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Abstract

Background: Analysis of scATAC-seq data has been recently scaled to
thousands of cells. While processing of other types of single cell data was
boosted by the implementation of alignment-free techniques, pipelines
available to process scATAC-seq data still require large computational
resources. We propose here an approach based on pseudoalignment,
which reduces the execution times and hardware needs at little cost for
precision.

Methods: Public data for 10k PBMC were downloaded from 10x Genomics
web site. Reads were aligned to various references derived from DNase |
Hypersensitive Sites (DHS) using kallisto and quantified with bustools. We
compared our results with the ones publicly available derived by
cellranger-atac. We subsequently tested our approach on scATAC-seq
data for K562 cell line.

Results: We found that kallisto does not introduce biases in quantification
of known peaks; cells groups identified are consistent with the ones
identified from standard method. We also found that cell identification is
robust when analysis is performed using DHS-derived reference in place of
de novo identification of ATAC peaks. Lastly, we found that our approach is
suitable for reliable quantification of gene activity based on scATAC-seq
signal, thus allows for efficient labelling of cell groups based on marker
genes.

Conclusions: Analysis of sScCATAC-seq data by means of kallisto produces
results in line with standard pipelines while being considerably faster; using
a set of known DHS sites as reference does not affect the ability to
characterize the cell populations.
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EEEE Amendments from Version 1

In order to show that reference-based analysis of SCATAC-seq
data is not suitable only for well defined cell groups, as in PBMC,
this version of the manuscript extends the analysis to a sparser
and more homogeneous dataset (K562 cells). In addition, we
analyzed computational resources needed to run the exemplified
processes.

Any further responses from the reviewers can be found at the
end of the article

Introduction

Recent technological advances in single-cell technologies
resulted in a tremendous increase in the throughput in a relatively
short span of time'. The increasing number of cells that could be
analyzed prompted a better usage of computational resources.
This has been especially true for the post-alignment and quan-
tification phases. As a consequence, it is today feasible to run
the analysis of single cell data on commodity hardware with lim-
ited resources’, even when the number of observables is in the
order of hundreds of thousands. Conversely, the analysis steps
from raw sequences to count matrices lagged for some time.
Alignment to the reference genome or transcriptome is largely
dependent on classic aligners, without any specific option to
handle single-cell data, with the notable exception of the latest
implementation of STARsolo in the STAR aligner’.

More recently, analysis of Next generation sequencing (NGS)
data benefits from technologies based on k-mer processing,
allowing alignment-free sequence comparison’. Most of these
technologies require a catalog of k-mers expected to be in the
dataset and, hence, subject of quantification. RNA-seq analysis
relies on the quantification of gene/transcript abundances and,
while it is possible to perform de novo characterization of
unknown species in every experiment, it is common practice’* to
rely on a well-defined gene model such as GENCODE’ to
quantify expressed species. It is then possible to efficiently
perform alignment-free analysis on transcripts to quantify gene
abundances. Tools implementing this approach such as kallisto® or
salmon’ have been quickly adopted on a wide scale.
Moreover, a recent implementation of kallisto extended its capa-
bilities to the analysis of single cell RNA-seq data'’ by direct
handling of cell barcodes and UMIs, allowing the analysis
of such data in a streamlined way. Of notice, a scRNA-seq
oriented implementation of salmon has been recently developed''.

Analysis of epigenetic features by ATAC-seq requires the
identification of enriched peaks along the genome sequence.
This is typically achieved using peak callers such as MACS",
with tuned parameters. Since ATAC-seq signal mirrors DNA
accessibility as mapped by DNase-seq assays'® and catalogs of
DNase I Hypersensitive Sites (DHS) are available'*', it should
be possible to perform reference-based ATAC-seq analysis in
a way much similar to what is performed for RNA-seq analysis.
In this paper we show it is indeed possible to perform single-
cell ATAC-seq analysis using kallisto and bustools, with minor
tweaks, using an indexed reference of ~1 million known DHS
sites on the human genome.
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Methods

Single cell ATAC-seq data

Single cell ATAC-seq data for PBMC were downloaded from
the 10x Genomics public datasets (https://support.10xgenomics.
com/single-cell-atac/datasets/1.1.0/atac_v1_pbmc_10k) and include
sequences for 10k PBMC from a healthy donor. We used the
Peak by cell matrix HDFS5 (filtered) object as our ground truth.

Raw sequences for single cell ATAC-seq data for K562 cell line
were downloaded from Short Read Archive (GEO ID
GSE112200).

Generation of kallisto index

We downloaded the DNase I Hypersensitive Sites (DHS) inter-
val list for hgl9 genome from the Regulatory Elements DB'C.
Intervals closer than 500 bp were merged using bedtools'’.

