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A B S T R A C T

Purpose: We aimed to develop a machine learning-based prediction model for severe radiation pneumonitis (RP)
by integrating relevant clinicopathological and genetic factors, considering the associations of clinical, dosi-
metric parameters, and single nucleotide polymorphisms (SNPs) of genes in the TGF-β1 pathway with RP.
Methods: We prospectively enrolled 59 primary lung cancer patients undergoing radiotherapy and analyzed
pretreatment blood samples, clinicopathological/dosimetric variables, and 11 functional SNPs in TGFβ pathway
genes. Using the Synthetic Minority Over-sampling Technique (SMOTE) and nested cross-validation, we devel-
oped a machine learning-based prediction model for severe RP (grade ≥ 2). Feature selection was conducted
using four methods (filtered-based, wrapper-based, embedded, and logistic regression), and performance was
evaluated using three machine learning models.
Results: Severe RP occurred in 20.3 % of patients with a median follow-up of 39.7 months. In our final model, age
(>66 years), smoking history, PTV volume (>300 cc), and AG/GG genotype in BMP2 rs1979855 were identified
as the most significant predictors. Additionally, incorporating genomic variables for prediction alongside clini-
copathological variables significantly improved the AUC compared to using clinicopathological variables alone
(0.822 vs. 0.741, p = 0.029). The same feature set was selected using both the wrapper-based method and lo-
gistic model, demonstrating the best performance across all machine learning models (AUC: XGBoost 0.815, RF
0.805, SVM 0.712, respectively).
Conclusion: We successfully developed a machine learning-based prediction model for RP, demonstrating age,
smoking history, PTV volume, and BMP2 rs1979855 genotype as significant predictors. Notably, incorporating
SNP data significantly enhanced predictive performance compared to clinicopathological factors alone.

Introduction

Thoracic radiotherapy (RT) has long been the standard treatment for
unresectable or locally advanced non-small cell lung cancer (NSCLC)
and limited-stage small cell lung cancer (SCLC). However, the lungs are
particularly sensitive to radiation, making radiation pneumonitis (RP) a
significant side effect with an incidence ranging from 0 to 30 %.
Therefore, predicting RP on an individual basis could optimize

therapeutic strategies and minimize side effects. Both conventional
statistical modeling and recent machine learning (ML) approaches have
advanced the prediction of clinical outcomes like RP [1]. ML is effective
in recognizing patterns within clinical data to predict disease progres-
sion and treatment side effects, such as RP, radiation-induced lympho-
penia, and mucositis. This demonstrates its broad applicability in RT-
related research [2–5].

Despite advances in RT techniques, the occurrence of RP remains a
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major clinical challenge. Severe RP not only impacts the quality of life
but can also be life-threatening, emphasizing the need for accurate
prediction models to mitigate risks. Traditional models often rely on
clinical and dosimetric factors such as mean lung dose (MLD), lung
volume exposed to specific dose thresholds, performance status, smok-
ing history, and concurrent chemotherapy [6–10]. However, these
models have shown limited predictive power, which underscores the
necessity to explore additional, more predictive factors.

The interpatient variability in RP susceptibility, largely attributable
to differences in radiosensitivity influenced by genetic variations, un-
derscores this necessity. Studies suggest that transforming growth factor
β1 (TGF-β1), a cytokine involved in inflammation, plays a crucial role in
radiation-induced lung injury, including RP [11–18]. Genetic variables
such as single nucleotide polymorphisms (SNPs) in TGF-β1 or BMP genes
are significantly associated with changes in pulmonary function and
treatment outcomes in patients with lung cancer [19–22]. We believe
that recent ML approaches are optimal for developing the most accurate
model by identifying the most significant genetic biomarkers within
complex clinical data, considering their relationship with clinical fac-
tors, and enhancing predictive accuracy.

