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A B S T R A C T

Objective: Neural hypo-sensitivity to cues predicting positive reinforcement has been observed in ADHD using
the Monetary Incentive Delay (MID) task. Here we report the first study using an electrophysiological analogue
of this task to distinguish between (i) cue related anticipation of reinforcement and downstream effects on (ii)
target engagement and (iii) performance in a clinical sample of adolescents with ADHD and controls.
Methods: Thirty-one controls and 32 adolescents with ADHD aged 10–16 years performed the electro-
physiological (e)-MID task − in which preparatory cues signal whether a response to an upcoming target will be
reinforced or not − under three conditions; positive reinforcement, negative reinforcement (response cost) and
no consequence (neutral). We extracted values for both cue-related potentials known to be, both, associated with
response preparation and modulated by reinforcement (Cue P3 and Cue CNV) and target-related potentials
(target P3) and compared these between ADHD and controls.
Results: ADHD and controls did not differ on cue-related components on neutral trials. Against expectation,
adolescents with ADHD displayed Cue P3 and Cue CNV reinforcement-related enhancement (versus neutral
trials) compared to controls. ADHD individuals displayed smaller target P3 amplitudes and slower and more
variable performance − but effects were not modulated by reinforcement contingencies. When age, IQ and
conduct problems were controlled effects were marginally significant but the pattern of results did not change.
Discussion: ADHD was associated with hypersensitivity to positive (and marginally negative) reinforcement
reflected on components often thought to be associated with response preparation − however these did not
translate into improved attention to targets. In the case of ADHD, upregulated CNV may be a specific marker of
hyper-arousal rather than an enhancement of anticipatory attention to upcoming targets. Future studies should
examine the effects of age, IQ and conduct problems on reinforcement sensitivity in ADHD.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a complex neu-
rodevelopmental disorder, which affects about 5% of children and
adolescents (Polanczyk et al., 2007). It is associated with deficits in a
range of neuropsychological processes and related neural circuits
(Faraone et al., 2015) which are hypothesized to interact to impair
decision-making (Sonuga-Barke et al., 2016). A number of neuro-bio-
logical models have proposed that the core of these difficulties is a
hypodopamineric state that disrupts the individual’s response to

reinforcement in the brain’s reward centres (i.e., ventral striatum; or-
bito-frontal cortex) thought to lead to a reduced sensitivity to cues of
upcoming reinforcement and therefore to disrupted learning
(Sagvolden et al., 2005; Sonuga-Barke and Fairchild, 2012; Tripp and
Wickens, 2008). Behavioural and electrophysiological evidence for this
view is mixed (Luman et al., 2005). Some have found that individuals
with ADHD, compared to unaffected controls, show a hypersensitivity
to the introduction of contingent reinforcement (Fosco et al., 2015).
Others have reported an ADHD-related insensitivity to the imposition of
reinforcement (van Meel et al., 2011) and to changing contingencies
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(Alsop et al., 2016). Effects may be dependent on incentive type
(Demurie et al., 2011; Umemoto et al., 2014) and reinforcement va-
lence − with a recent study showing greater sensitivity to punishment
(Furukawa et al., 2017) and delay (Marco et al., 2009; Scheres et al.,
2014; Yu et al., 2015) in ADHD. The evidence from functional Magnetic
Resonance Imaging (fMRI) studies appears more consistent. Building on
early work by Scheres et al. (2007), Plichta and Scheres, (2014) re-
ported a meta-analysis of studies using the monetary incentive delay
(MID) task −in which preparatory cues signal whether a response to a
simple reaction task target will be reinforced or not − contingent on
performance (Knutson et al., 2001; Knutson et al., 2000; Liu et al.,
2011; Lutz and Widmer, 2014). This confirmed a consistent pattern of
diminished activation in the ventral striatum, a key hub in the brain’s
reward circuit, to cues predicting future reinforcement.

Because of its strong spatial resolution, fMRI is ideal for examining
the general predictions of dopamine dysfunction models of ADHD −
reduced activation in reward hubs in response to reinforcement cues.
However, because of its limited temporal resolution, it is unable to
draw more fine-grained distinctions in the neural underpinnings of the
cognitive processes linking hypo-sensitivity to reinforcement in ADHD
with poor performance on tasks and ultimately to disrupted learning.
For instance, one plausible hypothesis is that in ADHD there is a failure
of attentional upregulation following cues of impending contingent
reinforcement, which then impedes effective target processing by re-
ducing attentional preparation. In the current paper we tested this
hypothesis directly using an electrophysiological version of the MID (e-
MID; Broyd et al., 2012). Like the MID, the e-MID task consists of
consecutive cue, target, and feedback stimuli, where the type of feed-
back received (positive or negative) depends on the speed of the be-
havioural response to the target. Anticipatory cues indicate whether the
individual can win or lose money in the upcoming trial, depending on
their response speed to the target, and how much they can win or lose.
Crucially, for the goals of the current paper, this task effectively dif-
ferentiates the specific brain potentials associated with initial re-
inforcement cues from later engagement with targets (Broyd et al.,
2012).