We extracted DNA sequences for DHS intervals and indexed
corresponding fasta files using kallisto index (v0.46.0) with
default parameters, resulting in an index for the full DHS set
(iDHSfull) and an index for the merged set (iDHS500). The
same procedure was performed for the peak set identified by
cellranger-atac and distributed along with the data iIMACS).

Processing of Chromium 10x data

kallisto requires the definition of the unique molecular identifi-
ers (UMI) and cellular barcodes (CB) in a specific fastq file. For
standard Chromium scRNA-seq data, these are substrings of
R1 and RNA is sequenced in R2. Chromium scATAC-seq reads
are not structured in the same way: paired end genomic reads
are in R1 and R3, R2 includes only the 16 bp cellular barcode.
In addition, kallisto bus expects only a single read with
genomic information. Therefore we simulated appropriate struc-
tures in three different ways:

1. by adding 12 random nucleotides and mapping the R1
file (forward read):
kallisto bus -x 10xV2 modified R1l.fastqg.gz
pbmc_ 10k R1.fastqg.gz B

2. by extracting sequences of different length n (5, 10, 15,
20) from the 5° of R3 (reverse read) and mapping the R1
file:
kallisto bus -x 1,0,16:2,0,n:0,0,0
pbmc 10k R1l.fastqg.gz
pbmc_lOk_R2.fastq.gz
pbmc:lOk:R3.fastq.gz

3. by extracting sequences of different length n (5, 10, 15,
20) from the 5’ of R1 and then mapping the R3 file:
kallisto bus -x 1,0,16:2,0,n:0,0,0
pbmc_ 10k R3.fastqg.gz
pbmc_ 10k R2.fastqg.gz
pbmc_ 10k R1.fastqg.gz

We will refer to the second set of simulation as n-fiwd and to the
third set as n-rev, where n is the number of nucleotides con-
sidered as UMI. We also applied two different summarization
strategies for bustools count step. In the first approach,
pseudocounts are not summarized, the number of features matches
the size of the index; in the second approach, summarized, we
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let bustools map counts on iDHSfull to the merged intervals
(Figure 1A).

Processing of Fluidigm C1 data

Reads were aligned to reference genome (hgl9) using bwa
mem (v0.7.12)"%, deduplication was performed using samblaster
(v0.1.21)"". Only R2 were aligned in bwa SE configuration.
Individual BAM files were merged using samtools and peaks
were called from the pseudo-bulk using MACS2 (v2.2.7.1)"
(paired end options: -q 0.1 --nomodel --shift 0, single read
options: -q 0.1 --nomodel --shift -100 --extsize 200). Quantification
was performed using bedtools multicov (-q 15).

kallisto quant was run with default parameters for paired end
data. Only R2 were processed in kallisto quant SE with specific
options (--single -1 300 -s 20). Individual counts from abundance
files were merged using tximport™.

In order to perform kallisto bus analysis we generated a set of
288 random CB which were used to create 288 matched fastq

DHS

L

~3M

DHS 500

DHS 500p

I I

~1M
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files. Once all read pairs and cellular barcodes have been concate-
nated into R1, R2 and CB fastq files, we ran kallisto bus with the
same strategy used for PBMC data (-x 1,0,16:2,0,10:0,0,0).

Analsyis of single-cell data

Counts matrices were analysed using Scanpy (v1.4.2)’ with
standard parameters. In PBMC data, we filtered out cells that
had less than 200 regions and regions that were not at least in
10 cells. In K562 data we only excluded regions that were not
shared by at least 20 cells. The count matrices were normal-
ized and log transformed. The highly variable regions were
selected and the subsetted matrices processed to finally clus-
terized the data with the Leiden algorithm®', setting resolution
parameter to 0.2. Marker peaks were selected using Wilcoxon
rank-sum test. Adjusted Mutual Information (AMI) was used to
evaluate the concordance between the 10x and matrices derived
from kallisto.

Cellular barcodes were extracted using UMITools?, setting the
expected number of cells to 10,000.

