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Our knowledge of complex disorders has increased in the last years thanks to

the identification of genetic variants (GVs) significantly associated with disease

phenotypes by genome-wide association studies (GWAS). However, we do not

understand yet how theseGVs functionally impact disease pathogenesis or their

underlying biological mechanisms. Among the multiple post-GWAS methods

available, fine-mapping and colocalization approaches are commonly used to

identify causal GVs, meaning those with a biological effect on the trait, and their

functional effects. Despite the variety of post-GWAS tools available, there is no

guideline for method eligibility or validity, even though these methods work

under different assumptions when accounting for linkage disequilibrium and

integrating molecular annotation data. Moreover, there is no benchmarking of

the available tools. In this context, we have applied two different fine-mapping

and colocalization methods to the same GWAS on major depression (MD) and

expression quantitative trait loci (eQTL) datasets. Our goal is to perform a

systematic comparison of the results obtained by the different tools. To that

end, we have evaluated their results at different levels: fine-mapped and

colocalizing GVs, their target genes and tissue specificity according to gene

expression information, as well as the biological processes in which they are

involved. Our findings highlight the importance of fine-mapping as a key step

for subsequent analysis. Notably, the colocalizing variants, altered genes and

targeted tissues differed between methods, even regarding their biological

implications. This contribution illustrates an important issue in post-GWAS

analysis with relevant consequences on the use of GWAS results for

elucidation of disease pathobiology, drug target prioritization and biomarker

discovery.
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Introduction

More than 207,400 genetic variants (GVs) have been

associated with complex diseases since the introduction of

genome-wide association studies (GWAS) (Dehghan, 2018;

Buniello et al., 2019). The vast majority of identified GVs lie

in non-coding regions of the genome with no clear impact on

gene function and disease pathogenesis (Brandes et al., 2022),

posing challenges in interpreting the association of the GV with

the disease phenotype. Furthermore, these GVs may not be the

causal ones but may be in linkage disequilibrium (LD) with the

true causal GVs (Visscher et al., 2017; Brandes et al., 2022). We

refer to causal GVs to those with a biological impact. A variety of

approaches are available to unravel the functional role of GVs

identified by GWAS (Kichaev et al., 2014; Amlie-Wolf et al.,

2018; Wallace, 2021; Gazal et al., 2022). In addition, there are a

plethora of different tools available that serve the same purpose

but work with different types of data (e.g., genotype data versus

full genome summary statistics), under different assumptions

(e.g., one causal GV or more), and with diverse outcomes (e.g.,

causal GVs or relevant gene-cell type combination) (Cano-

Gamez and Trynka, 2020; Adebiyi et al., 2021). There is,

however, no guideline for determining which tool is best to

use for each approach nor a gold standard for evaluating the

validity of the results. Furthermore, in contrast to other areas

where benchmarking evaluations of methods are in place, such as

for protein structure prediction (Protein Structure Prediction

Center, 2020) or disease module identification (Dream

Challenges, 2022), among others, methods for GWAS data

analysis have not been objectively benchmarked. Selecting the

right tool is critical in post-GWAS analysis, to properly unravel

the functional mechanisms by which the GVs lead to disease, and

where different performances can lead to different results (Wen

et al., 2017; Rüeger et al., 2018; LaPierre et al., 2021).

There is an absence of a benchmark dataset to assess the

performance of post-GWAS analysis tools. Therefore, we

propose a systematic and objective comparison of the results

obtained by different tools when applied to the same datasets. We

designed a fine-mapping and colocalization workflow with

different tools running alternatively. Fine-mapping analysis

identifies the causal GVs and is a necessary step in most post-

GWAS analyses. We used the tools Probabilistic Identification of

Causal SNPs (PICS) (Taylor et al., 2021) and TORUS (Wen,

2016) as alternative tools for fine-mapping. Colocalization

methods pinpoint the GVs causally associated with a

phenotype and a molecular trait of interest, such as

expression or methylation. We focused our analysis on

expression quantitative trait loci (eQTL), to identify GVs with

an effect on the expression of genes, from now on referred to as

eGenes. We applied two methods for colocalization analysis: the

Colocalization Posterior Probability (CLPP) approach

(Hormozdiari et al., 2016) and the Fast Enrichment

Estimation Aided Colocalization analysis (fastENLOC)

(Pividori et al., 2020; Hukku et al., 2021). We applied the

fine-mapping and colocalization workflow to the same GWAS

on major depression (MD) and eQTL datasets (Figure 1). The

results obtained with each combination of tools were evaluated in

terms of fine-mapped and colocalizing GVs, the retrieved

eGenes, the tissues in which this regulation of gene expression

might take place, as well as the biological processes in which these

genes are involved.