In this study, we aimed to develop an ML-based prediction model for
severe RP by integrating relevant clinicopathological and genetic fac-
tors. Specifically, we sought to assess the utility of genomic variables in
enhancing the predictive performance for severe RP, compare the pre-
dictive performance of dosimetric and clinical variables with and
without the inclusion of genomic variables, and evaluate several ML
predictive models and feature selection methods to identify the optimal
combination for accurate RP prediction. This study has the potential to
advance personalized medicine in RT. By incorporating genetic factors
into predictive models, we can move towards more individualized
treatment plans that minimize the risk of severe side effects, thereby
improving the overall quality of care for lung cancer patients undergo-
ing thoracic RT.

Patients and methods

Patient population

This prospective study was approved by the Institutional Review
Board of our institute (4-2017-0382). Patient eligibility criteria
included: histologically confirmed lung cancer; absence of distant
metastasis; plan to receive definitive or preoperative RT; availability for
pretreatment blood sampling and regular follow-up visits; and no pre-
vious history of thoracic RT. Patients who received stereotactic body
radiation therapy were excluded. Patients with a history of previous
thoracic RT or stereotactic body radiation therapy were excluded to
form a homogeneous patient cohort aligned with our study objectives.
This exclusion was due to the potential for different radiobiological
impacts on the lungs and limitations of applying the same LQ model
compared to conventional fractionation RT [23,24]. In total, 59 patients
treated with thoracic RT between 2017 and 2019 fulfilled these criteria
and were prospectively enrolled in this study. Informed consent ob-
tained from patients at the time of enrollment. Pretreatment blood
samples for genotyping were collected for each patient. Data on clinical
variables, including age, sex, histology, smoking history, stage, results of
pulmonary function tests (forced expiratory volume in one second
(FEV1) to forced vital capacity (FVC) ratio (FEV1/FVC) and diffusing
capacity of the lung for carbon monoxide (DLCO)), and dosimetric data
(total dose, MLD, median lung volume receiving at least 20 Gy (V20),
median lung volume receiving at least 5 Gy (V5), and volume of the
planning target volume (PTV)), were also collected.

The primary endpoint was the development of ‘severe RP’, defined as
grade 2 or higher RP. This was assessed and scored using the Common
Terminology Criteria for Adverse Events (CTCAE) version 5.0. RP
monitoring involved a combination of clinical examinations, symptom
evaluations, chest X-rays, and follow-up chest CT scans conducted at

intervals of 1, 3, and 6 months after RT, as required, and every 6–12
months thereafter.

Genotyping methods

For genotyping, we selected 11 functional SNPs across three genes
(TGF-β1, BMP2, and BMP4) that are critical for the TGFβ pathways. The
SNPs genotyped within the TGF-β1 gene included rs1800469 C>T,
rs1800471 G>C, rs1982073 T>C, and rs11466345 A>G. The genotyped
SNPs in the BMP2 gene were rs235768 A>T, rs3178250 T>C,
rs1979855 A>G, and rs170986 C>A. The genotyped SNPs within the
BMP4 gene were rs17563 T>C, rs4898820 T>G, and rs762642 T>G.
Whole blood was collected from each patient before the start of RT, and
genomic DNA was subsequently extracted from the fresh blood samples.
A detailed description of the genomic DNA extraction method can be
found in Supplementary text and Supplementary Table 1.

Genomic variables in severe radiation pneumonitis prediction

We constructed two logistic regression models, one using only clin-
ical and dosimetric variables (“clinical model”) and another incorpo-
rating genomic variables (“combined model”) to investigate the
importance of genomic variables in predicting severe RP. For both
models, we selected variables highly correlated to severe RP, imple-
menting the best subset selection algorithm with L0 and L2 regulariza-
tions [25–27]. We compared the predictive performance of these models
for severe RP using a 5-fold cross-validation. The predictive perfor-
mance of the models was assessed using the area under the receiver
operating characteristic curve (ROC-AUC), and statistical differences
between the two models for each fold were determined using paired t-
tests. A value of p < 0.05 was considered statistically significant. All
statistical analyses were performed using R software (version 4.2.0;
https://www.r-project.org; R Foundation for Statistical Computing,
Vienna) and SPSS 25.0 statistical software (SPSS Inc, Chicago, IL, USA).