DHS 500p

DHS 500

DHS

0.561

0.545

0.6

0.2

0.00 0.25 0.50 0.75 1.00
DHS Regions

Figure 1. (A) Graphical depiction of processing of pseudoalignment over DHS, based on three DHS derived indices. The first (DHS)
generated by kallisto on ~3 M DNase | sites, the second (DHS500) by merging regions closer than 500 bp and the last (DHS500p) by
projecting the result of DHS index to DHS500 using bustools capabilities. (B) Heatmaps representing Ml scores for the DHS derived matrices.
The heatmap on the left reports the pairwise Ml values between DHS, DHS500 and DHS500p strategies. The heatmap on the right represents
Ml values comparing the DHS derived strategies to the cellranger-atac (10x) results or 10- rev strategy. DHS500 strategy achieves the highest
scores. (C) AMI values comparing DHS (green line) and DHS500 (red line) strategies to cellranger-atac at different thresholds on the number
of regions considered in the analysis. When approximately 50,000 regions are included, the AMI stabilizes at its maximum. Dashed lines

represent the fit curves.
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The PBMC matrices derived from kallisto and cellranger-atac
were also imported into Seurat V3*. Gene activity score was
calculated using the CreateGeneActivityMatrix function or
directly summarized by kallisto. The annotated 10k PMBC
scRNA-seq Seurat object was downloaded from the link available
in their v3.1 ATAC-seq Integration Vignette (https://satijalab.
org/seurat/v3.1/atacseq_integration_vignette.html).

Cell labels from the scRNA-seq data were transferred to scAT-
ACseq data using TransferData function based on the gene
activity score. All the analyses were carried out using
standard parameters. Jaccard similarities were evaluated using
the scclusteval (v0.1.1) package™.

Results

Limitations of kallisto-based analysis

At time of writing, kallisto does not natively support scATAC-
seq analysis, though it can be applied to any scRNA-seq
technology which supports CB and UMI. According to the kallisto
manual, the technology needs to be specified with a tuple of indi-
ces indicating the read number, the start position and the end
position of the CB, the UMI and the sequence respectively. In
this sense, the technology specifier for standard 10x scRNA-seq
with v2 chemistry is 0,0,16:0,16,26:1,0,0 (see kallisto manual
for details). Using this logic, a single fastq file contains sequence
information and UMI is always required. scATAC-seq from
10x genomics is sequenced in paired-end mode and there is no
definition of UMI, reads are deduplicated after genome
alignment.

kallisto requires an index of predefined sequences to perform
pseudoalignment, typically transcript. When applied to scATAC-
seq analysis, it does not allow for any epigenomic analysis,
including the identification and quantification of enriched regions.
Therefore, we computed an index on the genomic sequences for
the 80,234 peaks identified by cellranger-atac and distributed
along with fastq files. This ensures that the subsequent analysis
were performed on the same regions and allowed us to quantify
the bias, if any, introduced by kallisto.

kallisto primary analysis on PBMC data

We tested different strategies to overcome the technical lim-
its and the absence of UMI. We evaluated concordance of dif-
ferent approaches using AMI between cell groups identified
with equal processing parameters. Analysis based on cellranger-
atac results is considered as ground truth. Results are reported
in Table 1.

We tested two main strategies: first, the R1 is pseudoaligned
and the initial nucleotides of R2, cut at different thresholds, are
used as UMI (pseudoUMI hereafter). As UMI is needed for
deduplication, we reasoned that a duplicate in scATAC-seq
should be identified by the same nucleotides in the first por-
tion of the read, where quality is higher. We observed generally
high values of AMI, with the notable exception of pseudoUMI
5 nt long. Since basecall qualities are generally higher for R1
and kallisto does not use qualities in pseudoalignment, we
tested the strategy where R2 is mapped and R1 is used to derive
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Table 1. Comparision of cellranger-
atac and kallisto analysis. The table
reports Adjusted Mutual Information
between single cell cluster assignments
on cellranger-atac data and kallisto
analysis. Different strategies to evaluate
pseudoUMI are reported. All simulations
raised high AMI values, both in the
forward and reverse approach, except
for the pseudoUMI of length 5. The
10-Reverse configuration reached the
highest score.

Comparison Forward Reverse
10x vs 5nt 0.1854 0.1733
10x vs 10nt 0.7434 0.7625
10x vs 156nt 0.7571 0.7398
10x vs 20nt 0.7356 0.7520
10x vs Random 0.7272 None

pseudoUMI. Again, 5 nt pseudoUMI raised the worst results,
while AMI values were slightly higher than the forward configu-
ration. In particular, we noticed the highest AMI values when R2
is used and pseudoUMI is 10 nt long (AMI = 0.7625). Second,
we tested a configuration using R1 as sequence and 10 nt UMI
randomly generated. Interestingly, concordance remains in line
with previous experiments (AMI = 0.7272).

These data indicate that kallisto is able to properly quan-
tify enrichments in scATAC-seq and does not introduce a
considerable bias.