The results of the workflow reveal divergence across tools,

pinpointing a relevant issue in post-GWAS analysis derived from

the lack of method benchmarking. Our findings demonstrate

how critical is the fine-mapping step to subsequent analysis and

how colocalization outcomes are in turn highly impacted by the

assumptions of each tool. As a consequence, the causal GVs and

eGenes identified are different and are involved in different

biological processes. Overall, given the lack of agreement

among tools, we highlight the need for an objective and

unbiased assessment of post-GWAS analysis methods and

tools to properly leverage GWAS data.

Materials and methods

Among the plethora of available methods for post-GWAS

analysis and which have been reviewed elsewhere (Cano-Gamez

and Trynka, 2020; Adebiyi et al., 2021), we focused on fine-

mapping and colocalization. Then, we conducted a tool selection

based on: workability with full-genome summary statistics,

documentation quality, software maturity and developer

support availability.

The workflow we describe in this manuscript applies

alternative tools for post-GWAS analysis to compare their

outcomes (Figure 1). We begin with an imputation step,

followed by a fine-mapping and colocalization analysis using

two different tools for each of these processes, and finish with a

functional analysis of the results obtained using different tools

and databases. We present below a more detailed explanation of

each step.

GWAS dataset and imputation

We have selected the latest genome-wide association study

(GWAS) on major depression (MD) with publicly available full-

genome summary statistics (GCST005902) (Howard et al., 2018). This

GWAS evaluated 7,666,894 genetic variants (GVs) in

322,580 European participants (113,769 cases and

Frontiers in Genetics frontiersin.org02

Pérez-Granado et al. 10.3389/fgene.2022.1006903

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1006903


208,811 controls). We used the harmonized version of this GWAS

dataset. This implies the genomic position is reported against the latest

genomebuild (GRCh38) and the orientation is checked byflipping the

effect allele (ie., the allele that confers the risk, which is not always the

minor allele) and other alleles whenever appropriate. The beta and

95% confidence interval is also inverted accordingly [downloaded

from: http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/

GCST005001-GCST006000/GCST005902/harmonised/29662059-

GCST005902-EFO_0003761.h.tsv.gz].

The Genotype-Tissue Expression (GTEx) expression

quantitative trait loci (eQTL) dataset contains single-tissue cis-

eQTL data with eGene, meaning genes regulated by eQTL, and

significant variant-gene associations for 49 tissues [downloaded

from: https://www.gtexportal.org/home/datasets] (Genotype-

Tissue Expression, 2017).

To match the GTEx eQTL panel, we imputed not genotyped

GVs in the MD dataset with the Summary Statistics Imputation

software (SSimp) (Rüeger et al., 2018). The parameters we used were

GWAS full-genome summary statistics GVs with their matching

z-scores, reference and effect alleles along with the European

1,000 genomes linkage disequilibrium (LD) reference panel

[downloaded from: http://hgdownload.cse.ucsc.edu/gbdb/hg19/

1000Genomes/phase3/]. We computed the z-scores by dividing

GVs’ effect size, understood as the effect of the risk allele relative

to the reference allele, over the standard error (Shi, 2017). We then

assessed the imputation quality returned by the SSimp software

using the r2. pred parameter, which ranges between 0 -bad quality-

and 1 -good quality-. Note that we only considered single nucleotide

polymorphisms (SNPs) for this analysis.

Fine-mapping with PICS and TORUS

Before applying the Probabilistic Identification of Causal

SNPs (PICS) and TORUS fine-mapping tools, we matched

GWAS GVs and eQTLs to their corresponding LD blocks

using the European 1,000 Genomes LD reference panel

(Berisa and Pickrell, 2016).

We run PICS by programmatically accessing its web

application form. We used LD-based PICS (https://pics2.ucsf.

edu/pics2-LD.html), which performs LD expansion and fine-

mapping. In brief, PICS takes the most significant GV per

association locus along with its associated p-value, performs

LD expansion and then computes the probabilities by

performing empirical permutations per GV. For GWAS, we

submitted the data and obtained the computed PICS

probabilities for the input GVs and those in LD, from now on

linked GVs. As for eQTLs, we downloaded precomputed LD-

based PICS for all GTEx best eQTLs per gene per tissue type

[downloaded from: https://pics2.ucsf.edu/Downloads/GTEx/].