Machine learning-based severe radiation pneumonitis prediction: SMOTE
and nested cross-validation

Data regarding disease occurrence, like ours, often exhibit significant
class imbalances, reflecting the nature that patients with the disease
typically outnumber those without. To address this, we employed the
Synthetic Minority Over-sampling Technique (SMOTE) [28] to augment
the number of instances in the minority class, thereby balancing the
dataset and creating a more equitable training environment for our
models.

We employed Nested Cross-Validation (Nested CV) and SMOTE
simultaneously to mitigate data leakage and reduce bias from the
imbalanced dataset. Nested CV, a method for accurately evaluating a
model’s generalization performance with optimized hyperparameters,
involves dividing the entire dataset into outer training and test sets. This
division occurs in the outer loop, with further training/evaluation or
cross-validation in the inner loop, treating the outer training set as the
complete dataset. In our Nested CV approach, we ensured a consistent
proportion of patients with non-severe RP to severe RP by applying
stratified K-fold in the outer loop. SMOTE was then exclusively used on
the training set of the outer loop, adjusting the number of patients with
severe RP and non-severe RP to prevent data leakage caused by SMOTE
[Fig. 1].

Machine learning-based severe radiation pneumonitis Prediction: Feature
selection and performance evaluation

For the SMOTE-augmented outer training set, we identified relevant
feature sets from the patient and SNP data using four feature selection
methods: filter-based, wrapper-based, embedded, and multivariate lo-
gistic regression. In the filter-based approach, we iteratively removed
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the feature with the highest variance inflation factor (VIF) continuing
until all features had a VIF below a predefined threshold (traditionally
10, however, we opted for 5 to achieve stricter criteria) to reduce
multicollinearity among features. For both the wrapper-based and
embedded methods, we utilized a LASSO-based logistic regression
model [29], tuned on the outer loop training set via Grid Search with
Cross-Validation (GridsearchCV, sklearn.model_selection.GridSearchCV).
In the wrapper-based method [30], Recursive Feature Elimination with
Cross-Validation (RFECV, sklearn.feature_selection.RFECV) was used to
iteratively discard features, selecting the optimal set, while the
embedded method employed the SelectFromModel (sklearn.featur-
e_selection.SelectFromModel) function to choose features with above-
average importance. This process was repeated across each fold of the
Nested CV, selecting features consistently recognized as relevant more
frequently than the average across all folds for the final feature sets for
each method.

Subsequently, we assessed each feature set with three ML models:
Extreme Gradient Boosting (XGBoost, xgboost.sklearn.XGBClassifier)
[31], Random Forest (RF, sklearn.ensemble.RandomForestClassifier) [32],
and Support Vector Machine (SVM, sklearn.svm.SVC) [33], utilizing
another round of Nested CV for both hyperparameter optimization and
performance evaluation. This evaluation was repeated five times, each
with a different random seed to ensure a thorough assessment. Through
this repetition, the feature set and model with the highest performance
among nine combinations of three types of feature sets and models, were
identified [Fig. 1]. Finally, we verified our identified feature set using
Kaplan–Meier analysis and the log-rank test to assess the impact of
different prognostic factors in our feature set on the cumulative proba-
bility of severe RP.

The Nested CV, applied for both feature selection and performance
evaluation, was organized with four folds in the inner loop and three
folds in the outer loop. All cross-validation and hyperparameter tuning
were aimed at maximizing the AUC score. All ML-based analysis was
performed using Scikit-learn package (version 1.3.0) [34] on Python
3.7.