Analysis of DHS as reference

One major limitation of a kallisto-based approach to
scATAC-seq is the lack of peak calling routines and the need of
an index of sequences for pseudoalignments. Hence, we rea-
soned that we could use any collection of regions that putatively
would be target of ATAC-seq experiments. Since ATAC-seq is
largely overlapping DHS, we exploited regions defined in the
ENCODE project”. The DHS data provided by ENCODE
includes 2,888,417 sites. We generated an additional dataset
by merging regions closer than 500 bp into 1,040,226 sites. We
performed pseudoalignment on the full dataset, on the merged
dataset and on the full dataset summarized by bustools (Figure 1A,
see Methods). Pairwise comparison between performances of
the three methods reveals lower values of AMI (Figure 1B).
Comparison with 10x data and the configuration 10-rev previ-
ously performed shows high values of AMI when considering
merged DHS intervals (AMI = 0.7164 and 0.743 respectively).
When pseudoalignmets are performed on the full DHS set, per-
formance degrades to lower AMI values. Since the number of
DHS intervals is considerably higher than the typical number
of regions identifiable by ATAC-seq, we tested the trend of
AMI at different cutoffs on the number of DHS included in the
analysis (Figure 1C). AMI reaches a plateau when approxi-
mately 50,000 regions are included into the analysis. This
defines a reasonable target for filtering during preprocessing
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stages of scATAC-seq data. Taken together, these findings
support the suitability of using kallisto for identification of cell
identities in scATAC-seq without any prior knowledge of the
epigenetic status of single cells.

Identification of marker regions

A crucial step in the analysis of scATAC-seq data is the iden-
tification of marker peaks which can be used to functionally
characterize different clusters. We tested the ability of our
reference-based approach to identify differential DNase I hyper-
sensitive sites that are overlapping or close to peaks identified
with standard analysis. To this end, we first matched cell
groups from DHS500 to groups identified after cellranger-atac.
We selected the top 1,000 peaks marking each DHS500 group
and evaluated the concordance by mutual distance to the top
1,000 significant markers in the matched groups (p < 0.05),
we could identify significant markers only in five matched
clusters. We found that the large majority of peaks (>= 80%) were
overlapping between the two strategies or closer than 20 kb
(Figure 2). These results confirm the substantial equivalence
between the standard strategy and the reference-based one.

CellRanger
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DHS500 & || 1000
/ <d<
50 5000
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Figure 2. Analysis of peak concordance. The bars represent the
proportion of marker peaks that are in common between DHS500 and
cellranger-atac-based strategies at different distance thresholds.
Only the top 1,000 significant peaks (p < 0.05) were included in the
analysis; the graph reports results for the 5 cell clusters (A-E) that
contain the required amount of significant markers. The chart also
reports the proportion of peaks without any match (None).
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Integration with scRNA-Seq data and cluster labeling

In addition to the analysis of technical suitability of kallisto
for the analysis of scATAC-seq data, we investigated its valid-
ity in extracting biological insight. To this end, we performed
a more detailed analysis of PBMC data by label transferring
using Seurat V3%, with the hypothesis that different approaches
could lead to mislabeling of cells clusters. Matching is performed
with the help of Gene Activity Scores calculated as sum
of scATAC-seq counts over gene bodies extended 2 kb upstream
the TSS, Seurat’s default approach. We applied the same
transferring protocol on data derived from cellranger-atac
counts and from the DHS500 approach (Figure 3), finding no
relevant differences in the UMAP embeddings. A detailed quan-
tification of cluster matches reveals a slight deviance in the
characterization of NK subpopulations (Figure 4A). In addi-
tion to scores calculated by Seurat, we tested the ability of
bustools summarization step to project and sum scATAC-seq
values into Gene Activity using the identical mapping to
extended gene bodies. We found that gene activity score obtained
by kallisto is similar to Seurat’s CreateGeneActivityMatrix
(Figure 4B) in terms of cell labeling, with the additional
advantage of reduced run time.

Analysis of K562 cell lines

PBMC mixtures among the de facto standards in single cell
benchmarks; it may be argued that the heterogeneity of the
mixture can be easily revealed, implying that the differences
between cell populations are large enough to be spotted also
with suboptimal approaches. We analyzed scATAC-seq data for
288 K562 cells™, profiled on a Fluidigm C1 apparatus, to test
the consistency of our approach on a supposedly homogene-
ous population. Since sequences are available for each cell
separately, we could extend our tests to the standard kallisto
quantification procedure (kallisto quant), performing sepa-
rated cell-based pseudoalignments. We explored seven different
strategies, either based on paired-end reads (bwa PE + MACS,
bwa PE + DHS, kallisto quant PE) or single reads (bwa SE +
MACS, bwa SE + DHS, kallisto bus and kallisto quant SE). We
tested single read modality to accomplish a fair comparisions with
kallisto bus. In our tests, bwa PE + MACS resembles a typical
approach for the analysis of such data (as in 26). Strategies based
on kallisto and strategies named with DHS make use of the
DHS500 set of regions.