We executed TORUS software package using the parameters

“-load_zval -dump_pip”. TORUS accepts full-genome summary

statistics data, meaning all GVs analysed in the study, and their

associated z-scores. Then it computes the causal probabilities using

an expectation-maximization algorithm which assumes there is

only one causal GV per locus. We obtained these probabilities for

all GWAS GVs and GTEx eQTLs (v8) [downloaded from: https://

storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/

GTEx_Analysis_v8_eQTL.tar], per tissue.

The major histocompatibility complex region (chr6:

28,510,120–33,480,577, GRCh38) was excluded from all datasets

for the analysis due to the complex LD structure of GVs, which

may lead to inaccurate results (Ghoussaini et al., 2020).

Colocalization analysis via CLPP and
fastENLOC

For the colocalization analysis, we implemented two different

approaches in the workflow: the Colocalization Posterior

FIGURE 1
Overview of the study workflow. Schematic representation of the entire analysis workflow: 1) SSimp Imputation; 2) Alternative fine-mapping
with PICS and TORUS; 3) Alternative colocalization analysis with CLPP and fastENLOC to both PICS and TORUS fine-mapping results; and 4)
Functional analysis of the GVs and eGenes obtained at the end of the workflow. SSimp, Summary Statistics Imputation software; GWAS, genome-
wide association studies; PICS, Probabilistic Identification of Causal SNPs; CLPP, Colocalization Posterior Probability; fastENLOC, Fast
Enrichment Estimation Aided Colocalization Analysis; GVs, genetic variants; eGenes, genes regulated by expression quantitative trait loci.
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Probability (CLPP) approach and the Fast Enrichment

Estimation Aided Colocalization Analysis (fastENLOC). We

applied these two methods to the fine-mapping results

obtained with both PICS and TORUS to identify the genes

regulated by causal GVs, also known as eGenes. Both tools

consider that there can be more than one causal GV per

association locus. CLPP assumes independence between

GWAS and eQTL data while fastENLOC does not and

computes the enrichment of GWAS on eQTL data using an

embedded function. In addition, fastENLOC not only computes

SNP colocalization probabilities (SCP) but also regional

colocalization probabilities (RCP) to overcome the inability to

narrow down to a single causal SNP, common to all tools. Please

note that the tools were run following the guidelines and

parameters recommended by the authors. We conducted a

CLPP approach by computing the product of PICS

probabilities for GWAS and eQTL overlapping linked GVs.

Based on previous experience in post-GWAS data analysis, we

narrowed down the results to the most likely causal GVs (Farh

et al., 2015; Ghoussaini et al., 2020; Pérez-Granado et al., 2022) by

filtering GWAS GVs and eQTLs PICS probabilities, as well as

their product by >10%. We run fastENLOC with fine-mapped

GWAS GVs and eQTLs per tissue using the following

parameters: default shrinkage 1) and total variants (7,666,894).

We filtered the results by RCP >0.5 and SCP >0.001 (Wen et al.,

2017).

Proximal genes

Common genemapping practices involve looking at the GVs’

overlapping or nearest downstream and upstream genes, also

known as proximal genes or pGenes. We retrieved this genetic

information using Ensembl via SNPnexus (Oscanoa et al., 2020).

We first identified pGenes associated with GVs from PICS

and TORUS fine-mapping results and performed gene-set

enrichment analysis on both sets.

Then, for each fine-mapping and colocalization combination

of tools, we obtained the pGenes to which the GVs mapped and

compared them to the corresponding set of eGenes. We also

evaluated each pGenes-eGenes set for their association with

disease and performed a gene-set enrichment analysis.

Functional analysis

For the evaluation of association to disease, we followed two

different approaches. When evaluating GVs from fine-mapping

results, we used variant association data from DISGENET plus

(Piñero et al., 2019; DISGENET plus, 2022). Note that the GWAS

under evaluation (Howard et al., 2018) and ameta-analysis that it

is a part of (Howard et al., 2019) were removed from DISGENET

plus datasets to avoid circularity. As for genes, we used the R

package disgenetplus2r (disgenetplus2r, 2022), which contains

gene-disease association data, and considered Medical Subject

Headings (MeSH) disease classes system for disease grouping.

We performed the gene-set enrichment analysis using g:

Profiler via the R package gprofiler2 (Raudvere et al., 2019)

and the following databases: 1) Gene Ontology (GO) biological

processes, molecular functions and cellular processes; 2)

Reactome and WikiPathways pathways; 3) miRNA

annotations; 4) Human Phenotype Ontology, which focuses

on rare Mendelian disorders, and has phenotypic features

associated with disease; and 5) DISGENET plus, which has

genes’ association data to disease and phenotypic traits (v19).