Results

Patient characteristics and incidence of radiation pneumonitis

Table 1 presents the characteristics of the 59 patients; 43 men and 16
women, with a median age of 66 years (range, 29–82). Twenty-three
patients received a median 63.0 (range, 55.5–70.9) Gy of definitive RT
(with concurrent chemotherapy except one patient) and 36 patients
received a median 46.1 (range, 40.0–66.0) Gy of preoperative RT (all

with concurrent chemotherapy). Regarding the concurrent chemo-
therapy regimen, all patients with NSCLC received chemotherapy con-
sisting of a paclitaxel and carboplatin regimen, while all with SCLC
received chemotherapy consisting of a cisplatin and etoposide regimen.
Supplementary Fig. 1 illustrates the genotype distribution within the
SNPs of the TGF-β1, BMP2, and BMP4 genes. SNPs rs1800471 of TGF-β1
or rs170986 of BMP2 were not detected in any patient.

The overall incidence of RP was 47.5 % (28 patients) at a median
follow-up of 39.7 (range, 2.3–77.2) months. Severe RP occurred in 12
(20.3 %) patients at a median of 2.8 months after RT. Any grade and
severe RP occurred in 78.3 % and 34.8 % patients who received defin-
itive RT, respectively. Any grade RP and severe RP occurred in 27.8 %
and 11.1 % patients who received preoperative RT, respectively. No
significant differences were observed in clinicopathological factors,
dosimetric parameters, or frequency in the distribution of genotypes
when patients were divided according to the occurrence of severe RP
[Table 1]. Also, there were no significant differences based on whether
concurrent chemotherapy was administered or based on the chemo-
therapy regimen (p = 0.610 and 0.668, respectively). The correlation
plot examining clinical and dosimetric variables, and genomic variables
in relation to severe RP is illustrated in Supplementary Fig. 2.

Genomic variables in severe radiation pneumonitis prediction

In our analysis, age (>66 years), smoking history, and PTV volume
(≥300 cc) were selected to be the best variable subset in the clinical
model, and age (>66 years), smoking history, PTV volume (≥300 cc),
and BMP2 rs1979855 (AG/GG genotype) were selected to be the best
variable subset in the combined model. As shown in Table 2, the com-
bined model yielded a significantly (p = 0.029) higher performance in
severe RP prediction (0.822 ± 0.158) than the clinical model (0.741 ±

0.121).

Comparison of feature selection models and performance using machine
learning

The features selected by each method are summarized in Table 3. For
filter-based, wrapper-based, and embedded feature selection methods,
the average selection frequency of all features across three outer splits
was 2.6, 1.3, and 2.2, respectively. Thus, variables selected in all three
outer splits by the filter-based method, at least two times by the
wrapper-based method, and in all three instances by the embedded
method were selected to be a feature set of each method. Among these
feature sets, the wrapper-based feature set (age (>66 years), smoking
history, PTV volume (≥300 cc), and BMP2 rs1979855) was identical to

Fig. 1. Overall flow of machine learning-based severe radiation pneumonitis prediction.
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the subsets identified by logistic regression, and also included in the
embedded-based feature set, as shown in Table 3.

In terms of performance evaluation, the results of five independent
iterations of the entire Nested CV for each feature set and model are
shown in Fig. 2. Overall, the wrapper-based feature set (identical to the
logistic-based subset) exhibited the best performance across all feature
sets (AUC 0.815, 0.805, 0.712 with XGB, RF, SVM model, respectively),
followed by the embedded, and filtered feature sets. Among the models
tested with the wrapper-based feature set, the XGBoost model demon-
strated the highest performance (AUC 0.815 ± 0.078, 95 % confidence
interval (CI) 0.772–0.858), with the RF model showing comparable re-
sults (AUC 0.805 ± 0.083, 95 % CI 0.758–0.851). However, the SVM
model exhibited significant variability in performance, indicating less
consistency compared to the other models (AUC 0.712 ± 0.244, 95 % CI
0.577–0.847).

The result of the Kaplan–Meier analysis and log-rank test for cumu-
lative probability of severe RP according to presence of each of the four
variables (age, smoking history, PTV volume, and BMP2 rs1979855) in
the wrapper-based feature set and logistic-based subset are shown in
Fig. 3. Age, smoking history, PTV volume, and BMP2 rs1979855 geno-
type showed p-values of 0.062, 0.021, 0.031, 0.036, respectively.