Overall, we found a high concordance among all strategies.
Two major cell groups could be identified using the equal
processing parameters (Figure 5A) and cells were found gener-
ally classified into consistent groups (Figure 5B), with the notable
exception of bwa SE + MACS. Excluding the latter, AMI ranges
between 0.69 and 0.97. Interestingly, the comparison between
bwa PE + MACS and bwa PE + DHS (AMI=0.74) suggests
that the major source of differences is the set of regions, not the
alignment and quantification method. The concordance between
marker regions, measured by Jaccard’s coefficient, reveals
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(A) UMAP embeddings for the multiple approaches described in the text. All cases identify two major subpopulations. (B) Pairwise Adjusted
Mutual Information between all the approaches described in the main text. High AMI values indicate that all the approaches are consistent
in identifying cell propertis. (C) Pairwise Jaccard’s coefficients between marker peaks identified in each analysis. All approaches are able to
identify a similar set of regions marking cell groups, with the exception of bwa SE + MACS which relies on a larger set of spurious regions.

a similar configuration, again with the notable exception of bwa Computational resources

SE + MACS (Figure 1C). This last approach is possibly biased One of the most obvious advantages in using kallisto in place
by spurious ATAC peaks identified when only single reads are of alignment-based methods is the reduction of resources
used: in this case MACS?2 identified 17,125 peaks (average score required to process raw sequences into a count matrix. We com-
46.079), while in paired end configuration it identified 5,120 pared runtimes of the various approaches used through this
peaks (average score 65.919). Peaks shared by both the analyses work. First, we compared cellranger-atac pipeline and kallisto
have high quality (average score 86.104) while peaks specific of ~ on a machine equipped with 12 CPU (Intel X5650@2.67GHz)
peaks identified after bwa SE + MACS are indeed low quality and 72 Gb RAM using the PBMC dataset. While it took
(average score 31.039). These findings indicate that single read 46:49:57 hours for cellranger-atac to complete the analysis, its
mode is not suitable for de novo identification of ATAC peaks. total runtime includes several post-processing and analysis

steps. To make a fair comparison, we focused on pipeline steps

In all, analysis on less heterogeneous data confirm the suitability ~ that are mirrored in both the approaches (alignment, barcode
of kallisto-based and, more in general, reference-based approaches ~ assignment and counting) and the steps that are prerequisites to

for the analysis of scATAC-seq experiments.

them (Figure 6A). To this end, we also considered in the kallisto
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Trim reads Sort Mark duplicates Count cut sites
4:29:15 2:45:59 4:12:17 3:10:56
kallisto bus 2:17:58
kallisto bus  bustools correct and sort  bustools count
0:26:43 0:02:29 0:01:29
bwa + MACS 0:15:00 kallisto bus ~ 0:02:32 kallisto quant 2:32:30
\ I I | \ |
bwa mem  samtools merge macs2 count kallisto bus bustools correct and sort bustools count merge
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6:05:32

bwa + DHS

Figure 6. Runtime analysis. Graphical representation of runtimes for the datasets processed in this paper. Each box represents a separate
step in a pipeline, box size is proportional to runtime in logarithmic scale. Colors in each box maps logically equivalent steps mirrored
in different pipelines. (A) Runtimes of cellranger-atac and kallisto bus on the PBMC 10k dataset. White boxes indicate steps that are not
mirrored in both the analysis. (B) Runtimes of all the approaches used in the analysis of K562 data. The gradient in kallisto quant indicates a

hybrid step, which performs mapping and quantification. bwa SE pipelines have been excluded from the chart.

runtime an external application to identify valid cellular barcodes
(UMITools). This step can be replaced by any tool capable to
return a list of valid cellular barcodes. The total effective time of
kallisto is approximately 17x shorter, also because many
processing steps are not required (initial trimming and BAM
processing) or missing by design (peak calling). Our results are
consistent with previous estimates on scRNA-seq data”. In
addition to reduced runtimes and pipeline simplicity, usage of
kallisto implies reduced disk usage (12 Gb vs 40 Gb).