The whole set of known human genes was used as domain scope

for the analysis and electronic GO annotations were not

considered. Furthermore, to make the functional enrichment

analysis more meaningful, we filtered the terms by their

specificity using their term size (<1,500 genes), which

corresponds to the number of genes associated with that term.

In addition, we applied a guilt-by-association approach to

overcome the lack of functional information for some genes and

assign the function of better-characterized neighbours in the

interactome. Thus, we used molecular interaction data from

IntAct (Orchard et al., 2014) clustered with MONET

(Tomasoni et al., 2020) to evaluate whether different eGenes

retrieved from the workflow could belong to the same cluster and

thus affect the same molecular pathway. We performed a gene-

set enrichment analysis of the retrieved clusters filtering by an

eGene-cluster genes ratio of 1:50.

We evaluated the fine-mapping and colocalization results at

different levels: the tissue specificity, colocalizing causal GVs,

their target genes (eGenes) and their biological implications. We

examined the results individually and then compared them

across tools, with classic approaches (pGenes) and with the

results reported in the original publication.

Results

This study evaluates and compares the outcomes of different

fine-mapping and colocalization tools (Figure 1). To accomplish

this, we have run our analysis using the same genome-wide

association study (GWAS) on major depression (MD) and

expression quantitative trait loci (eQTL) datasets. In addition,

and in line with our goal, we address the results of each analytical

step individually before getting into their biological implications.

The workflow begins with an imputation phase (SSimp) to

predict the genotypes not directly assayed in the original

GWAS. Then, a fine-mapping step with Probabilistic

Identification of Causal SNPs (PICS) and TORUS to identify

the most likely causal genetic variants (GVs), meaning those

likely to have a biological effect on the trait, and compute their

causal probabilities. Next, a colocalization analysis using the

Colocalization Posterior Probability (CLPP) approach and the
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fast enrichment estimation aided colocalization (fastENLOC)

software, to identify the GVs causally associated with both

MD and a change in expression of a target gene. Finally, the

functional analysis, leveraging a diversity of databases, aims to

decipher the impact of the identified GVs and eGenes, meaning

genes regulated by eQTLs.

GWAS dataset imputation

The original genome-wide association study (GWAS)

consisted of 7,624,931 harmonised genetic variants (GVs) and

after imputation to predict missing Genotype-Tissue expression

(GTEx) eQTLs, we obtained 7,947,219 GVs (ie. a total of

554,824 imputed GVs). The estimated imputation quality

provided by SSimp was generally good for all chromosomes

(r2. pred >0.8) except for chromosome 17.

Fine-mapping with PICS and TORUS

We run linkage disequilibrium (LD)-based PICS by inputting

the most significant GWAS GVs per LD block (1,707 GVs) along

with their p-values (Figure 2). After PICS LD expansion and fine-

mapping, we obtained 54,649 GVs with their corresponding

PICS probabilities. As for the GTEx eQTLs, we downloaded

the precomputed LD-based PICS per tissue from the data portal.

In parallel, we computed the z-scores for all GWAS GVs and

GTEx eQTLs and along with the LD block specification, we used

them as input for TORUS.

We compared PICS and TORUS initial fine-mapping

results (Supplementary Figure S1) and then filtered GVs

by a probability >10% to keep the most likely causal GVs.

Because each tool has its own assumptions and different GVs

could be identified, but these may be in LD, the comparison

was done considering the probabilities per LD block. In

addition, we examined the distribution of PICS and

TORUS sum of probabilities for all LD blocks with likely

causal GVs (GWAS: 1,367 and 56, respectively; GTEx:

1,209 and 334, respectively) (Supplementary Figure S1A)

as well as the common ones (44 and 287, respectively)

(Figure 3A). PICS probabilities for GWAS GVs are

biased towards higher values in all cases, with 74% of

GWAS LD blocks having a probability greater than 50%.

Meanwhile, TORUS probability distribution is skewed

towards lower values with only 21% of LD blocks

surpassing the 50% probability. Regarding GTEx eQTLs,

PICS and TORUS results generally follow a more

similar distribution with probabilities biased towards

higher values, especially when only GVs with probabilities

greater than 10% are considered (Figure 3B and

Supplementary Figure S1B; note that we focused on Brain

FIGURE 2
Results of PICS and TORUS fine-mapping analysis. Comparison of PICS and TORUS fine-mapping outcomes at GV and LD block level for both
GWAS and eQTL datasets. PICS, Probabilistic Identification of Casual SNPs; GVs, genetic variants; LD, linkage disequilibrium; GWAS, genome-wide
association studies; eQTLs, quantitative trait loci.
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Frontal Cortex region because it is relevant to MD and for

illustrative purposes).