Two components of cue-related brain potentials are modifiable by
the reinforcement-related information they convey. The first compo-
nent, which is characterised by a positivity over centro-parietal areas,
emerges between 300 and 600ms post-stimulus, is termed Cue P3
(Broyd et al., 2012; Goldstein et al., 2008; Novak and Foti, 2015;
Pfabigan and Tran, 2015) or late positivity (Schupp et al., 2004). It
reflects allocation of attention to cue (Broyd et al., 2012; Novak and
Foti, 2015; Polich and Kok, 1995) and is modulated by the value of both
monetary and social rewards (Flores et al., 2015; Goldstein et al.,
2006a,b) and by variations in the emotional significance of stimuli
(Schupp et al., 2004). The second is the Contingent Negative Variation
(CNV). The CNV is a slow negative potential emerging at fronto- central
electrode sites, preceding behavioural responses. It is related to an-
ticipatory motor response preparation in thalamo-cortico-striatal net-
works (Brunia et al., 2012; Walter et al., 1964). Some studies have
shown that the CNV is modulated by the anticipation of affective or
motivationally significant stimuli (Baas et al., 2002; Novak and Foti,
2015). Other studies have failed to replicate this effect (Goldstein et al.,
2006a,b; Pfabigan et al., 2014). Setting it apart from the P3, the CNV is
suggested to indicate the cognitive transition towards preparing re-
sponses as modulated by the motivational salience of the upcoming
stimuli (Novak and Foti, 2015). In support of this functional distinction
between Cue P3 and CNV, combined ERP and fMRI data provided
evidence that they are differentially correlated with brain activity.
Highlighting its relevance to prior fMRI studies − the Cue P3 co-varies
with Blood-Oxygen-Level Dependent (BOLD) signals in the ventral
striatum during reward anticipation (Pfabigan et al., 2014), while the
CNV co-varies with reward- related BOLD activity in a network in-
cluding the thalamus, ventral striatum, and supplementary motor areas
(Plichta et al., 2013).

In ADHD, on non-incentivized trials, both Cue P3 (Albrecht et al.,
2013; Brandeis et al., 2002; van Leeuwen et al., 1998) and CNV
(Albrecht et al., 2013; Banaschewski et al., 2003; van Leeuwen et al.,
1998) are attenuated, suggesting impaired cue orientation and response
preparation. Little is known about the effects of incentives and moti-
vational valence on Cue P3 and CNV in ADHD. Banaschewski and
colleagues (2008) found no evidence of cue-type effects (signaling Go,
No-go or neutral trials) on a continuous performance task (CPT-AX).
Benikos & Johnstone (2009) demonstrated reduced CNV amplitude to
cues signaling fast, as opposed to medium and slow event rate trials.
Heinrich and colleagues (2014) found no differential effects of reward
and non-reward related cues on either cue component.

Regarding target processing, there is evidence to suggest that target-
evoked centro-parietal positivity, similar to the cue-evoked P3, is a
robust neural marker of task-relevant and motivated attention fol-
lowing the appearance of a target. The P3 component, elicited ap-
proximately 300–600ms post-stimulus, is related to stimulus evaluation
and categorization processes (review by Polich, 2007). Its amplitude is
sensitive to the motivational context of the target stimuli both in
healthy adolescents (mean age 15 years) and adults using the e-MID
paradigm (Broyd et al., 2012) and in adolescents aged 14–17 with and
without ADHD utilizing a version of the go/no-go paradigm (Groom
et al., 2010). In addition, reduced overall target-P3 amplitudes have
consistently been reported in ADHD compared to controls (Groom
et al., 2010; Rodriguez and Baylis, 2007; Szuromi et al., 2011). In
ADHD the overall lower target-P3 amplitude is suggested to reflect a
deficit in the attention to task required for target detection. Accord-
ingly, a couple of fMRI studies demonstrated reduced activation in
brain areas sub-serving top-down attentional processes and target de-
tection in children and adolescents with ADHD (Cao et al., 2008; Tamm
et al., 2006).

In the current paper, we test the hypothesis that hypo-responsive-
ness to reinforcement in ADHD leads to deficient cue-induced, pre-
target upregulation of attentional resources that will be reflected in
down-stream attenuation of target engagement and so poorer perfor-
mance. Our predictions are that; (i) reinforcement (compared to a
neutral condition) will increase Cue P3, Cue-CNV and Target P3 am-
plitudes; (ii) these effects will be attenuated in ADHD and as a con-
sequence (iii) less improvement on reinforced trials will be seen for
ADHD than control individuals. The effects of positive versus negative
reinforcement will be explored − but based on the current literature a
prediction with regard to this is difficult to make.

2. Methods

2.1. Participants

Thirty-one typically developing adolescents (11 girls) and 32 ado-
lescents with ADHD (5 girls), aged between 10 and 16 years were re-
cruited into the study (see Table 1 and sections 2.2. and 2.4 on exclu-
sion criteria). Informed written consent was obtained from parent(s).
Written assent was obtained from adolescents. Adolescents with ADHD
were recruited from local child and adolescent mental health clinics
and all had a clinical diagnosis of ADHD. Controls were recruited from
local mainstream schools.