Discussion

In this study, we assessed whether genomic variables enhance the
performance of RP prediction considering clinical, dosimetric and
genomic variables. We found that genetic variants within the TGFβ
signaling pathways significantly improve the predictive accuracy for
radiation-induced pulmonary toxicities beyond conventional clinical
and dosimetric factors. Specifically, our ML model identified that pa-
tients>66 years old, with a history of smoking, large PTV, and the BMP2
rs1979855 genetic variation, were notably more susceptible to severe
RP following thoracic RT. To the best of our knowledge, this is the first
study to confirm the crucial role of genomic variables in predicting se-
vere RP using ML techniques. Notably, the wrapper-based method
consistently yielded the highest performance across all ML algorithms,
selecting features that closely aligned with those highlighted in the lo-
gistic regression analysis. Furthermore, these key features individually
exhibited significant associations with severe RP in the log-rank tests for
cumulative probability. This highlights not only the efficacy of the se-
lection process but also the indispensable contribution of these variables
to the model’s predictive performance.

RP is characterized by inflammatory tissue damage, repair processes,
and pulmonary fibrosis involving alveolar cells, endothelium, and fi-
broblasts, followed by inflammation, cell proliferation, and extracellular
matrix remodeling. Studies have assessed plasma TGF-β1 levels as a
potential predictor of radiation therapy toxicities, particularly focusing
on RP [17,18,35]. In pursuit of establishing a more reliable correlation,
some researchers investigated TGF-β1 genotypes, particularly TGF-β1
polymorphisms, and their association with normal tissue toxicities.
Notably, polymorphisms such as T869C and G915C in TGF-β1 result in

Table 1
Patients’ characteristics.

Variables Total Occurrence of severe radiation
pneumonitis

(n = 59) Yes (n = 12) No (n = 47)

Age (years)
>66 29 (49.2 %) 9 (75.0 %) 20 (42.6 %)
≤66 30 (50.8 %) 3 (25.0 %) 27 (57.4 %)

Sex
Male 43 (72.9 %) 11 (91.7 %) 32 (68.1 %)
Female 16 (27.1 %) 1 (8.3 %) 15 (31.9 %)

Pathology
Adenoca 37 (62.7 %) 6 (50.0 %) 31 (66.0 %)
SCCa 19 (32.2 %) 6 (50.0 %) 13 (27.7 %)
SCLC 2 (3.4 %) 0 (0.0 %) 2 (4.3 %)
Others 1 (1.7 %) 0 (0.0 %) 1 (2.1 %)

T stage
T1 9 (15.3 %) 1 (8.3 %) 8 (17.0 %)
T2 15 (25.4 %) 3 (25.0 %) 12 (25.5 %)
T3 24 (40.7 %) 7 (58.3 %) 17 (36.2 %)
T4 11 (18.6 %) 1 (8.3 %) 10 (21.3 %)

N stage
N0 4 (6.8 %) 2 (16.7 %) 2 (4.3 %)
N1 8 (13.6 %) 0 (0.0 %) 8 (17.0 %)
N2 32 (54.2 %) 6 (50.0 %) 26 (55.3 %)
N3 15 (25.4 %) 4 (33.3 %) 11 (23.4 %)

RT total dose (cGy)* 5,440.34 ±

884.84
5,804.17 ±

965.05
5,347.45 ±

849.20
MLD (Gy)* 10.75 ± 4.14 11.98 ± 3.91 10.44 ± 4.18
V20
<30 % 55 (93.2 %) 10 (83.3 %) 45 (95.7 %)
≥30 % 4 (6.8 %) 2 (16.7 %) 2 (4.3 %)

V5
<60 % 48 (81.4 %) 8 (66.7 %) 40 (85.1 %)
≥60 % 11 (18.6 %) 4 (33.3 %) 7 (14.9 %)

