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Natural menstrual rhythm and 
oral contraception diversely affect 
exhaled breath compositions
Pritam Sukul, Jochen K. Schubert, Phillip Trefz & Wolfram Miekisch

Natural menstrual cycle and/or oral contraception diversely affect women metabolites. Longitudinal 
metabolic profiling under constant experimental conditions is thereby realistic to understand such 
effects. Thus, we investigated volatile organic compounds (VOCs) exhalation throughout menstrual 
cycles in 24 young and healthy women with- and without oral contraception. Exhaled VOCs were 
identified and quantified in trace concentrations via high-resolution real-time mass-spectrometry, 
starting from a menstruation and then repeated follow-up with six intervals including the next 
bleeding. Repeated measurements within biologically comparable groups were employed under 
optimized measurement setup. We observed pronounced and substance specific changes in exhaled 
VOC concentrations throughout all cycles with low intra-individual variations. Certain blood-borne 
volatiles changed significantly during follicular and luteal phases. Most prominent changes in 
endogenous VOCs were observed at the ovulation phase with respect to initial menstruation. Here, 
the absolute median abundances of alveolar ammonia, acetone, isoprene and dimethyl sulphide 
changed significantly (P-value ≤ 0.005) by 18.22↓, 13.41↓, 18.02↑ and 9.40↓%, respectively. These 
VOCs behaved in contrast under the presence of combined oral contraception; e.g. isoprene decreased 
significantly by 30.25↓%. All changes returned to initial range once the second bleeding phase was 
repeated. Changes in exogenous benzene, isopropanol, limonene etc. and smoking related furan, 
acetonitrile and orally originated hydrogen sulphide were rather nonspecific and mainly exposure 
dependent. Our observations could apprehend a number of known/pre-investigated metabolic effects 
induced by monthly endocrine regulations. Potential in vivo origins (e.g. metabolic processes) of VOCs 
are crucial to realize such effects. Despite ubiquitous confounders, we demonstrated the true strength 
of volatolomics for metabolic monitoring of menstrual cycle and contraceptives. These outcomes 
may warrant further studies in this direction to enhance our fundamental and clinical understanding 
on menstrual metabolomics and endocrinology. Counter-effects of contraception can be deployed 
for future noninvasive assessment of birth control pills. Our findings could be translated toward 
metabolomics of pregnancy, menopause and post-menopausal complications via breath analysis.

The natural endocrine regulation in young and healthy adult women during their menstrual cycle is an everlast-
ing clinical interest1,2. Monthly sinus physiological and endocrine changes affect both metabolism and cellular 
biochemistry3 in menstrual women. Moreover, daily ingested oral contraception4 has obvious counter-effects 
and hindrance to the natural monthly rhythm of sex hormones in adults. Due to diverse physiological and/or 
therapeutic effects, follow-up of different phases of menstrual cycle5,6 is challenging7,8. Longitudinal in vivo assess-
ment of metabolites throughout the entire menstrual cycle can enlarge our knowledge on the metabolic status of 
women. Metabolic changes during the follicular- and luteal phases and especially at ovulation are of special inter-
est9 and may extend our conventional understanding of female endocrinology and effects of synthetic hormone 
therapy (i.e. via oral contraception).

Noninvasive analysis of exhaled breath volatile organic compounds (VOCs) is a steadily evolving domain 
in metabolomics10–12. Application of volatile metabolomics via repeated measurements on comparable bio-
logical cohorts within a consistent state-of the-art experimental model may avoid many confounders13–15 and 
variabilities16.
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VOCs are either produced endogenously or absorbed and stored from habits and/or environment17. Thus, 
breath volatiles inherit potential for noninvasive assessment of physiology18,19, pathophysiology20–22 and ther-
apy23–25. Thousands of volatile metabolites have already been quantified in trace concentrations (~ppbV–pptV 
range) in our exhalation. Human physiology plays the crucial role in bronco-pulmonary gas-exchange and 
thereby, on VOC exhalation26,27. Thus, real-time profiling of exhaled alveolar VOC concentrations can contribute 
new insight into biochemical- and metabolic changes28,29 induced by normal or abnormal physiological effects. 
Real-time mass-spectrometric (MS) techniques e.g. proton transfer reaction (PTR)-Time of flight (ToF)-MS30,31 
along with end-tidal/alveolar sampling32,33 have enabled online monitoring of immediate physiological changes 
within split-seconds34–36. These studies showed that concentration changes may be more important than the pres-
ence of unique breath VOC biomarkers.