2.2. Materials, inclusion and exclusion criteria

Participants all undertook a comprehensive clinical research as-
sessment as part of the South Hampshire ADHD Register (SHARe). This
included the ADHD section of the parent version of the Diagnostic
Interview Schedule for Children-NIMH (DISC-IV; Shaffer et al., 1993).
The self-report, parent and teacher versions of the Strengths and Dif-
ficulties Questionnaire (SDQ; Goodman, 1997) were also administered.
Full scale IQ was assessed using the Wechsler Intelligence Scale for
Children (WISC-IV; Wechsler, 2004). Adolescents with ADHD were only
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included if they met criteria for ADHD on the DISC-IV The DISC-IV
covers the manifestation of ADHD symptoms in multiple settings in-
cluding both home and school. Only participants with both inattention
and hyperactivity (combined type) presentations were included. Con-
trol adolescents completed the same measures as the participants with
ADHD apart from the DISC-IV. They also only completed the Block
Design and Vocabulary subtests of the WISC-IV. For both groups,
WISC–IV Full Scale IQ was estimated based on the scores of the Block
Design and Vocabulary subtests (Sattler, 2001). General exclusion cri-
teria were IQ< 75 and diagnosis of autism spectrum disorder or a
neurological condition. In addition, one control child was excluded as
they scored above borderline thresholds on the hyperactivity subscales
of the SDQ-parent report. All participants with ADHD scored above
borderline thresholds on the hyperactivity subscales of the SDQ-parent
report and SDQ-teacher report. For teacher report-SDQ, data were
available from 13 controls and 12 adolescents with ADHD. Due to
missing data from teachers, only parent report-SDQ data were included
in subsequent analyses. One child with ADHD dropped out during
testing and one was excluded due to a technical error. Seven adoles-
cents with ADHD also had a DISC-IV Conduct Disorder (CD) diagnosis
based on the DISC and 11 were taking stimulant medication. These
participants were asked to withdraw their medication 24 h prior to
testing (5 half- lives). The two groups were not matched on IQ, age and
gender at the time of recruitment. Participant characteristics are pre-
sented in Table 1. The study was approved by the University of
Southampton Ethics Committee and the National Health Service (NHS)
Research Ethics Committee.

2.3. Experimental paradigm and procedure

Participants performed an electrophysiological analogue (Broyd
et al., 2012) of the Monetary Incentive Delay task (MID; Knutson et al.,
2000) under three conditions − positive reinforcement (monetary gain
for responses that met the RT criteria), negative reinforcement
(monetary loss for responses that failed to meet that criteria) and
neutral (no monetary consequence of RT performance). At the start of
each trial, one of three possible blue cues (indicating the condition) was
presented on a computer screen (250ms). After an interval of between
2000 and 2500ms (relative to the start of the trial) a white star target

was presented (250ms). Participants were instructed to respond to the
target as quickly as possible with the thumb of their dominant hand via
a button box. All conditions included some feedback.

Feedback was provided 1450ms following the offset of the target
stimulus with a green tick for ‘fast enough’ and a red cross for ‘too slow’
responses. This task included an adaptive algorithm which tracked each
participant’s response on a trial by trial basis and adjusted the response
window for a ‘fast enough’ response so that all participants received
positive feedback, based on their own performance, on 66% of trials.
This also ensured that all participants gained the same amount money
(each participant received £10). The three cue types indicating the
condition were presented with equal probability and in random order:
In the Neutral/feedback-only condition (signaled by the blue cross cue)
participants received feedback about the speed of their response but
they could neither win nor lose money. In the Gain/feedback + points
gain condition (signaled by a blue octagon cue) participants received
positive feedback following a fast response and gained 5 points (i.e., 20
pence) and negative feedback following a slow response and no points
or money were gained. In the Loss/feedback + points loss condition,
(signaled by a blue diamond cue), participants received positive feed-
back following a fast response and avoided the loss of 5 points (i.e., 20
pence), and negative feedback following a slow response and lost 5
points (i.e., 20 pence). Participants were told that they would receive
their total cash winnings at the end of the last task block. A practice
block of 30 trials was completed prior to the experimental blocks to
allow participants to learn the association between each cue and ex-
perimental condition. Participants completed three experimental blocks
of 60 trials with a break between each block. Participants were not paid
for participation but their travel expenses were reimbursed. In addition,
adolescents received the monetary rewards they gained at the end of
the experimental task. A schematic representation of the task is pre-
sented in Fig. 1.

2.4. EEG recording and pre-processing

We used an electrode cap (Easycap, Herrsching, Germany) con-
taining 52 equidistantly spaced silver/silver chloride (Ag/AgCl) elec-
trodes. EEG data was recorded using Neuroscan Synamps2 70 channel
EEG system, DC-coupled recording equipment. The data were sampled
at 500 Hz with a low pass filter at 70 Hz and referenced to an electrode
on the nose. This reference was kept throughout the analyses to keep its
use consistent with previous studies (Broyd et al., 2012). A ground
electrode was fitted midway between the electrode at the vertex and
frontal sites. Vertical electro-oculogram (vEOG) was recorded from four
electrodes: two bipolar electrodes were placed directly beneath the left
and right eyes and affixed with tape, while the two electrodes placed
above the right and left eye were included within the electrode cap.
Impedances were kept below 5 kΩ.