The analysis of PICS and TORUS most likely causal GVs

(probability >10%) revealed that both sets are enriched in GVs

associated with MD, bipolar disorder and other psychiatric

disorders (Supplementary Tables S1, S2). PICS causal GVs are

also enriched in metabolic-related traits such as triglycerides

measurement.

Additionally, we applied classic gene-mapping approaches to

PICS and TORUS fine-mapping results, yielding 1,277 and

1,248 proximal genes or pGenes, respectively. Both sets were

enriched in genes associated with neurogenesis as well as neuron

differentiation and development (Supplementary Tables S3, S4).

Colocalization analysis via CLPP and
fastENLOC

The colocalization results from CLPP approach using PICS

fine-mapping results yielded 44 GVs and 43 genes regulated by

eQTLS, also known as eGenes, affecting 28 tissues

(Supplementary Table S5), whereas no results were obtained

when using TORUS causal GVs. In parallel, fastENLOC applied

to causal GVs identified by PICS resulted in 24 GVs and

17 eGenes across 13 tissues (Supplementary Table S6), while

when applied on TORUS probabilities yielded 10 GVs and

3 eGenes in 2 tissues (Supplementary Table S7).

When comparing methods, the use of different colocalization

tools after fine-mapping with PICS yields the most similar

results. When using PICS, all tissues and eGenes identified by

fastENLOC are also obtained by CLPP, with differences found at

the GV level, and CLPP retrieving additional eGenes compared

to fastENLOC (Supplementary Table S8 and Figure 4).

Meanwhile, when comparing the use of PICS or TORUS fine-

mapping probabilities followed by fastENLOC, we only identified

one common tissue but with different eGenes and GVs. Similarly,

PICS+CLPP and TORUS+fastENLOC yielded common findings

only at the tissue level. Among the tissues with causal GVs and

eGenes retrieved when using PICS and either colocalization tools,

we can find diverse brain regions like the frontal cortex or

hypothalamus.

Proximal genes and functional analysis

We compared eGenes from fine-mapping and

colocalization workflow to pGenes from PICS and TORUS

fine-mapping results. Only 3 genes overlapped between

pGenes from PICS fine-mapping and PICS+CLPP eGenes

(KTN1, PXMP4 and ESYT2) and one with PICS+fastENLOC

FIGURE 3
PICS and TORUS fine-mapping probabilities have different distributions. Scatter plot and distribution of PICS and TORUS probabilities for LD
blocks containing GVs with PICS and TORUS probabilities >10%. (A)MDGWAS and (B) Brain Frontal Cortex LD block. PICS, Probabilistic Identification
of Causal SNPs; LD, linkage disequilibrium; GVs, genetic variants; MD, major depression; GWAS, genome-wide association studies.
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(KTN1). There was no overlap with pGenes when comparing to

TORUS. The eGenes from PICS+CLPP are enriched in their

association with miRNAs and the eGenes from

PICS+fastENLOC in RNA Polymerase I Promoter Escape

(Supplementary Table S9). Considering all eGenes together

(46), these are functionally enriched in terms related to

transcription factor regulation and miRNA. We also assessed

the distribution of the eGenes in a clusterized human

interactome. The three sets of eGenes (i.e., PICS+CLPP,

PICS+fastENLOC and TORUS+fastENLOC) belonged to

different clusters, except for eGenes shared across tools

results (ie. 17 shared eGenes which are located in

10 clusters). Some of these clusters were associated with

transcription factor regulation, inflammation or neurogenesis

(Supplementary Tables S10, S11). No clusters identified for

TORUS+fastENLOC passed the functional analysis filters, that

is a ratio of eGenes over cluster genes higher than 1:50 and

enriched term size <1,500 genes.

When we applied traditional gene mapping approaches to the

GVs that were found to regulate the expression of those eGenes, we

discovered a total of 74 pGenes. The vast majority of eGenes

identified do not match pGenes, which holds true across all

workflows (Table 1). In addition, most matches derive from

GVs lying in an intronic region of the genome (Supplementary

Table S12). Nonetheless, all sets of pGenes and eGenes are

associated with mental disorders, behaviour and behaviour

mechanisms as well as psychological phenomena and processes

and nervous system disease (Supplementary Figures S2, S3).

Additionally, pGenes are enriched in GO terms associated with

diverse signalling pathways (Supplementary Table S13).