FEV1/FVC
<0.7 46 (78.0 %) 9 (75.0 %) 37 (78.7 %)
≥0.7 13 (22.0 %) 3 (25.0 %) 10 (21.3 %)

DLCO
<0.8 48 (81.4 %) 11 (91.7 %) 37 (78.7 %)
≥0.8 11 (18.6 %) 1 (8.3 %) 10 (21.3 %)

Smoking history
No 33 (55.9 %) 3 (25.0 %) 30 (63.8 %)
Yes 26 (44.1 %) 9 (75.0 %) 17 (36.2 %)

PTV volume (cc)
<300 30 (50.8 %) 3 (25.0 %) 27 (57.4 %)
≥300 29 (49.2 %) 9 (75.0 %) 20 (42.6 %)

Concurrent
chemotherapy
Paclitaxel/
Carboplatin

56 (94.9 %) 12 (100.0 %) 44 (93.6 %)

Cisplatin/Etoposide 2 (3.4 %) 0 (0.0 %) 2 (4.3 %)
No 1 (1.7 %) 0 (0.0 %) 1 (2.1 %)

TGF- β1 rs1800469
CC 21 (35.6 %) 3 (25.0 %) 18 (38.3 %)
CT/TT 38 (64.4 %) 9 (75.0 %) 29 (61.7 %)

TGF-β1 rs1982073
TT 20 (33.9 %) 3 (25.0 %) 17 (36.2 %)
CT/CC 39 (66.1 %) 9 (75.0 %) 30 (63.8 %)

TGF-β1 rs11466345
AA 33 (55.9 %) 5 (41.7 %) 28 (59.6 %)
AG/GG 26 (44.1 %) 7 (58.3 %) 19 (40.4 %)

BMP2 rs235768
AA 1 (1.7 %) 0 (0.0 %) 1 (2.1 %)
AA/TT 58 (98.3 %) 12 (100.0 %) 46 (97.9 %)

BMP2 rs3178250
TT 14 (23.7 %) 2 (16.7 %) 12 (25.5 %)
CT/CC 45 (76.3 %) 10 (83.3 %) 35 (74.5 %)

BMP2 rs1979855
AA 37 (62.7 %) 4 (33.3 %) 33 (70.2 %)
AG/CC 22 (37.3 %) 8 (66.7 %) 14 (29.8 %)

BMP4 rs17563
TT 22 (37.3 %) 5 (41.7 %) 17 (36.2 %)
TC/CC 37 (62.7 %) 7 (58.3 %) 30 (63.8 %)

BMP4 rs4898820
TT 12 (20.3 %) 2 (16.7 %) 10 (21.3 %)
TG/GG 47 (79.7 %) 10 (83.3 %) 37 (78.7 %)

Table 1 (continued )

Variables Total Occurrence of severe radiation
pneumonitis

(n = 59) Yes (n = 12) No (n = 47)

BMP4 rs762642
TT 17 (28.8 %) 2 (16.7 %) 15 (31.9 %)
TG/GG 42 (71.2 %) 10 (83.3 %) 32 (68.1 %)

SCC, squamous cell carcinoma; SCLC, small cell lung cancer; RT, radiotherapy;
MLD, mean lung dose; FEV1/EVC, the forced expiratory volume in 1 s (FEV1)
divided by the forced vital capacity (FVC); DLCO, diffusing capacity of the Lung
for CO; PTV, planning target volume; TGF-β1, Transforming Growth Factor-β1;
BMP, bone morphogenetic protein.
*Expressed as mean ± standard deviation.
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amino acid substitutions, potentially altering TGF-β1 function and repair
kinetics, thereby affecting susceptibility to adverse effects [36].
Furthermore, TGF-β1 C509T and T869C SNPs have been linked to higher
rates of severe fibrosis and RP [16,19,37]. Meta-analyses [38,39] also
suggest that the T869C polymorphism is associated with an increased RP
risk in Caucasians, with no similar association found for C509T and
G915C polymorphisms.