The data were high pass filtered at 0.2 Hz and lowpass filtered at
15 Hz offline. Data pre-processing was done in Neuroscan (Scan 4.5).
For cue-locked ERP analyses, epochs were locked to the onset of the cue
stimuli and were extracted from −200 to +1800ms. Baselines were
calculated in the −200 to 0ms relative to the onset of the cue stimuli.
For target-locked ERP analyses, epochs were locked to the onset of the
target stimuli and were extracted from −200 to +800ms. Baselines
were calculated in the −200 to 0ms period relative to the onset of the
target stimuli. Epochs locked to the feedback were also extracted −
however, due to the low number of clean epochs per subject, the
feedback trials were omitted from further analysis. Epochs containing
data points above or below±150 μV, or with eye-movements as de-
termined based on vEOG channels, were rejected. An ocular artifact
reduction procedure (Semlitsch et al., 1986) based on left eye vEOG
activity was used to remove blink artifacts and other eye-movements
from the ERP data. Individual ERP averages were based on a minimum
of 20 trials of a total of 60 epochs for each condition (gain, loss, neu-
tral). Based on these criteria, the cue CNV analysis included 20

Table 1
Sample characteristics.

ADHD (n=20) Controls (n= 26) Comparison

Mean S.D. Mean S.D. t p value

Child age
(years)

11.60 1.60 13.00 1.50 3.00 0.004

Full Scale IQ 96.70 12.40 109.6 11.70 3.50 <0.01
SDQ Self-report
Hyperactivity 6.10 2.10 2.80 2.10 −4.87 <0.001
Conduct

Problems
4.90 1.70 1.30 1.00 −8.80 <0.001

SDQ Teacher-report
Hyperactivity 6.80 2.20 1.50 1.90 −6.27 <0.001
Conduct

problems
2.80 2.40 0.15 0.55 −3.90 <0.01

SDQ Parent-
report

Hyperactivity 8.95 1.46 2.30 2.30 −11.0 <0.001
Conduct

Problems
5.90 2.20 1.35 2.00 −7.00 <0.001

ADHD Parent-report
Inattention 21.20 4.20 5.70 4.70 −11.50 <0.001
Hyperactivity-

Impulsivity
21.50 3.70 5.50 4.50 −12.95 <0.001

Note: ADHD Parent-report as measured by DISC-IV. For teacher-SDQ, data were available
from 13 controls and 12 adolescents with ADHD. For all other measures, data were
available from 26 controls (8 girls) and 20 adolescents with ADHD (2 girls).
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adolescents with ADHD and 24 controls, the Cue P3 analysis included
20 adolescents with ADHD and 26 controls, and the Target P3 analyses
included 24 adolescents with ADHD and 24 controls. The number of
artifact-free trials for the two groups was as follows: Cue: Controls:
Gain: M=39.00, SD=11.14, Loss: M=40.70, SD=9.87, Neutral:
M=37.00, SD=11.42, ADHD: Gain: M=28.45, SD=7.60, Loss:
M=28.50, SD=7.70, Neutral: 27.05, SD=7.08. Target: Controls:
Gain: M=53.10, SD=6.70, Loss: M=52.50, SD=6.90, Neutral:
52.56, SD: 7.80, ADHD: Gain: M=43.74, SD=10.30, Loss: 44.80,
SD=10.24, Neutral: M=45.25, SD=9.10. There was no difference in
the number of artifact-free trials between conditions for cue (p > 0.08)
and target (p > 0.43). There were fewer cue and target artifact-free
epochs for adolescents with ADHD than controls (p < 0.01). There
were also fewer artifact-free trials for younger compared to older
adolescents (see Supplement 1). However, mean amplitude is not biased
by the mean number of trials (Luck, 2010).

A baseline-to-peak mean amplitude method was used to calculate
the ERP components. This consisted of measuring the average ampli-
tude over a time window that included the component of interest
(Handy, 2005). The average amplitude method is recommended due to
its insensitivity to latency variability (Luck, 2005). Peaks were con-
firmed by visual inspection and clearly visible in all individual wave-
forms. We identified the ERP components using the control data, then
examined the sensitivity of these components to the incentive condi-
tions and then based on the control groups’ ERPs examined the ADHD
group’s ERPs. Following the cue stimulus, a clear cue P3 component
could be observed and was quantified from 250 to 400ms at cen-
troparietal sites 1, 4, 5, 6, 12, 13 and 14 (see Supplement 3 for electrode
map) in line with previous research using the same task in adolescents
(Broyd et al., 2012). The CNV was quantified in two time windows
(CNV1: 750–1250ms and CNV2: 1250–1750ms) at frontocentral sites
1, 2, 3, 4, 5, 6, 7, 8 and 18. These time windows were chosen for
consistency with our previous research using the same task in adoles-
cents (Broyd et al., 2012). These time windows were themselves based
on previous research (Goldstein et al., 2006a,b). The target P3 was
quantified from 275 to 500ms at centroparietal sites 1, 4, 5, 6, 12, 13
and 14 in line with previous research (Broyd et al., 2012).