Furthermore, we compared the results obtained with the

original publication where 14 GVs and 7 pGenes were reported.

The latter are functionally associated with synapsis

(Supplementary Table S13) and 6 of them have a prior

association with mental disorders (Supplementary Figure S4).

Only 5 fine-mapped GVs from PICS and 7 GVs from TORUS

overlapped with the GVs reported in the original publication, and

1 pGene (SGIP1), which is in both sets of fine-mapped pGenes.

However, none of the GVs and pGenes obtained by colocalization

with any combination of tools evaluated in our pipeline overlapped

with the GVs and pGenes reported in the original publication.

Discussion

Currently, there are a plethora of strategies available for post-

GWAS analysis (Cano-Gamez and Trynka, 2020; Adebiyi et al.,

FIGURE 4
Results of CLPP and fastENLOC colocalization analysis. Comparison of CLPP and fastENLOC colocalization outcomes according to the prior
fine-mapping tool used. CLPP, Colocalization Posterior Probability; fastENLOC, Fast Enrichment Estimation Aided Colocalization Analysis; GVs,
genetic variants; eGenes, genes regulated by an expression quantitative trait loci.

TABLE 1 Identified eGenes differ from classic gene mapping (pGenes).

eGenes pGenes Matches

PICS + CLPP 43 64 10

PICS + fastENLOC 17 31 3

TORUS + fastENLOC 3 8 0

eGenes, genes regulated by expression quantitative trait loci; pGenes, proximal genes;

PICS, Probabilistic Identification of Causal SNPs; CLPP, Colocalization Posterior

Probability; fastENLOC, fast enrichment estimation aided colocalization analysis. The

number of eGenes, also known as genes regulated by eQTLs, retrieved from the fine-

mapping and colocalization analysis; the number of pGenes or proximal genes, that is

overlapping or nearest upstream and downstream genes; and matches between eGenes

and pGenes. The information is shown for each combination of fine-mapping and

colocalization tools used.
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2021). Here, we have focused on two main approaches: fine-

mapping, which aims to identify the likely causal GVs, and

colocalization, aimed at identifying which genes are regulated

by the GVs at the expression level (eGenes). Furthermore, while

many tools address the same goal, there is no standard set of

causal GVs that have been experimentally validated for

benchmarking to determine and compare which one is the

most adequate (Brandes et al., 2022). Thus, we have designed

an evaluation exercise to assess the outcome of different fine-

mapping and colocalization tools using the sameMDGWAS and

eQTL dataset. To the best of our knowledge, no study goes

beyond the comparison of the different tool’s assumptions and

thus the evaluation of the biological implications of their findings

(Wen et al., 2017; Cano-Gamez and Trynka, 2020).

Our main premise throughout this analysis has been to use

each tool as it was intended by following developers’

recommendations and guidelines as closely as possible. This

way we could get the most out of them and compare their

optimised outcomes. Furthermore, one of the primary reasons

behind the tools’ selection was their ability to work with full-

genome summary statistics instead of individual genotype data,

which can be difficult to obtain due to privacy concerns. Other

criteria for tool selection included the quality of documentation,

the maturity of the software, and the availability of developer

support.

Prior to post-GWAS analysis, the imputation process using

SSimp yielded very good quality results except for chromosome

17. One possible explanation is that SSimp provides hg19

1000Genomes phase3 as the reference panel. This version of

the genome has some gaps, most of which are found in telomeres

and centromeres, having a strong impact on chromosome 17

(Rashid-Kolvear et al., 2007; Genome Reference Consortium,

2022). We then proceeded with the fine-mapping and

colocalization workflow, keeping the previously mentioned

issue in mind when evaluating their results.

Fine-mapping is significantly influenced by LD patterns and

the used tools, PICS and TORUS, which work under different

assumptions (see Methods). Therefore, to have comparable

results we considered the probabilities obtained at the LD

block level, because the most likely causal GVs may differ or

not be discernible due to high LD between GVs. In addition, to

account for the difference in the number of GVs which could be

driving the observed inverse distribution of probabilities between

tools (Supplementary Figure S1), only the most likely causal GVs

were considered in the comparison (Figure 2). In general,

TORUS retrieves GVs with lower probabilities compared to

PICS. This could be explained by the algorithm’s conservative

nature and its assumption of one causal GV per association locus,

with probabilities biased towards zero when the locus contains

multiple causal GVs (Wen, 2016). Indeed, the one causal GV

assumption has been debated, with multiple GVs acting together

resulting in a more reasonable theory (Burgess, 2022).