Analysis of the K562 datasets show reduced runtimes due to
the smaller number of cells and sequences. Comparisons have
been performed on the same 12 CPU platform, running 3 cells
in parallel, 4 threads each, for kallisto quant and bwa-based
pipelines. Coherently with the PBMC dataset, kallisto bus
analysis is approximately 7x shorter than the default approach
(Figure 6B). Note, however, that raw sequences are generated
for separate cells: alignment could be performed on as many
computing units as the number of cells themselves. As an exam-
ple, one could run 288 parallel alignments, reducing the total
alignment step by a factor 96x (5.8s), assuming no impact
on the I/O subsystem. The quantification step of bwa-based
approach is impacted by the size of the peak list, which was three
orders of magnitude smaller for bwa PE + MACS (5,120). A
special case is the kallisto quant approach: we found the pseu-
doalignment step being much slower than the bwa counterpart.

By looking at execution logs, we noticed that kallisto spends
a large time in loading the reference in memory, this is repeated
for each cell separately. kallisto bus loads the reference one
time only, with beneficial impact on speed. As for disk usage,
kallisto bus requires less space than bwa PE + MACS (393 Mb vs
1.2 Gb), while kallisto quant needs considerably more space
(14 Gb), due to the ‘abundance.tsv’ text files produced by default
during processing.

Lastly, it should be noticed that kallisto memory requirements
in building the index are proportional to the number of k-mers
found. The DHS500 database is composed by 682,100,489
k-mers and RAM allocation peaks at 37 Gb during indexing. The
process itself takes 37.5 hours to complete.

Discussion/conclusions

Analysis of differential chromatin  properties, through
ATAC-seq and other quantitative approaches, relies on the iden-
tification of peaks or enriched regions, It is often achieved with
the same statistical framework used in analysis of differential
gene expression”®”. Identification of peaks is a key difference
between the two approaches. De novo discovery of unanno-
tated transcripts has been shown to be possible in early times
of NGS¥, but the large majority of analysis is performed on
gene models. Conversely, analysis of epigenomes involves
identification of regions of interest, although a large catalogues
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of such regions have been provided by several projects, such
as the ENCODE project’!, the BluePrint project” or the
GeneHancer database™. In single cell analysis, for both
scRNA-seq and scATAC-seq, identification of novel features
may be an issue, especially because of the low coverage at
which single cells are profiled. To our knowledge, this work
is the first to test the feasibility of a reference-based approach
to ATAC-seq analysis, with a special focus on single cell
ATAC-seq. In combination, we tested the suitability of kallisto to
quantify scATAC-seq, which maximizes the performances of
the whole process. Our results suggest that identification of cell
groups using a reference-based approach is not different from a
standard pipeline. Not only cells could be classified in a nearly
identical way, but also differential features are largely matched
between the analysis. The most obvious advantage is the gain
in speed and efficiency: once reads have been demultiplexed,
kallisto analysis requires short execution times, in the order of
minutes, with limited hardware resources. This advantage has
been known for a while and, in fact, it has been demonstrated
that it can be used on Rock64 hardware*. We also anticipate that
adoption of a reference-based strategy comes with additional
advantages: in particular, functional annotations and gene asso-
ciations are available for known regulatory regions™ and, more
recently, for DNase I Hypersensitive Sites'”. In the analysis
of K562 cells, we highlighted a degradation of performances
when a spurious region list is used, in our case peaks identified by
MACS wusing single reads only. While best practices for
ATAC-seq analysis are available”, adoption of a reference-
based approach could improve stability of results and their
reproducibility.

Of course, our strategy has limitations that come from the una-
vailability of read positioning on the genome: in addition to the
impossibility of identifying novel peaks, it is not possible to
perform some ATAC-specific analysis, such as nucleosome
positioning or footprinting of transcription factors in acces-
sible regions. Indeed, these two can be overcome if standard

F1000Research 2020, 9:199 Last updated: 15 JUN 2020

limitation is the large amount of memory needed to index the DHS
reference. Although indexing cannot be performed on less per-
forming hardware, prebuilt indexes can be distributed as it is
currently done for many aligners. As concluding remark we would
like to underline that, although we showed that kallisto can be
effectively used for analysis of scATAC-seq data, we are aware
that it has not been conceived for that purposes; its interface
needs some tweaks to work. For this reason, we advocate the
development of tools which support scATAC-seq natively and
other tools for postprocessing and data visualization.

Data availability

Source data

Single cell ATAC-seq data for 10k PBMCs dataset were
downloaded from the 10x Genomics public datasets
(https://support.10xgenomics.com/single-cell-atac/datasets/1.1.0/
atac_vl_pbmc_10k). Access to the data is free but requires regis-
tration. Raw sequences for K562 cells were downloaded from the
Gene Expression Omnibus under the accession ID GSE112200
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112200).

Extended data
Zenodo: vgiansanti/Kallisto-scATAC v1.1. https://doi.org/10.5281/
zenodo.3834767°.

This project contains a detailed explanation of the procedures
described in this work and the list of DHS sites; this is also
available at https://github.com/vgiansanti/Kallisto-scATAC.