2.5. Data analysis

Repeated measures ANOVAs tested the effects of group as a be-
tween-subjects factor and condition (gain, loss, neutral) as a within-

subjects factor on mean reaction time (MRT), SD of RT, Cue P3, CNV
and target P3. We conducted planned comparisons of the reinforcement
conditions (gain, loss) against neutral and then exploratory compar-
isons of gain versus loss conditions. Only significant results are re-
ported. RT data were trimmed to remove responses, which were faster
than 150 milliseconds and exceeded ± 2.5 SD around the mean re-
sponse time. For consistency the behavioural analyses included the
same participants as the ERP analyses- twenty-six controls (18 girls)
and 20 CEHD (2 girls) adolescents’ data were included after excluding
outliers. For the CNV analysis as indicated by prior research a second
within-subject variable, time window was added to compare the effects
for CNV1 and CNV2. Where groups significantly differed on age and IQ
these variables were added as covariates. Pearson’s correlations ex-
amined the relationship between ERPs and performance. Finally,
Pearson’s correlations examined the relationship between ERPs and
child age, IQ and conduct problems.

3. Results

3.1. Behavioural performance

Table 2 presents RT and SD of RT data for each group and condition.
When RT was the dependent variable there was an overall main effect
of condition (F (2, 88)= 13.98, p < 0.001). Adolescents were faster
when they could gain points (F (1, 44)= 33.15, p < 0.001) and could
avoid losing points (F (1, 44)= 9.18, p < 0.01) compared to the
neutral condition. There was also a trend for adolescents to be faster
when they could gain points compared to avoiding losing points but this

Fig. 1. Timing and ERP components of the electrophysiological-Monetary Incentive Delay (e-MID) task.

Table 2
Mean reaction time (MRT) and SD of reaction time in the two groups.

ADHD Controls

Mean S.D. Mean S.D.

MRT (ms)
Gain 346.10 57.60 301.0 41.0
Loss 350.90 60.07 310.0 43.30
Neutral 363.05 64.90 328.35 48.60

SD of RT (ms)
Gain 87.95 45.67 66.46 31.16
Loss 105.80 41.03 74.40 35.67
Neutral 108.75 45.26 92.80 48.60
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effect did not reach significance (F (1, 44)= 3.14, p=0.08). The effect
of group was significant − adolescents with ADHD were slower than
controls (F (1, 44)= 7.40, p < 0.01). The Group×Condition inter-
action was not significant (F (2, 88)= 0.71, p=0.50). For the SD of RT
there was a significant main effect of condition (2, 88)= 9.80,
p < 0.001). Adolescents had larger SD of RT for the neutral condition
compared to the gain (F (1, 44)= 15.47, p < 0.001) and loss (F (1,
44)= 4.45, p < 0.05) condition. They also had larger SD of RT for loss
compared to the gain (F (1, 44)= 7.03, p < 0.05). The effect of group
was significant − adolescents with ADHD had larger SD of RT than
controls (F (1, 44)= 4.50, p=0.040). The Group×Condition inter-
action was not significant (F (2, 88)= 1.08, p=0.34). For the MRT
after controlling for age and IQ only the effect of group remained sig-
nificant. For the MRT after controlling for conduct problems only the
effect of condition remained significant. For the SD of RT, controlling
for age reduced the group effect to non-significant levels (p=0.07). For
the SD of RT, after controlling for IQ and conduct problems, the effects
were non-significant (p > 0.05).

3.2. Electrophysiological

Grand mean averages are displayed in Fig. 2 alongside bar charts
showing the group and condition effects on Cue P3, Cue-CNV1 and Cue-
CNV2 and Target P3. Topographic maps for all components are pre-
sented in Figs. 2 and 3. Independent-samples t-tests examined differ-
ences in ERP mean amplitude values between males and females. Re-
sults showed no significant differences between males and females for
the targeted ERP components in controls [t (24) < 1.48, p > . 12],
ADHD group [t (18) < −2.00, p > .05], or overall sample [t (44) <
−2.50, p > .05]. Pearson’s correlations showed no significant asso-
ciations between ERPs and age, IQ or conduct problems (all ps > .05).

3.2.1. Cue P3
The group main effect was not significant (F (1, 40)= 0.07,

p=0.80). There was a main effect of condition (F (2, 80)= 6.45,
p=0.003) with larger P3 amplitudes for gain (F (1, 40)= 9.80,
p=0.003) and loss (F (1, 40)= 7.09, p=0.010) compared to the
neutral condition. There was no significant difference between gain and
loss conditions (F (1, 40)= 0.55, p=0.46). There was a significant
group x condition interaction effect on cue P3 amplitudes (F (2,
80)= 4.36, p=0.016). The two groups did not differ in the neutral
condition (F (1, 41)= 1.31, p=0.25). When examining the simple
main effect of condition on the Cue P3 for each group, results showed
that amplitudes were significantly greater in the gain compared to the
neutral condition for individuals with ADHD (F (1, 21)= 9.45,
p=0.006) but not for controls (F (1, 29)= 2.70, p=0.10). These ef-
fects were marginally significant when comparing loss with the neutral
condition. In particular, Cue P3 amplitudes were marginally greater in
the loss compared to the neutral condition for individuals with ADHD (F
(1, 21)= 4.46, p=0.05) and a tendency was observed with controls
but this effect did not reach significance (F (1, 29)= 3.20, p=0.08).
Adding age, IQ and conduct problems to the model reduced the effect
related to the gain compared to neutral in the ADHD group only to non-
significant levels (F (1, 34) < 2.70, p > .10).