In this perspective, effects of metabolic changes during normal menstrual cycle or effects induced by oral con-
traceptive pills are the prime concern of this study. Here, we follow-up changes in exhaled VOC concentrations 
from young and healthy women during their normal menstrual cycles and also throughout the cycles undergoing 
combined oral contraception by applying high-resolution PTR-ToF-MS. The following questions are addressed 
herein:

•	 What are the effects of natural menstrual cycle onto exhaled breath VOC concentrations in young and healthy 
women?

•	 Do those effects differ under combined oral contraceptive medication?
•	 Are these changes related to known/pre-investigated metabolic effects induced by endocrine regulations 

throughout the cycle with- or without contraception?
•	 Does the ovulation phase effect VOC concentrations in women without contraception?

Results
We observed pronounced differences in VOC concentrations throughout the menstrual cycle. These changes 
followed the female sex hormone regulation. Different behaviors were clearly noticeable between both groups of 
women. In both cohorts, these changes were VOC specific. Observed changes in endogenous and blood-borne 
VOCs were assignable to the ovulation phase in the cohort without contraception (from here on referred to as 
“control cohort”). Most VOC concentrations returned to initial levels once the reference phase (menstrual bleed-
ing) was repeated in both cohorts.

Figure 1 represents a semi-quantative expression of relative changes for selected breath VOC markers over the 
course of the entire study within the two cohorts of women (with- and without oral contraceptives). Normalized 
median values from each participant over 60 s of breathing are displayed. The 13 VOCs included in the heat-map 
were selected as they had significantly higher concentration in expiration than in inspiratory air. Inspiratory con-
centrations did not change during the measurements.

Changes in absolute abundances of VOCs during different phases of the menstrual cycle. Every 
indicated changes refer to the initial menstrual bleeding phase (MB). In the following section, only the most 
important and significant (i.e. P-value ≤ 0.005) changes are presented with a numeric value (in %) and all other 
cases are listed in Table 1 or Supplementary Table S1.

•	 Changes on the day after the bleeding stopped:
Overall changes: Median values of exhaled alveolar ammonia (NH3) decreased by 2.3%. Dimethyl sulphide 
(C2H6S, DMS), allyl-methyl-sulphid (C4H8S, AMS) and limonene (C10H16) concentrations decreased by 
48.8, 26.7 and 5.2%, respectively.
Changes in control cohort: Ammonia decreased by 17.0%. Acetonitrile (C2H3N) increased by 21.6%.
Changes in contraception cohort: DMS, AMS and isopropanol concentrations decreased by 26.7, 15.5 and 
28.0%, respectively.

•	 Changes during the mid-follicular phase:
Overall changes: Acetone (C2H6O) increased by 6.4%. DMS, AMS and acetonitrile decreased by 64.5, 56.6 
and 10.5%, respectively.
Changes in control cohort: AMS decreased by 71.9%.
Changes in contraception cohort: DMS and AMS decreased by 36.8 and 39.5% respectively.

•	 Changes during the ovulation phase:
Overall changes: Ammonia, acetone and isoprene (C5H8) dropped by 9.9, 11.0 and 19.5%, respectively. 
Benzene (C6H6) increased by 19.1%. DMS reached 51.8% below the initial range.
Changes in control cohort: Ammonia and acetone dropped by 18.2 and 13.4%, respectively. Isoprene in-
creased by 18.0%.
Changes in contraception cohort: Isoprene decreased by 30.2%. DMS and AMS also decreased by 47.0 and 
53.4%, respectively.

•	 Changes during the mid-luteal phase:
Overall changes: Acetone increased by 11.9%. DMS reached 46.8% below the initial baseline.
Changes in control cohort: Isoprene also increased by 48.8%. Limonene increased by 60.0%. Isopropanol 
decreased by 12.3%.
Changes in contraception cohort: DMS and AMS reached 35.6 and 38.5%, respectively below the initial 
level. Isopropanol increased by 35.5%.

•	 Changes during 2nd menstrual phase:
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Overall changes: DMS, AMS and acetonitrile remained significantly different to initial baseline.
Changes in control cohort: Only acetonitrile did not return to initial concentrations.
Changes in contraception cohort: DMS, AMS and acetonitrile did not return to baseline.