Nonetheless, both PICS and TORUS most likely causal GVs

are enriched in their association with MD, bipolar disorder and

other psychiatric disorders (Supplementary Tables S1, S2). This

suggests that both fine-mapping approaches identify likely causal

GVs associated with MD. GVs fine-mapped by PICS are also

enriched in diseases and traits usually comorbid withMD such as

alcohol consumption (Gémes et al., 2019) and metabolic traits

like serum total cholesterol measurement (Gold et al., 2020).

Classic gene mapping of PICS and TORUS fine-mapping results

(2,556 GVs and 79 GVs respectively, common- 58 GVs)

(Figure 2), yielded 1,277 and 1,248 pGenes, respectively, with

all TORUS pGenes included in PICS. These results could be

explained because, compared to TORUS, PICS computes higher

probability values and may retrieve more than one likely causal

GV per locus. But provided the set probability threshold, some of

these GVs may be in LD and therefore mapping to the same

genes. Both sets of pGenes are enriched in genes associated with

neurogenesis, highly affected in MD (Li Z. et al., 2021). All in all,

fine-mapping is a critical step in post-GWAS analysis, with high

divergence observed between different methods, particularly at

the level of GVs and their associated probabilities, which will

highly impact subsequent colocalization analysis.

CLPP and fastENLOC colocalization approaches were

applied to both fine-mapping results from PICS and TORUS.

Following the same logic, given that TORUS computed lower

probability values, PICS yielded more colocalization findings

(Supplementary Tables S5–S7). Furthermore, we have similar

results under CLPP assumption of independence between GWAS

and eQTLs compared to fastENLOC built-in function to

compute their enrichment, with fastENLOC being more

stringent as previously described (Hukku et al., 2021).

Interestingly, when focusing on a single tissue, the results do

not match at the GV level but do so at the eGene level

(Supplementary Table S8). This suggests that there might be

different GVs that have an effect on the expression of the same

eGenes. It also highlights the importance of the identification of

eGenes to determine how GVs may ultimately impact the disease

phenotype.

The overlap between eGenes and pGenes from PICS and

TORUS fine-mapping was very small, with 3 genes in total.

Among them, KTN1 has also been associated with MD

(Dall’Aglio et al., 2021) and ESYT2 is involved in

neurodevelopmental pathways and may be associated with

suicidal behaviour trends in MDD although more research is

needed (Calabrò et al., 2018). eGenes from PICS+CLPP were

functionally enriched with miRNAs. These have been recently

reported as relevant in MD pathogenesis and treatment

(Dwivedi, 2014). Specifically, hsa-miR-23a-3p has repeatedly

been associated with duloxetine treatment response

assessment in MD (Kim et al., 2019). Moreover, the eGene

GMPPB identified from TORUS+fastENLOC has already been

associated with MD pathogenesis in proteome-wide association

studies (Wingo et al., 2021). GMPPB is involved in glycosylation,

which has been reported as relevant and even hypothesized as a
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potential biomarker for MD (Yamagata and Nakagawa, 2020).

Considering all eGenes together, they are enriched in their

association with transcription factor regulation

(Supplementary Table S9), which has already been related to

MD (Zhong et al., 2019; Li X. et al., 2021; Pérez-Granado et al.,

2022). The mapping of eGenes to protein interaction clusters

indicated that the three sets of genes (i.e., PICS+CLPP,

PICS+fasENLOC and TORUS+fastENLOC) belonged to

distinct clusters and are thus likely to be involved in different

biological processes. Nevertheless, PICS+CLPP and

PICS+fastENLOC associated sets of clusters were enriched

with genes associated with processes involving TF regulation

as well as inflammation or neurogenesis (Supplementary Tables

S10, S11). All these processes are associated with MD

pathogenesis (Shadrina et al., 2018; Zhong et al., 2019; Li X.

et al., 2021, Li et al., 2021 Z.; Pérez-Granado et al., 2022). In

general, the identified eGenes are poorly characterized yet the

cluster analysis shades some light on their potential molecular

associations.

Fine-mapping and colocalization analysis successfully

identified eGenes associated with mental disorders

(Supplementary Figures S2–S4) that differed from the set of

pGenes, particularly when focusing on non-coding regions of the

genome (Table 1 and Supplementary Table S12). Accordingly,

pGenes are enriched in their association with pathways that have

been reported as disrupted in MD such as MAPK (Wang et al.,

2020), ErbB (Ledonne and Mercuri, 2020), PI3K/AKT (Matsuda

et al., 2019) and ERK (Wang andMao, 2019) signalling pathways

(Supplementary Table S13); as well as MD potential causes like

stress or inflammation (Shadrina et al., 2018; Li Z. et al., 2021).