BMP, a key member of the TGF-β superfamily, activates downstream
signaling genes in TGF-β pathways, influencing inflammatory processes,
cell proliferation, differentiation, apoptosis, and organ patterning
[40,41]. Additionally, BMP genes can function as tumor suppressors or
promoters, depending on the cell type, epigenetic background, or tumor
stage [42]. Specifically, BMPs can antagonize TGF-β’s effects on
epithelial-to-mesenchymal transition (EMT) and induce the inverse
process of mesenchymal-to-epithelial transition [43]. For example, it
was shown that BMP-7 reverses EMT by counteracting TGF-β-induced
Smad-dependent cell signaling [44]. The BMP2 and BMP4 genes have
been investigated in relation to lung diseases. Although BMP-2 and
BMP-4 share high sequence similarity and likely act on the same re-
ceptors, their biological roles may differ. BMP2 exerts pro-inflammatory

effects in endothelial activation during airway inflammation, whereas
BMP4 has anti-inflammatory effects in airway injury [45,46]. Previous
studies have found that BMP2 levels are decreased and BMP4 levels are
increased in idiopathic lung fibrosis, with the ratio between BMPs and
TGF-β1 strongly correlating with the induction of EMT [47]. Although
more research is needed to elucidate the exact mechanism, it is possible
that the increase in BMP4 levels induces the inverse process of
mesenchymal-to-epithelial transition, potentially exacerbating fibrosis.

In our study, a specific SNP in the BMP2 gene was significantly
associated with an increased occurrence of severe RP. This may be
because SNPs in the BMP2 gene can contribute to higher BMP2
expression [48], potentially exacerbating inflammation and impairing
normal pulmonary tissue repair during radiation-induced lung injury. A
previous study demonstrated the association between BMP2 SNPs and
the incidence of RP for the first time after genotyping and tagging
potentially functional SNPs of BMP2 and BMP4 genes [20]. BMP2
rs235768 and rs1980499 were associated with risk of grade ≥ 2 RP; and
rs3178250 was associated with the risk of grade ≥ 3 RP in patients with
NSCLC after definitive RT. However, no association was found between
BMP4 SNPs and RP. It could be explained that aberrant BMP2 expression
was caused by the location of BMP2 rs235768 and rs1980499 within the
coding region or transcription factor binding sites. Similarly, we iden-
tified BMP2 rs1979855 as a significant risk factor for RP, instead of the
BMP4. This specific BMP2 gene SNP is suspected to excessively induce

Table 2
Selected variables in clinical model (using only clinical and dosimetric variables) and combined model (incorporating genomic variables), and comparison of per-
formance using AUC obtained by the 5-folds cross-validation.

Models Selected variables Prediction AUC P value*

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall

Clinical Model Age (>66 years)
Smoking history
PTV volume (≥300 cc)

0.800 0.806 0.778 0.525 0.796 0.741 ± 0.121 0.029

Combined Model Age (>66 years)
Smoking history
PTV volume (≥300 cc)
BMP2 rs197985

0.867 0.944 0.917 0.550 0.833 0.822 ± 0.158

PTV, planning target volume; BMP, bone morphogenetic protein.
*Obtained by paired t-test.

Table 3
Selected features by each feature selection method.

Filtered-based
(n = 14)

Wrapper-based
(n = 4)

Embedded
(n = 14)

Age ○ ○

Sex ○

Pathology ○

T stage
N stage ○

RT total dose ○

RT fractional dose ○

MLD ○ ○

V20 ○

V5
FEV1/FVC ○

DLCO ○

Smoking history ○ ○

PTV volume ○ ○

Concurrent chemotherapy
Chemotherapy regimen
TGF-β1 rs1800469 ○

TGF-β1 rs1982073
TGF-β1 rs11466345 ○ ○

BMP2 rs235768
BMP2 rs3178250
BMP2 rs1979855 ○ ○ ○

BMP4 rs17563 ○ ○

BMP4 rs4898820
BMP4 rs762642

RT, radiotherapy; MLD, mean lung dose; FEV1/EVC, the forced expiratory vol-
ume in 1 s (FEV1) divided by the forced vital capacity (FVC); DLCO, diffusing
capacity of the Lung for CO; PTV, planning target volume; TGF-β1, Transforming
Growth Factor-β1; BMP, bone morphogenetic protein.