3.2.2. Cue CNV
There was no main effect of group (F (1, 44)= 0.13, p=0.70).

There was a main effect of condition (F (2, 88)= 25.12, p
.001 < 0.001) with larger amplitudes for the gain (F (1, 44)= 50.09, p
.001 < 0.001) and loss (F (1, 44)= 6.08, p=0.018) than neutral
condition and smaller CNVs for loss compared to gain (F (1,
44)= 21.53, p .001 < 0.001). There was a significant condition x time
window x group interaction (F (2, 88)= 3.83, p=0.025). We

Fig. 2. Grand mean averages and bar graphs with error bars for the Cue P3, CNV2 and Target P3 per condition in the ADHD and controls group. Amplitude is shown in μV on the y axis
and time in ms on the x-axis. The bar graphs plot the ERPs in an adjusted positive scale for the CNV to capture the amount of the amplitude change. Error bars represent standard error of
the mean. Group x Condition interactions with enhanced amplitudes to the gain vs. neutral in ADHD relative to controls for the Cue P3 (p< 0.01) and CNV2 (p < 0.05) Gain Loss
Neutral.
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investigated this by examining the effects of group and condition for
CNV1 and CNV2 separately. For CNV1 there was no significant inter-
action between group and condition (F (2, 88)= 0.80, p=0.92). For
CNV2 there was a significant group x condition interaction (F (2,
88)= 3.32, p=0.040). There was no difference in CNV2 amplitude
between the groups in the neutral condition (F (1, 45)= 0.06,
p=0.80), while there was a larger difference in amplitude between
neutral and gain conditions for adolescents with ADHD than controls (F
(1, 42)= 7.90, p=0.007); When comparing the two groups for each
condition separately in an One-Way ANOVA the gain condition CNV2
amplitudes were higher in the ADHD group compared to the control
group (F (1, 42)= 4.20, p=0.04). The two groups did not differ in
CNV2 amplitudes to the loss condition (F (1, 42)= 0.22, p=0.64).
Adding IQ did not change the results. Adding age and conduct problems
reduced this effect to non-significant levels (F (1, 40) < 3.30,
p > .070).

3.2.3. Target P3
There was a significant effect of condition (F (2, 92)= 5.60, p

.01 < 0.01) - P3 amplitudes were larger for gain (F (1, 46)= 7.94,
p=0.007) and marginally larger for loss (F (1, 46)= 3.96, p=0.050)
compared to the neutral condition. There was an effect of group (F (1,
46)= 4.36, p=0.040) with adolescents with ADHD having lower am-
plitudes across all conditions (see also Supplement 2). There was no
interaction between group x condition (F (2, 92)= 0.11, p > .70).
Controlling for age, IQ and conduct problems did not reduce the effect
of group non-significant levels (ps< 0.05).

3.3. Correlations between ERPs and performance

Pearson’s correlations examined the relationship between ERPs
(Cue P3, CNV, and Target P3) and performance (mean reaction time
−MRT and SD of RT) in the whole sample. Results showed that target
P3 amplitudes to the neutral condition were negatively correlated with
MRT for gain (r=−0.35, p=0.034) and loss (r=−0.36, p=0.030)
and SD of RT for loss (r=−0.50, p=0.001). Target P3 to loss was
negatively correlated with the SD of RT for gain (r=−0.35
p=0.030). After controlling for age, IQ and conduct problems, the
only association which remained significant was that between target P3
to neutral and SD of RT for loss. There we no significant correlations
between performance measures and Cue P3 (all ps > .12) or CNV (all
ps > 0.18).

4. Discussion

This is the first study to utilize the e-MID to decompose the elec-
trophysiological brain responses to positive and negative reinforcement
during anticipatory and target stages of reinforcement processing in a
clinical sample of adolescents with ADHD and controls. There were a
number of findings of note.

First, the targeted components (Cue P3, CNV and target-P3) were
sensitive to the experimental manipulation. In particular, the e-MID
produced predictable effects of reinforcement across the groups with
the Cue P3 component amplitude greater in response to cues of
monetary gain and loss, confirming the sensitivity of this component to
the anticipation of incentives consistent with previous research using
the e-MID task (Broyd et al., 2012). Similarly, we found larger CNV-
component amplitudes to gain and loss compared to the neutral con-
dition, suggesting enhanced anticipatory brain activity to incentives. It
is interesting to note that previous work using the same task in ado-
lescents of the same age as this study (Broyd et al., 2012) did not find
significant effects of gain and loss on the amplitude of the CNV com-
ponent. However, consistent with this previous study we confirmed that
the target-P3 component was sensitive to both gain and loss, suggesting
enhanced attentional control to motivationally significant task-relevant
stimuli.