Extended data are available under the terms of the Creative
Commons Attribution 4.0 International license (CC- BY 4.0).
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Comments:

The work by Giansanti ef al. presents a novel and smart idea for scATAC-seq data analysis. It
demonstrates the possibility of using a reference-based, pseudo-alignment method to reduce the
computational requirement for scATAC-seq data analysis, with only a little sacrifice on precision. The idea
is inspired by the using of pesudoalignment for bulk and single-cell RNA-seq quantification. Here they
showed that with some tweaking of the input sequencing reads, they could use kallisto to analyze
scATAC-seq data on a pre-defined set of DNase hypersensitive sites. They compared their results with
the standard protocol (e.g. cellranger-atac) for peak quantification, single cell clustering, marker peaks
identification, and gene activity score calculation.

The results very nicely revealed the consistency on peak quantification between kallisto-based method
and cellranger-atac. The cell clusterings were almost identical between the new reference-based method
and canonical mapping strategy. And the gene activity scores by two different methods also agreed well
with each other. The approach presented in this study thus could be a very efficient way for scATAC-seq
data analysis.

The following are a few comments/questions:
1. The method was only tested with one dataset - PMBC. In fact, single cell ATAC-seq data is usually
very sparse. The PMBC dataset used in this study is of relatively high quality. The method remains
to be tested on more datasets, especially on those of more sparse, lower-quality.

2. The key advantage of the method is presumably the much improved computational efficiency —
there may be other advantages brought by the reference-based method. However, there is no
results/statistics on the running time and memory usage in the manuscript. From the description,
the improvement should be dramatic. | think it would be very nice to include a table or a figure to
demonstrate the increase of computational efficiency. This could be a very helpful way to convince
potential users.

3. Asin the above, this whole strategy is so different. It is thus possible for the method to be used for
some other scATAC-seq data analysis with advantages not only in computational efficiency. It
would be good for the authors to explore.

4. The manuscript is well organized with the core ideas clearly described. But the presentation could
be improved - there are a lot of very long sentences unnecessarily connected by “and”, “while”,
etc.

5. The legend for Fig 1A says “The first (DHS) generated by kallisto on ~2M DNase | sites ... ”, but
according to the figure and the main text, it should be“~3M”?

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes
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If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, genomics, RNA structure, Genome structure, Al algorithms in
biomedicine.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Davide Cittaro, IRCCS San Raffaele Institute, Milan, Italy

Thank you for reviewing our manuscript and for the helpful comments. We have addressed major
and minor points as detailed in the point-by-point response:

The method was only tested with one dataset - PMBC. In fact, single cell ATAC-seq data is usually
very sparse. The PMBC dataset used in this study is of relatively high quality. The method remains
fo be tested on more datasets, especially on those of more sparse, lower-quality.

We agree that the PBMC dataset is of high quality. It was used as it could be considered a de facto
standard in single cell analysis as it includes several populations at different degrees of
separations (i.e. B-cells and T-Cells are well separated, while NK and CD8 are less clearly
distinguished). We also would like to point out that it is difficult to identify low quality scATAC-seq
datasets for two reasons: one is the relative novelty of this technique and the other is the positive
bias in publications, which generally lack of negative or low-quality results. Nevertheless, we tried
to address this question analyzing data for K562 cell line. Cell lines are supposedly more
homogeneous, data were obtained on a low-throughput platform (Fluidigm C1). We believe that it
could be considered a good example of “lower quality” dataset, compared to the PBMC, at least
considering the information content. We show that our strategy is consistent with standard
approaches based on alignment and peak identification, we can identify the same level of residual
heterogeneity.

The key advantage of the method is presumably the much improved computational efficiency —
there may be other advantages brought by the reference-based method. However, there is no
results/statistics on the running time and memory usage in the manuscript. From the description,
the improvement should be dramatic. | think it would be very nice to include a table or a figure to
demonstrate the increase of computational efficiency. This could be a very helpful way to convince
potential users.

Thank you for this comment. We benchmarked kallisto+bustools and compared it to
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cellranger-atac, the default application for 10x data. We added a dedicated section in the main
text, which shows the large reduction in required resources. Note that the cellranger-atac pipeline
includes several steps that are common in downstream analysis (such as Seurat or Scanpy). In
order to make it fair, as explained in the text, we did not consider these steps in the comparison. In
addition, we added runtime analysis for the approaches used in the analysis of K562 data.

As in the above, this whole strategy is so different. It is thus possible for the method to be used for
some other scATAC-seq data analysis with advantages not only in computational efficiency. It
would be good for the authors to explore.