Exhaled abundances of hydrogen sulphide (H2S), toluene (C7H8) and methyl-propyl sulphide (C4H10S) did not 
change significantly in any case. Surprisingly, no isoprene was exhaled by two women (P-16 and P-21) from the 
contraception cohort. Furan (C4H4O) was exhaled only by six smoking women from the control cohort. Although 
its exhalation closely mirrored isoprene no statistical relevance could be drawn due to low observation numbers. 
Detailed data on every observed change of different VOC concentrations and statistical significances (along with 
corresponding P-values) are listed in Table 1 and Supplementary Table S1.

Figure 1. Heat-map of exhaled end-tidal abundances of 13 selected VOCs in 24 young and healthy women 
throughout six different phases of the menstrual cycle (menstrual bleeding – 2nd menstrual bleeding). Medians 
of normalized values over 60 s of breathing are displayed for each participant during the different cycle 
phases (located as the central X-axis). VOC data were normalized (for each participant) onto corresponding 
abundances in the third breath of the second minute from the initial menstrual bleeding phase (see method 
section). Red, green and blue colors represent relatively high, medium and low concentrations, respectively. 
The upper heat-map represents the data from the contraception cohort (P-13–P-24) and the lower heat-
map represents the data from the control group (P-1–P-12). Isoprene was not exhaled by P-16 and P-21 
(contraception cohort) and was thus assigned to ‘0’ values in all measurement points. Qualitative regulations of 
two main female sex hormones are placed at the top (of contraception cohort) and bottom (of control cohort) 
along the x-axis. Red and violet lines represent estrogen and progesterone hormones, respectively. The vertical 
green line represents the onset of the ovulation phase and separates the follicular and luteal phases.
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Comparisons between the six different measurement points (i.e. menstrual cycle phases).  
Comparison of absolute median values (over 60 s) in all six different measurement points are represented as box-
plots for nine selected VOCs. Four potentially endogenous VOCs from all women, control- and contraception 
cohort during different phases of the menstrual cycle are plotted in Fig. 2 and the same is shown for other five 
potentially exogenous VOCs in Supplementary Fig. S1. From all pair-wise multiple comparisons, a colored ‘*’ 
is assigned on those which are significantly (i.e. P-value ≤ 0.005) different with reference to the corresponding 
medians from the initial menstrual bleeding phase.

Discussion
We observed pronounced changes in exhaled alveolar VOC concentrations throughout the menstrual cycles. 
These changes mirrored many investigated metabolic effects induced by monthly endocrine regulations. 
Eventually, VOC exhalations in the contraception cohort greatly differed compared to the control cohort. 
Observed changes were VOC specific. Changes in certain endogenous and blood-borne VOCs occurred at the 
follicular and luteal phases. These changes turned out to be most prominent at the ovulation event in the control 
cohort. The synthetic hormones, present in oral contraceptive pills do not appear directly in exhaled breath. 
Nevertheless, we could demonstrate that natural menstrual effects onto some exhaled VOCs disappeared under 
the presence of contraception. Our results can facilitate and inspire future investigation in noninvasive metabolic 
monitoring of numerous biochemical-, physiological- and metabolic processes.

Ammonia exhalation. The major source of breath ammonia is protein metabolism28 and its exhalation 
depends on changes of blood-pH e.g. due to respiratory acidosis or alkalosis20. In the control cohort, significantly 
decreased ammonia exhalation just after periods can be attributed to menstruation driven loss of functional 
endometrial epithelium and consecutive low abundance of plasma progesterone. Progesterone has a catabolic 
effect on protein metabolism pathways37–39, whereas estrogen mediates the activity of cerebral and endometrial 
progesterone receptors40,41. Ammonia concentrations returned to initial range during the mid-follicular phase 
presumably due to an increase in number and sensitivity of progesterone receptors and elevated plasma estrogen. 

Protonated 
VOCs [g/
mol]

Control cohort

Phases of 
menstrual 
cycle

Contraception cohort Control cohort

Phases of 
menstrual 
cycle

Contraception cohort

Protonated 
VOCs [g/mol]