Second, individuals with ADHD and controls did not differ in terms
of cue-related components in neutral conditions. Our results therefore
stand in contrast with earlier research showing reduced allocation of
attention (Polich and Kok, 1995) and motivational resources (Groom
et al., 2010) as reflected by the cue P3, in adolescents with ADHD
compared to controls.

Third, against predictions and fMRI findings (Fosco et al., 2015;
Scheres et al., 2007; Ströhle et al., 2008) there was no evidence of
ADHD related hyposensitivity to cues predicting upcoming reinforce-
ment (either positive or negative). Instead, individuals with ADHD
showed larger increase in neural response in terms of P3 and CNVs, in
the gain condition compared to controls. This finding stands in contrast
to much prior fMRI work showing reinforcement hypo-sensitivity in
ADHD (Plichta and Scheres, 2014; Sonuga-Barke et al., 2016). In con-
trast to this, but in line with our findings, a number of recent studies
report that individuals with ADHD are unusually sensitive to re-
inforcement cues. A recent fMRI MID study in a large sample of ado-
lescents with ADHD (n=150) found that relative to controls, adoles-
cents with ADHD showed increased responses in the anterior cingulate,
anterior frontal cortex, and cerebellum during reward anticipation (von
Rhein et al., 2015). Also of relevance, a number of recent studies have
shown hypersensitivity of the brain reward system in adolescents with
increased risk-taking and behavioural impulsivity (Casey, 2015; Casey
et al., 2016). Similar work has shown neural hyper-sensitivity to emo-
tional (angry, happy) compared to neutral vocal stimuli (as reflected by
elevated early components −e.g. N100) in 6–11-year-old children with
ADHD compared to controls (Chronaki et al., 2015). The above findings
are consistent with behavioural work showing hyper-responsiveness to
social rewards in 8–13-year olds with ADHD relative to controls (Kohls
et al., 2009).

Fourth, a reinforcement effect (positive and marginally negative
compared neutral) was the strongest effect and positive compared to
negative reinforcement differences, especially in terms of interactions
with group, were less common. Recent studies have suggested that

Fig. 3. Topographic maps for the mean voltage distribution per condition and group for the Cue P3, Cue CNV2 and Target P3. The figure shows enhanced Cue P3 and CNV2 to gain in
ADHD compared to controls and reduced overall Target P3 amplitudes in ADHD compared to controls. Scalp values represent the ends of the colour scale in μV for the Cue P3, Cue CNV2
and Target P3. Dark blue= negativity, Dark red=positivity.
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individuals with ADHD might display increased neural response to
positive compared to negative stimuli. This is consistent with earlier
work showing larger ventral-striatum and pregenual anterior cingulate
cortex (ACC) activation in adolescents with externalising disorders
(ADHD and CD) compared to controls in response to notifications of
positive (monetary reward) versus negative (failure to win reward)
stimuli (Bjork et al., 2010). More recent work has shown increased
responses to positive −but not negative- relative to neutral images in
temporal regions during an affective Stroop task in 13-year-olds with
ADHD (Hwang et al., 2015). Other studies have shown hyper-sensitivity
to punishment in ADHD. For example, individuals with ADHD showed
increased activity in bilateral amygdalae and left anterior insula com-
pared to controls during loss versus gain anticipation (Wilbertz et al.,
2015) and larger feedback-related negativity (FRN) amplitudes to losses
in guessing and gambling tasks (van Meel et al., 2015).

Fifth, individuals with ADHD displayed deficient target-related ac-
tivations (i.e., P3) in the neutral condition. This was predicted and is
consistent with the prior literature supporting the idea of impaired at-
tention to targets in ADHD (Broyd et al., 2012; Groom et al., 2010;
Rodriguez and Baylis, 2007; Szuromi et al., 2011). They also displayed
RT and RT variability related deficits. In neither case was there any
evidence that such deficits, either in terms of neural or behavioural
response to targets in ADHD were ameliorated by adding incentives
(either positive or negative). This effect is inconsistent with previous
ERP (Groom et al., 2010) and fMRI (Cao et al., 2008) studies.

When taken together with the cue-related hypersensitivity to re-
inforcement seen in the individuals with ADHD, this finding highlights
the dissociability of cue and target related processes and their relative
impact on performance. The positive effects of incentives on cue-related
components thought to reflect different stages of cued response pre-
paration did not translate into downstream positive effects of target
related attention or performance in the “gain” condition. It is particu-
larly striking in this regard that the positive effects of reinforcement
were observed most clearly on the CNV2 a component understood to
specifically reflect anticipation of the target stimulus and engagement
of effortful processes associated with the required response, rather than
the CNV1, reflecting more primitive less consciously controlled alerting
properties of the cue. Our findings complement recent research de-
monstrating distinct neural activation patterns while processing an-
ticipatory relative to outcome related rewards (Silverman et al., 2015).