Fig. 2. The predictive performance (area under the curve (AUC): mean ±

standard deviation) of the different combinations of feature selection methods
and machine learning models, as evaluated through repeated nested cross-
validation with SMOTE.
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inflammation, thereby increasing the risk of RP. However, further
investigation in subsequent studies is required to clarify this mechanism.

Several modeling studies incorporating TGF-β pathway genes as
significant factors in predicting treatment outcomes or radiation-
induced lung toxicities have been conducted [49]. Zhang et al. [22]
identified four SNPs, including BMP2 rs235756, as significant predictors
of overall survival, with the predictive power of their model significantly
improving after incorporating these SNPs. Yang et al. reported signifi-
cant associations between SNPs in BMP2 rs3178250 and BMP4
rs762642 with severe RP, developing a survival nomogram that inte-
grated significant SNPs in the BMP/Smad4/Hamp hepcidin-regulating
pathway [21,50]. Stenmark et al. [51] demonstrated that combining
pretreatment levels of IL-8, TGF-β1, and MLD into a predictive model for
RP improved predictive power compared to individual variables, a
finding validated in their subsequent study [52]. Chinese researchers
also highlighted the significance of BMP2 rs235768 for severe RP, with
model performance improving upon adding rs235768 and rs1980499
SNPs to a clinical model comprising age, performance status, and MLD
(C-index 0.6117–0.6235, p = 0.011) [20].

There are several limitations to our study that need to be addressed.
A major limitation is the small sample size and the focus on a single
ethnic group, which may limit the generalizability of our findings. The
prognostic implications of some genes may have been underestimated
due to unexpected selection bias. Previous studies indicate that allele
frequencies of polymorphisms and their effects on RP susceptibility may
vary by ethnicity [53]. However, since only one ethnic group was
assessed in this study, differences in genetic distributions among eth-
nicities, including TGF-β1 and other genes, could not be considered.
Additionally, to address the low event frequency and data imbalance in
our small sample, we employed oversampling techniques such as
SMOTE. However, the inherent limitations of building models from a
small sample size remain. Finally, there is a lack of preclinical studies

assessing the mechanism by which genetic variations in BMP2
rs1979855 impact radiosensitivity. Therefore, future in vivo/in vitro or
clinical studies with larger patient cohorts are required to validate our
findings.

Nonetheless, unlike existing studies, our study has the distinction of
being the first to utilize various ML techniques to maximize the per-
formance of predictive models. We utilized prospectively collected,
well-curated homogeneous patient data, with blood samples uniformly
collected at the same time, providing a significant advantage. Addi-
tionally, we genotyped 11 SNPs related to the TGF-β pathway and
consistently identified a significant SNP across various statistical
methods. Furthermore, we were able to enhance the reliability of our
results by integrating specific clinical and dosimetric variables alongside
genomic variables.

In conclusion, we confirmed that SNPs could serve as a reliable
biomarker for predicting severe RPs while significantly improving pre-
dictive power compared to when only clinical factors were used. Using
the SNPs in TGF-β signaling pathway genes in conjunction with age,
smoking history, PTV volume, we successfully demonstrated decent
performance in severe RP prediction in spite of the small and label-
imbalanced patients in our study. We believe that our model will aid
in the pretreatment prediction of radiation-related toxicities and enable
personalized RT based on each patient’s risk profile.
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Fig. 3. Cumulative probability of severe (grade ≥ 2) radiation pneumonitis in all patients according to (a) patients’ age (>66 year or ≤66 years), (b) smoking history,
(c) planning target volume (PTV) volume (≥300 cc vs. <300 cc), and (d) BMP2 rs1979855 genotype (AG/GG vs. AA).
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