Significance 
(P ≤ 0.005)/
Median/60 s

Median 
Changes 
(%)/60 s

Median 
Changes 
(%)/60 s

Significance 
(P ≤ 0.005)/
Median/60 s

Significance 
(P ≤ 0.005)/
Median/60 s

Median 
Changes 
(%)/60 s

Median 
Changes 
(%)/60 s

Significance 
(P ≤ 0.005)/ 
Median/60 s

(Ammonia)
H + 18.03382

N/A 0 MB 0 N/A N/A 0 MB 0 N/A

(Isopropanol)
H + 61.06479

0.004 −17.09 1D-poMB 3.32 >0.005 >0.005 38.74 1D-poMB −27.99 <0.001

>0.005 4.50 1W-poMB 8.35 >0.005 >0.005 8.89 1W-poMB 3.04 >0.005

<0.001 −18.22 2W-poMB 3.83 >0.005 >0.005 7.92 2W-poMB 18.61 >0.005

>0.005 12.56 3W-poMB 9.00 >0.005 0.001 −12.34 3W-poMB 35.54 0.002

>0.005 0.43 2nd MB 0.76 >0.005 >0.005 18.04 2nd MB 19.99 >0.005

(Acetone)
H + 59.04914

N/A 0 MB 0 N/A N/A 0 MB 0 N/A

(AMS)
H + 89.04195

>0.005 −10.48 1D-poMB −2.02 >0.005 >0.005 −61.10 1D-poMB −15.55 <0.001

>0.005 11.34 1W-poMB 5.75 >0.005 <0.001 −71.89 1W-poMB −39.48 0.005

<0.001 −13.41 2W-poMB 8.62 >0.005 >0.005 −39.47 2W-poMB −53.38 <0.001

>0.005 5.37 3W-poMB 15.97 >0.005 >0.005 −10.40 3W-poMB −38.54 0.002

>0.005 −2.96 2nd MB −2.09 >0.005 >0.005 −8.61 2nd MB −16.07 0.001

(Isoprene)
H + 69.06989

N/A 0 MB 0 N/A N/A 0 MB 0 N/A

(Limonene)
H + 137.13248

>0.005 42.83 1D-poMB −23.31 >0.005 >0.005 −4.04 1D-poMB −13.76 >0.005

>0.005 2.91 1W-poMB −28.31 >0.005 >0.005 46.92 1W-poMB −2.00 >0.005

0.003 18.02 2W-poMB −30.25 0.005 >0.005 54.82 2W-poMB 10.92 >0.005

<0.001 48.77 3W-poMB −17.88 >0.005 <0.001 59.96 3W-poMB −21.43 >0.005

>0.005 −11.87 2nd MB −3.87 >0.005 >0.005 25.44 2nd MB 19.04 >0.005

(DMS)
H + 63.0263

N/A 0 MB 0 N/A N/A 0 MB 0 N/A

(Acetonitrile)
H + 42.03382

>0.005 −44.05 1D-poMB −26.71 <0.001 0.003 21.64 1D-poMB −5.11 >0.005

>0.005 −50.11 1W-poMB −36.78 <0.001 >0.005 −19.38 1W-poMB −5.50 >0.005

>0.005 −9.40 2W-poMB −47.09 0.003 >0.005 −9.08 2W-poMB 0.47 >0.005

>0.005 −7.37 3W-poMB −35.59 0.001 >0.005 −22.77 3W-poMB −5.59 >0.005

>0.005 −3.82 2nd MB 19.63 0.001 <0.001 15.01 2nd MB 26.83 <0.001

Table 1. Statistical significance of observed changes in exhaled abundances of eight different VOCs in 
each cohort. Median values of VOC concentrations from the second minute (/60 s) of every measurement 
points were compared. Median Changes (%)/60 s: positive values represent an increase and negative values 
represent a decrease in in comparison to the initial MB phase. Significance (P-value ≤ 0.005)/Median/60 s: 
statistically significant differences between the reference value (from MB phase) and actual values from all 
other measurement points were assessed by means of repeated measurement-ANOVA on ranks. Changes with a 
resulting p-value ≤ 0.005 were considered as significant.
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The most pronounced and significant decrease in exhaled ammonia concentrations occurring at the ovulation 
event in the control group could be assigned to the decreased estrogen and low progesterone levels. Due to the 
regular oral intake of these hormones by the contraception cohort, ammonia exhalation did not change signifi-
cantly throughout the duration of the study.

Acetone exhalation. Acetone is mainly produced via glucose and fat metabolism42. Acetone exhalation closely 
mirrored the ammonia profile. An overall significant increase in acetone exhalation during mid-follicular phase 
can be attributed to higher plasma estrogen. Estrogen and its receptors play a crucial role in cellular energy metab-
olism43. Although acute insulin action on glucose metabolism remained unaffected by estradiol treatment44, the 
risk of type-II diabetes was observed to increase with longstanding estrogen administration45. Estrogen stimulates 
blood glucose transport to cells and its metabolism by up-regulating glycolytic kinase enzymes in the cytoplasm43. 
Moreover, estrogen is accounted for improved surfactant production and alveologenesis and thereby, can increase 
alveolar elimination of highly water soluble compounds e.g. acetone and ammonia46,47. Exhaled alveolar acetone 
concentrations decreased significantly at ovulation in the control cohort probably due to a pronounced decline of cir-
culating estrogen. Acetone exhalation did not behaved alike in the contraception cohort due to constant oral supply 
of estrogen. An overall significant rise in acetone during luteal phase can be assigned to estrogen rise. Consecutively, 
increased progesterone can antagonize the insulin action in adipose tissue37 and will increase lipolysis.

