 eV region of the solar spectrum. However, this broad-band absorption also

poses the greatest drawback of these UC devices: after successful TTA in the organic layer,

emission and reabsorption compete. Therefore, the perovskite film thickness must be closely

tailored to the desired application.

As with all immature technologies, there is room to grow, and the current benchmark of

the UC efficiency of ~3% for bulk perovskite sensitization is likely to be overcome soon by

innovative engineering approaches.

Perovskite NCs bear their greatest potential in high-energy UC approaches, e.g. for catalytic

applications or stable blue LEDs. By using tightly bound transmitter ligands, and state-of-the-

art zwitterionic ligands to reduce the surface trap states further advancements are near. Dimer-

ized annihilators can further boost the UC efficiency by increasing the probability of TTA

within the triplet lifetime [91,92]. As the emission wavelength of perovskite NCs can be tuned

up to ~3 eV, UC deep into the UV is feasible. Most current NC-based UC has been reported

from green-to-blue, this is likely due to readily available light sources, as well as facile synthesis

of CsPbBr3 NCs. However, perovskite NCs are readily tunable into the NIR, by halide

exchange. Reports of high QY MAPbI3 and FAPbI3 could easily enable red-to-blue UC with

minimal energy losses due to energetic offsets of the bandgap and the triplet energy.

To reduce toxicity, it will be beneficial to create a vast library of perovskite band energy lev-

els and cross correlate these with the HOMO and LUMO levels of possible annihilators by a

combination of theoretical and machine learning approaches. However, drawbacks of toxicity

can readily be addressed by careful encapsulation measures, which are required to maintain

the air-free environment desirable for efficient UC.

4. Conclusions

3D perovskite-sensitized UC bears a promising new approach to wavelength interconversion.

While an immature field at present, the possibilities in applications are vast. Over the course of

the last year, there have been many advances in 3D perovskite-based UC. For the first time, an

efficiency threshold of under 10 mW/cm2 has been reported, coupled with an achievable film

thickness which can absorb up to 60% of the incident light,[23] this paves the path towards

real world applications.

Due to the wide tunability of halide perovskites, wavelength interconversion applications

from visible-to-ultraviolet to infrared-to-visible can be envisioned. Charge carrier-based triplet

sensitization in such bulk perovskite-based devices foregoes the previous requirement of effi-

cient spin mixers, which may be able to boost the overall UC efficiency. Enhancements in the

stability of both solution-based NC sensitized UC, and bulk-sensitized UC pave a path towards

industrial applications of the technology.
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