When comparing the results from our workflow to the original

manuscript, there were only matches when considering the fine-

mapped PICS and TORUS results but not after colocalization

analysis. The common pGene between the three datasets was

SGIP1, which has been involved in mood regulation (Dvorakova

et al., 2021).

Brain regions are of particular interest in MD and as such, we

focused the evaluation of our results on them. The brain frontal

cortex, hypothalamus, pituitary and brain cerebellar hemisphere

have common findings between PICS and both colocalization

tools. MD and myclonus-dystonia are usually comorbid, and

their association has typically been studied in relation to SGCE

mutation and its potential pleiotropic effect (Peall et al., 2013;

Kim et al., 2017; Cazurro-Gutiérrez et al., 2021). However,

whether SGCE plays a role in MD manifestation has been

debated. On the one hand, animal studies have shown that

knocking out this gene causes myoclonus, motor coordination

deficits, and depression-like behaviour (Cazurro-Gutiérrez et al.,

2021) which is consistent with the lower expression levels

reported by GTEx. On the other hand, a similar frequency of

MD has been reported in SCGE mutated and wild-type

myoclonus dystonia patients (Kim et al., 2017). Focusing on

the hypothalamus, one of the most common causes of MD is

stress, which affects the hypothalamic-pituitary-adrenal axis by

increasing glucocorticoid levels (Karger et al., 2018; Oliva et al.,

2018). These have an impact on various signalling pathways,

including the Wnt pathway, in which FZD5 plays a role, and

neurogenesis (Karger et al., 2018). However, the changes in gene

expression caused by rs77678807 reported by GTEx are the

inverse of what we would expect (Genotype-Tissue

Expression, 2017). PCOLCE2 is highly expressed in the

pituitary and there is evidence of reduced levels in depression-

like behaviours in mice (Yamawaki et al., 2018), consistent with

rs9757063 effect. Indeed, it has already been associated with

psychiatric disorders by GWAS studies (Martínez-Magaña et al.,

2021). However, how exactly they play a role in MD pathogenesis

is still unknown. Little is known about the eGenes and GVs

identified in the brain cerebellar hemisphere. Additionally, in the

brain frontal cortex and hypothalamus, two different lncRNAs

have been identified, LINC01159 and RP11-

838N2.5 respectively. Even though little is known about them,

lncRNAs seem to play a relevant role in MD pathogenesis and

therapeutics (Shi et al., 2021; Hao et al., 2022). PICS+CLPP

identified rs1480432 as upregulating the expression of DTNA,

which is associated with neurogenesis and underregulating the

maturation and stability of postsynaptic density (Chen et al.,

2022). MAO B has been found to be overexpressed in

postmortem brain tissue from MD patients, while DTNA is

found to be underexpressed in MAO B knockout mice. The

colon is another tissue whose associations with MD have

produced intriguing results. ACTL8 is both associated with

the microbiome composition and MD, but it is still unclear

whether and/or which role the gut microbiome may have in a

person’s susceptibility to MD (Martins-Silva et al., 2021).

In general, both classic gene mapping approaches and

colocalization analysis identified genes associated with MD or

associated relevant processes. Colocalization analysis can provide

insights about the effect of GVs located in non-coding regions of

the genome, pinpointing the genes they regulate and the relevant

tissues. As it has previously been reported the closest gene may

not always be the causal one (Brodie et al., 2016; Zhu et al., 2016).

These results would need further evaluation with other types of

functional genomics data and ultimately experimental validation

to verify the role of these regulatory mechanisms in disease

pathogenesis (Dehghan, 2018).

Our goal was to illustrate the impact of the lack of standards

on the selection of the most adequate post-GWAS analysis

method using a fine-mapping and colocalization workflow

that compared different tools. The results revealed a high

divergence between fine-mapping methods due to their

assumptions, which in turn highly impacted the next steps.

TORUS one causal variant assumption may tip the balance in

favour of PICS considering fine-mapping and posterior analytical

steps. Colocalization results seem to diverge in the amount of

GVs and eGenes identified, with fastENLOC being more

stringent by considering the enrichment of GWAS on eQTLs.
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All in all, despite the potential of combining GWAS data with

molecular profiling datasets to guide in the interpretation of the

functional impact of GVs located in non-coding regions of the

genome, the results of our analysis revealed shortcomings related

with the analytic tools. We propose that objective evaluation and

benchmarking of post-GWAS analysis tools is required in order

to fully leverage GWAS data for precision medicine and drug

R&D applications.
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