Figure 2. Comparisons of four endogenous VOCs from all women, control- and contraception cohort. 
Y-axes represent median signal intensities of exhaled endogenous VOCs. X-axes represent the six different 
measurement points (i.e. different menstrual cycle phases from first menstrual bleeding to 2nd menstrual 
bleeding) corresponding to the time course of the study. VOC data of all phases were compared to the 
corresponding median values in the initial ‘menstrual bleeding (MB)’ phase. The ‘*’ symbols (red and green 
colored) represent the statistically significant (i.e. P-value ≤ 0.005) differences in relation to the initial MB 
phase. A green ‘*’ is used to assign significant changes at the ovulation phase.
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Isoprene exhalation. Isoprene is supposed to originate predominantly from the mevalonate pathway of 
cholesterol biosynthesis48. Although liver and intestine are the central organ for total cholesterol regulation, all 
cells express its biosynthetic enzymes to maintain membrane integrity. Significantly elevated isoprene exhalation 
during ovulation phase in the control cohort can be attributed to supposedly high plasma estrogen. Estrogen and 
its receptor expressions facilitate mitochondrial β-oxidation of fatty acid and cytoplasmic oxidation of pyruvate, 
which derive Acetyl Co-A and thereby, trigger the mevalonate pathway43. Overall, lipoprotein cholesterol abun-
dance changes in response to varying estrogen levels. Evidence suggests that total cholesterol and low density 
lipoprotein-C are maximized during the follicular phase and drop during the luteal phase, with high density 
lipoprotein-C highest around ovulation49. Cholesterol is the precursor for the synthesis of steroid hormones50. 
Significantly elevated isoprene concentrations may thus indicate an increased rate of cholesterol biosynthesis 
that contributes to higher plasma concentrations of both sex hormones required for the subsequent luteal phase. 
In human cell lines, synthetic progesterone inhibits cholesterol biosynthesis51. Thus, the constant intake of syn-
thetic progesterone and estrogen may have led to a decreased isoprene concentration in the middle of the cycle 
in the contraception cohort. Interestingly, two participants (P-16 and P-21) who have continuously been taking 
combined-oral contraception for more than 10 years, exhaled no traceable isoprene. This could be due to the 
progesterone driven suppression of enzymes responsible for the mevalonate pathway.

DMS exhalation. DMS is mainly produced via methylation of methionine by anaerobic gut bacterial col-
ony52. Active estrogen maintains the growth and diversity of systemic flora and thereby regulates DMS exhala-
tion. In contrast to the control cohort, a significantly decreased DMS exhalation throughout the cycles under 
contraception can be assigned to a possible decrease in estrogen activity. While looking for a possible cause we 
came across published evidences that synthetic progesterone can cause antibacterial effects on the gut flora53. 
Researchers evidenced that antibiotic administrations may often result in contraceptive failure54,55. As there is no 
certain systemic interaction between antibiotics and oral contraceptives, the explanation of such cases remained 
unclear. Here, the suppressed DMS exhalations in the contraception cohort indicates a possible antibacterial 
activity of the daily ingested synthetic progesterone via oral pills. DMS exhalation was different in the 2nd men-
strual bleeding phase in the contraception cohort most possibly due to the fact that the half-life of the synthetic 
progesterone is longer than the half-life of the natural hormone. Intestinal bacteria play an important role in 
estrogen metabolism by secreting β-glucuronidase, an enzyme that de-conjugates estrogen into its active form56. 
Antibiotics may cause dysbiosis of gut microbiota57, which can result in decreased de-conjugation and therefore, 
in down-regulation of plasma estrogen. Vice versa, estrogen deficiency suppresses microbial diversity and abun-
dance of intestinal bacteria that are related to immune homeostasis58. Thus, our observation supports the fact that 
co-administration of oral contraceptive and antibiotic drugs should be avoided.