Our work has been mainly motivated by the reduced resources that are needed by a kallisto-based
approach, as we predict the number of scATAC-seq experiments will increase as well as the
number of cells profiled. We anticipated additional advantages of a reference-based strategy in the
first version of our manuscript, e.g. the availability of promoter-enhancer/gene interactions which
could be readily applied to scATAC-seq data. During the revision process we had the opportunity
to perform the analysis with non-optimal conditions (i.e. peak identification from single end reads
instead of paired end), which led to slightly different results. This serendipitous finding suggests
that our strategy, not relying on de novo identification, improves the stability of cell characterization
and, therefore, the reproducibility of results. We added these observations in the discussion.

Of course, the usage of standardized reference could pave the way to a new class of processing
steps not currently performed. As an example, one could identify a set of regions known to be
generally accessible (or not) to perform standardized QC. Another example could be the
identification of regions that could be used to score the cell cycle phases in sCATAC-seq data,
much like what is normally done with scRNA-seq data. We feel that all these examples require a
deeper analysis, which is beyond the scope of this work, and any undemonstrated procedure
would be, at best, greatly speculative. Our aim was to show general consistence between diverse
approaches, which we believe has been demonstrated.

The manuscript is well organized with the core ideas clearly described. But the presentation could
be improved - there are a lot of very long sentences unnecessarily connected by “and”, “while”,
etc.

Thank you for this comment, we modified the text to increase readability.

The legend for Fig 1A says “The first (DHS) generated by kallisto on ~2M DNase | sites ... ”, but
according to the figure and the main text, it should be“~3M”?

Thank you for spotting the typo in the figure legend. We corrected accordingly.

Competing Interests: Nothing to disclose

Reviewer Report 30 March 2020
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© 2020 Barozzi l. This is an open access peer review report distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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Iros Barozzi
Department of Surgery and Cancer, Imperial College London, London, UK

In their paper “Fast analysis of sSCATAC-seq data using a predefined set of genomic regions” Giansanti et
al. suggest an efficient strategy to analyse scATAC-seq data using kallisto and bustools.

The paper is clearly written, the proposed strategy is well conceived and tested, and it will be useful for
many researchers in the field of regulatory genomics. Clear advantages of this strategy are the reduced
requirements in terms of computational resources and shorter execution times, when compared to other
pipelines such as cellranger-atac. This comes at a cost, most notably the chance of missing signals at
regions that are not present in the reference set. Nevertheless, in my opinion evaluations about this being
a limitation has to be made on a case-by-case basis, and the authors clearly pointed this out (among
other limitations) in the discussion. The authors also provide access to the full code, datasets and
documentation to reproduce the analyses.

A wide range of parameters was tested, both in terms of handling and modifying the input sequences to
make them suitable for kallisto, and in terms of pre- vs post- processing the genomic partition considered
for indexing. Combinations that return results that are highly concordant with those obtained with
cellranger-atac were highlighted. The authors then demonstrated the robustness of the biological
inferences made using their strategy by showing a very large overlap with the results achieved by
cellranger-atac (in terms of different groups of regions marking distinct clusters and clusters annotation
based on label transferring from scRNA-seq data).

| am wondering if a natural application of this strategy would simplify the characterization of chromatin
state at highly repetitive regions of mammalian genomes (e.g. indexing a database of transposable
elements). This task would otherwise be quite difficult to handle explicitly with pipelines such as
cellranger-atac.

| only have two minor comments:
® Can the authors provide more details about the analysis described in the paragraph “Identification
of marker regions”? How were the cell groups defined? How were the top 1,000 peaks for each
group selected/identified?

® Fig. 1C: description of the blue curve seems to be missing.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
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Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Genomics; Transcriptional Regulation; Single-cell Transcriptomics.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Davide Cittaro, IRCCS San Raffaele Institute, Milan, Italy

Thank you for reviewing our work and for the comments. We have addressed your minor concerns
as follows.

Can the authors provide more details about the analysis described in the paragraph “Identification
of marker regions”? How were the cell groups defined? How were the top 1,000 peaks for each
group selected/identified?

We apologize for lack of clarity in the manuscript. Cell groups were identified with the Leiden
method, while markers were identified with Wilcoxon rank-sum test. The complete list of
instructions used in the analysis is part of the repository linked in the main text, nevertheless we
modified the text adding these specific details.

Fig. 1C: description of the blue curve seems to be missing.

Thank you for pointing this out. The blue line represented the fit of the DHS data. We acknowledge
colouring scheme was not appropriate and, moreover, the fit DHS500 data was missing. In the
revised manuscript we modified the figure accordingly.

Competing Interests: Nothing to disclose
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