There are a number of possible interpretations of this intriguing
finding. First, it is possible that individuals with ADHD have problems
translating improved preparation and response readiness into better
target related attention − perhaps because of difficulties maintaining a
positive response set between cue and target − although in the current
study the period between cue and target was always short. A second,
possibility is that, at least in the case of individuals with ADHD, ele-
vation of the cue P3-CNV complex does not equate to improved re-
sponse preparation − in which case it would be no surprise that at-
tention and performance did not improve when performance was
positively reinforced. One perspective that provides a framework for
understanding such effects is the state regulation model of ADHD dys-
function (Sergeant, 2005; van der Meere, 2005). This model postulates
that individuals with ADHD have difficulty adjusting their state to deal
with changing demands within their environment. One prediction of
this model is that individuals with ADHD have difficulty modulating
states of either hyper- or hypo-arousal. Adding reinforcement increases
arousal. From this perspective the upregulation of cue-related compo-
nents reflect a failure to regulate a hyper-aroused state induced by cues
of future incentives rather than a sign of enhanced preparation for the
processing of upcoming stimuli. If this were the case then one might
expect that performance would in fact be disrupted more in the re-
inforcement condition for individuals with ADHD, compared to con-
trols. This does not seem to be the case.

It is worth considering the role of age, IQ and conduct problems in
the above effects. Research has supported developmental effects on

performance and ERPs in cognitive tasks (Mathes et al., 2016). Ado-
lescence is characterised by marked maturational changes in the brain
(Segalowitz et al., 2010) and functional changes associated with sub-
regions of the prefrontal cortex (Dumontheil et al., 2010). A recent
study showed that while adults learned from both reward and punish-
ment, adolescents learned from reward but were less likely to learn
from punishment in a reinforcement learning paradigm (Palminteri
et al., 2016). In comparison to adolescents and adults, children showed
larger Cue P3 amplitudes but smaller ERPs reflecting response antici-
pation and response suppression (Hämmerer et al., 2010). Modulation
of the P3b component by novel targets was evident in children, ado-
lescents and adults, but it decreased in amplitude with age (Rojan-
Benjunea et al., 2015). P300 amplitude in a visual oddball paradigm
considerably reduced across adolescence (review by Segalowitz et al.,
2010). Such reductions have been suggested to reflect greater response
inhibition (Groom and Cragg, 2015). In addition, the P300 event-re-
lated potential has been consistently associated with externalising
problems, including conduct problems (Banaschewski et al., 2003;
Bertoletti et al., 2014). Research has shown that adolescent boys with
conduct problems (e.g., rules violations) failed to exhibit the normal
maturational increase in P300 amplitudes in auditory tasks (Bauer and
Hesselbrock, 2003). Similarly, adolescents with conduct problems
showed reduced fronto-central P300 amplitudes and prolonged P300
latency in an auditory oddball paradigm (Kim et al., 2001). These ab-
normalities were argued to reflect inefficient deployment of neural re-
sources in processing cognitive task-relevant information (Gao and
Raine, 2009). The present study has a number of limitations. First, the
sample size was relatively small and effects reported in this study
should be explored further with larger samples. Although gender dif-
ferences in ERP amplitudes were not observed in the present sample,
effects should be explored further with gender matched samples in fu-
ture research. Second, the ADHD and control groups were not matched
on age, IQ or conduct problems. When these covariates were added the
effects were reduced to non-significant levels for the Cue P3 and the
Cue CNV, although the pattern of results did not change. Future studies
should be powered and designed to rule out the effects of IQ and co-
morbidity with conduct problems on reinforcement sensitivity. Third,
we were not able to test the impact of reward type (i.e., social vs. non-
social, Kohls et al., 2009). This leaves open the possibility that our
results were due to adolescents with ADHD valuing rewards in a qua-
litatively different way from controls (Morsink et al., 2017). Fourth, the
task was not optimized to study feedback-related processes because of
insufficient numbers of artifact-free trials. In the present task, all con-
ditions included some feedback and this may have been considered in
itself as a reinforcer. In addition, the task can be further developed to
adjust for task demands to the individual participant’s level and reduce
possible effects of group differences in task performance on ERP mea-
sures (Groom et al., 2010; Rosch and Hawk, 2013). Our study partly
supported the predicted effects of condition and group on performance,
although the reliance on RT performance and the use of tracking al-
gorithm limited the behavioural results. Future studies should include a
broader range of performance measures. It should also be noted that
results from the correlation analyses between the ERPs and perfor-
mance should be interpreted with caution given their exploratory
nature and the multiple tests conducted. Finally, we had to exclude a
number of cases because of movement and other artifacts. This is per-
haps inevitable when working with adolescents with ADHD but it is
possible that the more severe cases were lost to analysis.

In summary, we demonstrate, for the first time, reward-related
modulation of cue-related brain potentials using the e-MID task in a
clinical sample of adolescents with ADHD. Individuals with ADHD ap-
peared hyper- rather than hypo-sensitive to anticipatory reinforcement
cues (reflected by elevated Cue P3 and CNV components). However,
this did not translate into downstream effects on improved target re-
lated attention (as measured by target P3) or performance. The possi-
bility that individuals with ADHD fail to exploit the upregulation of
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CNV during response preparation because of a failure to regulate their
hyper-aroused state in the face of predicted reinforcement needs to be
explored in future studies. The e-MID task can be utilized as a valuable
complement to fMRI paradigms in clinical populations of adolescents
with ADHD.
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