Exhalation of exogenous VOCs. Varying and nonspecific effects were observed on exogenous VOCs. 
Breath hydrogen sulphide is sourced from oral bacterial emissions and AMS is known to originate from food 
constituent e.g. garlic, onions etc59. Here, hydrogen sulphide exhalation did not change whereas AMS showed 
similar tendencies as DMS in both cohorts. This may indicate a parallel origin of breath AMS from gut flora and 
its regulations via sex hormones. AMS remained different in the 2nd MB phase due to similar reasons indicated for 
DMS exhalation. Other exogenous VOCs e.g. benzene and toluene mainly accumulate from environmental expo-
sure60. The potential source of furan is smoking. Acetonitrile is related to smoking and environmental exposure. 
Isopropanol and limonene are used as flavoring agents in food, beverages or mouthwash as well as in disinfectants 
at clinical environment59. Due to variable inspiratory concentrations of these VOCs throughout the study period, 
no systematic effects of estrogen and progesterone were observed. This emphasizes the fact that determination of 
inspiratory concentrations is mandatory for rational clinical interpretation of exhaled breath markers.

It is well known that the natural menstrual cycle or contraceptive therapy may predominantly affect carbo-
hydrate, glucose, lipid and protein metabolism by up- or down-regulating those pathways37,43. As endogenous 
VOCs are known to originate from or are also regulated by those metabolic processes, observed changes in VOC 
exhalation can be used to monitor systemic/metabolic effects induced by different menstrual phases or via oral 
contraception. Exogenous substances such as benzene or toluene, acetonitrile or furans may accumulate due to 
environmental exposition, smoking habits and intake from food or beverages. The four substances selected for 
monitoring (ammonia, acetone, isoprene and DMS – Table 1, Fig. 2) are known to be mainly endogenous. The 
fact, that characteristic changes of the selected compounds were observed during the menstrual cycle regardless 
of different lifestyles and nutrition further supports the hypotheses, that these changes were linked to metabolic 
changes rather than to lifestyle.

As our prime interest laid on the noninvasive assessment of qualitative effects due to natural menstrual 
changes and changes under oral contraceptives, quantitative invasive measurements of plasma hormone concen-
trations were not obligatory in this study. There were not any specific VOCs or volatile hormones that appeared 
directly in the breath of normal or contraceptive subjects. Rather than looking for specific markers, we developed 
an in vivo clinical setup to observe the actual potential of volatile profiling to follow-up natural or therapy induced 
metabolic changes within a biologically comparable study population. Despite vast confounding limitations and 
challenges in the metabolomics field, we were able to demonstrate consistent and comparable changes in all 
participants with substantially low variations; even in absolute values. Consequently, most of those changes were 
reproduced (i.e. statistically indifferent) once the reference phase was repeated in both cohorts. This result was 
obtained through repeated measurements, which were applied under stable, optimized and constant state-of 
the-art experimental conditions.

In conclusion, via applying an advanced real-time analytical technique we monitored rapidly occurring physi-
ological and metabolic changes, induced by nature derived menstrual rhythm in young and healthy adult women. 
Inclusion of a biologically comparable (i.e. age, gender and BMI matched) cohort of oral contraceptive subjects 
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allowed us to suppress the natural endocrine rhythm and reliably assign the observed changes to hormonal regu-
lations. Observed effects were same and comparable in every participant from the same cohort. These phenomena 
clearly demonstrate the unique strength of noninvasive metabolic profiling of menstrual cycle homeostasis via 
exhaled VOC concentrations and its future possible applications for the qualitative assessment of oral contra-
ception or hormonal therapy. These findings could expand our present state of basic and medical knowledge on 
menstrual endocrinology, metabolomics and clinical breath research. These outcomes are innovative, novel and 
significantly important to be translated into metabolic follow-up of pregnancy, menopause and post-menopausal 
complications (e.g. hormonal imbalance, loss of bone mineral density, osteoporosis and cardiomyopathy etc.) in 
ageing societies by means of noninvasive breath-gas analysis. An intelligible and comprehensive adaptation of our 
model into certain advanced sensor-based applications may attribute to unconventional avenues towards nonin-
vasive point of care (PoC) monitoring of female health via exhaled breath-gas analysis in the future.

Methods
Our experiments were carried out in accordance with Declaration of Helsinki guidelines. Ethical approval from 
the Institutional Ethics Committee (IEC, University Medical Centre Rostock, Germany) and signed informed 
consent from 24 young and healthy women (aged between 18–45 years) were obtained. Among these women, 12 
were undertaking combined oral contraceptive pills (i.e. contraception cohort) and other 12 were not using any 
female contraception (i.e. control cohort).

Only regularly (without early or delayed period problems) menstruating women with no recent pregnancy, 
miscarriage or expectation were included randomly. Women with a history of any acute or chronic disease and 
undergoing therapy or dietary supplements were excluded. Conjugal status as well as smoking and/or drink-
ing habits were also recorded upon inclusion. Subject’s demographic information along with clinically relevant 
parameters (e.g. inclusion/exclusion criteria) is listed in Table 2.

Study Protocol. We started breath sampling for each woman during her menstruation bleeding phase and 
then repeated follow-ups with defined intervals until the next bleeding. The series of our six measurement points 
were as follows:

 1. Menstrual (0–4th day of menstrual cycle) bleeding phase [MB (D_0–4)] →
 2. 1st Day (5th–6th day of menstrual cycle) after the bleeding stops [1D-poMB (D_5–6)] →

Subject 
IDs

Age 
(Years) Gender

Height 
(cm)

Weight 
(Kg)

Cigarette 
smoking 
habits

Alcohol 
drinking 
habits

BMI 
(Kg/
m2)

Undertaking 
combined oral 
contraception

Irregular 
menstrual 
cycle

Recent 
pregnancy, 
miscarriage or 
expecting

Any 
acute or 
chronic 
disease

Any 
addiction, 
medication 
or diet

Conjugal 
life

1 25 F 155 48 No No 20 No No No No No Yes

2 45 F 168 60 Yes No 21 No No No No No Yes

3 28 F 168 70 Yes No 25 No No No No No Yes

4 20 F 163 52 No No 20 No No No No No Yes

5 39 F 170 67 Yes No 23 No No No No No Yes

6 26 F 172 69 Yes No 23 No No No No No Yes

7 18 F 160 55 No No 22 No No No No No Yes

8 35 F 166 66 No No 24 No No No No No Yes

9 22 F 165 71 Yes No 26 No No No No No Yes

10 27 F 175 63 No No 21 No No No No No Yes

11 41 F 163 65 Yes No 24 No No No No No Yes

12 19 F 169 68 No No 24 No No No No No Yes

13 28 F 170 63 No No 22 Yes No No No No Yes

14 24 F 165 71 No No 26 Yes No No No No Yes

15 21 F 165 64 No No 24 Yes No No No No Yes

16 27 F 160 55 No No 22 Yes No No No No Yes

17 40 F 164 70 No No 26 Yes No No No No Yes

18 37 F 168 75 No No 27 Yes No No No No Yes

19 28 F 166 68 No No 25 Yes No No No No Yes

20 26 F 167 71 No No 26 Yes No No No No Yes

21 30 F 173 77 No No 26 Yes No No No No Yes

22 23 F 169 60 No No 21 Yes No No No No Yes

23 35 F 172 71 No No 24 Yes No No No No Yes

24 20 F 161 63 No No 24 Yes No No No No Yes

Table 2. Demographic information of healthy women. Subject’s age, gender, height, body weight, smoking or 
drinking habits and body mass index (BMI) are listed along with additional clinically important parameters e.g. 
use of oral contraceptives, pregnancy, diseases or other addiction, medication or diet and conjugality etc.
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 3. 1st Week after bleeding stops (i.e. mid-follicular phase) [1W-poMB (D_7–13)] →
 4. 2nd week (14th–20th day of menstrual cycle) after the bleeding stops (i.e. ovulation phase) [2W-poMB 

(D_14–20)] →
 5. 3rd week (21st–27th day of menstrual cycle) after the bleeding stops (i.e. mid-luteal phase) [3W-poMB 

(D_21–27)] →
 6. 2nd Menstrual (28th–31st day of menstrual cycle) bleeding phase [2nd MB (D_28–31)]

All volunteers rested in the sitting position for 10 min before the actual measurement in order to mini-
mize all hemodynamic changes from preceded standing or walking. Each subject maintained a normal sitting 
position18 and performed oral breathing (inhalation and exhalation through mouth only)59 via a sterilized 
Teflon-mouthpiece of 2.5 cm diameter61. After performing one minute of paced breathing (with a fixed normal 
respiratory rate of 12 breaths/min by following the sound of a metronome) they continued another 2 min of spon-
taneous breathing (metronome was muted at this time). Mouthpieces were reused after sterilization. In order to 
avoid any partial/unsupervised nasal breathing, we used nose clips in this setup.

PTR-ToF-MS measurements. Breath VOCs were measured continuously in real-time via a high-resolution 
proton transfer reaction-time of flight-mass spectrometry [PTR-ToF-MS 8000] (Ionicon Analytik GmbH, 
Innsbruck, Austria). The functional principle and optimized conditions of our instrument for online breath sam-
pling and analysis were described in previous studies26,31. Briefly the following steps take place:

 1. PTR- Sampling mode and sample transfer: 20 ml/min of breath are drawn continuously into the 6 m long 
heated (75 °C) silco-steel PTR transfer-line in side-stream mode via a t-piece connected to the sterile 
mouthpiece. In this way the breath sample is directly transferred into the drift tube of the instrument 
(please see 3).

 2. Ion source: Hydronium ions (H3O+) are produced as primary ions from pure (99.9%) water vapor in a 
hollow cathode discharge ion source. These ions then then transferred to the drift tube via a lens system.

 3. Drift tube: Sample analytes (i.e. breath VOCs) are introduced in this chamber. The soft ionizations (i.e. 
minimal fragmentation) of VOCs takes place via proton transfer reactions [VOC + H3O+ → (VOC)
H+ + H2O]. Only VOCs with relatively higher proton affinity than water are being ionized.

 4. ToF-MS: Protonated VOCs are then transferred from the drift tube into the high-resolution reflectron 
time-of-flight mass spectrometer (Tofwerk AG, Thun, Switzerland), where they get detected according to 
their mass to charge (m/z) ratios.

Preconcentration is not required in this technique. The following pre-optimized experimental conditions were 
used:

PTR- Mass resolution: ~4000 m/∆m (enables isobaric separation of substances).
PTR- Time resolution: 200 ms (i.e. after every 200 ms of interval a new mass spectrum was recorded).
Other PTR-parameters: 4 mA of ion source current, 6 ml/min of H2O flow, Drift tube temperature of 75 °C, 

voltage of 610 V and pressure of 2.3 mbar were used. The resulting E/N ratio was 139 Td.
VOC data recording and mass calibration: After every minute a new data file was recorded automatically and 

the mass scale was recalibrated after each run (60 s). We used the following masses for mass calibration: 21.0226 
(H3O+-Isotope), 29.9980 (NO+) and 59.049 (C3H6O).

VOC data processing. VOCs were measured in counts per seconds (cps) and corresponding intensities were 
normalized onto primary ion (H3O+) counts. As PTR measures the VOCs continuously, inspiratory/ambient and 
expiratory data are recorded seamlessly. Thus, we applied a custom-made data processing algorithm (‘Breath 
tracker’; based on MATLAB version 7.12.0.635, R2011a) to identify expiratory and inspiratory phases31,35. Here, 
we used acetone as the tracker mass due to its endogenous origin and relatively higher abundance in exhalation 
than in inspiratory air.

VOCs were tentatively identified via their sum formulas and protonated masses are listed in Table 1 and 
Table S1. The high mass resolution of the PTR-ToF-MS-8000 enables very accurate assignment of a chemical 
formula to its measured mass. Thus, within the discussion VOCs are referred to by their name or sum formula.

Reduction of intra-individual variations for the heat-map. All in vivo studies are bound to have 
intra-individual variations. In this longitudinal approach, each volunteer was considered as her own control. 
Thus, during the presentation of relative changes throughout the menstrual cycle in the heat-map (Fig. 1), 
intra-individual variations were reduced by normalizing VOC concentrations onto the corresponding values in 
the third breath (from the second minute) of the first menstruation phase.

Statistical analysis. Due to the non-parametric distribution of data, median values were considered for all 
statistical analysis. For statistical comparisons between the 6 different measurement points (i.e. each group) we 
treated the data as follows:

At first, the median (from all 24 participants) of exhaled VOC concentrations (absolute values) in each group 
were calculated (i.e. over the 60 s of measurement from the spontaneous breathing phase). Secondly, the same as 
above were calculated separately for the contraception- and control cohort (12 subjects in each cohort).

Statistically significant differences in all above-mentioned parameters were evaluated via repeated measure-
ment ANOVA on ranks (Friedman repeated measures analysis of variance on ranks, Shapiro-Wilk test for nor-
mal distribution and post hoc Student–Newman–Keuls method for pairwise multiple comparisons between all 
groups; P-value ≤ 0.005) in SigmaPlot (version 13) software.
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From all pairwise comparisons, we selected those referring to the corresponding values from the first men-
strual bleeding phase [MB (D_0–4)].

Data availability. Authors comply with the data availability policy of Scientific Reports.
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