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Structural characterization of small molecules is a crucial component of organic
synthesis. In this work, we applied microcrystal electron diffraction (MicroED) to analyze
the structure of the product of an enzymatic reaction that was intended to produce
the unnatural amino acid 2,4-dihydroxyphenylalanine (24DHF). Characterization of our
isolated product with nuclear magnetic resonance spectroscopy (NMR) and mass
spectrometry (MS) suggested that an isomer of 24DHF had been formed. Microcrystals
present in the isolated product were then used to determine its structure to 0.62 Å
resolution, which confirmed its identity as 2-amino-2-(2,4-dihydroxyphenyl)propanoic
acid (24DHPA). Moreover, the MicroED structural model indicated that both enantiomeric
forms of 24DHPA were present in the asymmetric unit. Notably, the entire structure
determination process including setup, data collection, and refinement was completed
in ∼1 h. The MicroED data not only bolstered previous results obtained using NMR
and MS but also immediately provided information about the stereoisomers present
in the product, which is difficult to achieve using NMR and MS alone. Our results
therefore demonstrate that MicroEDmethods can provide useful structural information on
timescales that are similar to many commonly used analytical methods and can be added
to the existing suite of small molecule structure determination tools in future studies.

Keywords: microcrystal electron diffraction (MicroED), electron diffraction, transmission electron microscope

(TEM), organic synthesis, non-canonical amino acid (ncAA)

INTRODUCTION

The ability to unambiguously characterize the products of chemical reactions is of paramount
importance in organic synthesis. A suite of analytical tools including mass spectrometry (MS)
and spectroscopic techniques including ultraviolet and visible (UV-vis), infrared (IR) and nuclear
magnetic resonance (NMR) are commonly used to characterize organic molecules. These methods
are rapid, highly sensitive and—with the exception of MS—non-destructive to the sample.
However, because the complete characterization of small molecules often requires the use of many,
if not all, of the aforementioned techniques, researchers must possess the necessary expertise to
interpret the diverse data generated using each of these analytical methods.
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An alternative method that condenses a great deal of
information into a single model is to directly determine a
small molecule’s structure using X-ray crystallography.Molecular
structures not only provide the three-dimensional coordinates
of each atom in the molecule, but also allow inferences about
atom connectivity (i.e., bond number) and molecular packing
interactions to be made. Despite these benefits, structural
techniques suffer from limitations including the requirement
of a large quantity of the small molecule and also that large,
well-diffracting crystals are easily formed. These issues are
especially problematic for natural products isolated directly from
organisms or from very small-scale syntheses; only miniscule
quantities of the target compound may be available in both
cases. Furthermore, X-ray crystallographic methods are often
more time consuming than other analytical methods and are
therefore not commonly viewed as high-throughput for rapid
small molecule analysis.

In recent years, technological advancements in the field of
electron microscopy (EM) have expanded the utility of this
technique into the field of protein structure determination
(Nogales, 2016; Cheng et al., 2017). A major consequence
of this is that access to electron microscopes has increased
dramatically both at academic intuitions and through national
cryo-EM user facilities. Furthermore, the recent development of
techniques such as microcrystal electron diffraction (MicroED)
have enabled the determination of the structures of both large
biomolecules and small molecules in crystalline form (Gemmi
et al., 2019; Nannenga and Gonen, 2019; Nannenga, 2020).
Electron diffraction has been successfully applied to a wide
variety of samples including proteins, peptides, small organic
molecules, and inorganic materials (Mugnaioli et al., 2009,
2012, 2018; Zhang et al., 2013, 2018; Nannenga et al., 2014a,b;
Rodriguez et al., 2015; Simancas et al., 2016; van Genderen et al.,
2016; Clabbers et al., 2017, 2020; Krotee et al., 2017; Palatinus
et al., 2017; Rozhdestvenskaya et al., 2017; Das et al., 2018;
Gallagher-Jones et al., 2018; Gruene et al., 2018; Hughes et al.,
2018; Jones et al., 2018; Liu and Gonen, 2018; Seidler et al., 2018;
Brázda et al., 2019; Dick et al., 2019; Lanza et al., 2019; Warmack
et al., 2019; Wennmacher et al., 2019; Xu et al., 2019; Zatsepin
et al., 2019; Banihashemi et al., 2020; Levine et al., 2020; Zhu et al.,
2020). A major benefit to this technique is that the micro and
nanocrystals used for MicroED are several orders of magnitude
smaller than those used in conventional X-ray crystallography.
Furthermore, in the case of organic molecules, nanocrystals can
be even be found in low quantities of synthesized or isolated
material and be used directly for the collection of electron
diffraction data (Gruene et al., 2018; Jones et al., 2018). Structural
analysis using electron microscopes can therefore allow rapid,
high-resolution structure determination of organic molecules.
Moreover, this technique obviates the need to grow large crystals
as is the case for X-ray studies. Thus, MicroED promises to be a
powerful tool for organic chemistry and pharmaceutical research
(Zhang et al., 2013; van Genderen et al., 2016; Das et al., 2018;
Ting et al., 2019; Banihashemi et al., 2020; Levine et al., 2020).

Here we describe the direct characterization of a chemical
intermediate obtained during an enzymatic semi-synthesis
of a non-canonical amino acid using MicroED. Although

evidence from traditional characterization methods (e.g., MS,
NMR) provided insight into the structure of the intermediate,
these results were incongruous with what would have been
expected from an enzyme catalyzed chemical transformation.
However, analysis of the intermediate using MicroED methods
allowed the high-resolution structure to be determined in
∼1 h and confirmed the previous interpretation of the NMR
data. Additionally, the MicroED structure indicated that the
synthesized product was racemic, which was then confirmed
by circular dichroism (CD). This work therefore serves to
underscore the power of this burgeoning technique and further
suggests that it can reasonably be added to the arsenal of
analytical methods that are used to routinely characterize the
structures of small molecules in a rapid manner.

MATERIALS AND METHODS

TPL Expression and Purification
A gene encoding tyrosine phenol-lyase (TPL) from Citrobacter
intermedius was purchased from Integrated DNA Technologies,
Inc. (Coralville, IA). The gene was cloned into a pET29b(+)
expression vector (Novagen) using Gibson Assembly (New
England Biolabs). After Sanger sequence verification, the plasmid
was transformed into T7 Express Competent Escherichia coli
cells (New England Biolabs). Because the pET29b(+) plasmid
contains a kanamycin resistance gene, transformed cells were
selected on agar plates containing kanamycin (50µg/mL) to
identify clones that contained the expression plasmid.

A single colony of T7 Express cells harboring the expression
plasmid was used to inoculate 5mL of 2xYT media containing
kanamycin (50µg/mL) and supplemented with 1mM pyridoxal
5’-phosphate (PLP), a required cofactor of TPL. Cultures
were incubated for 8 h at 37◦C with 250 rpm shaking and
ultimately reached an OD600 of ∼6.0. The 5mL culture was
then used to inoculate an additional 1 L of 2xYT containing
kanamycin (50µg/mL) and PLP (1mM). This culture was
then incubated at 30◦C overnight; initial expression tests
suggested that the addition of an inducer (e.g., isopropyl β-D-
1-thiogalactopyranoside or lactose) was not necessary due to
high basal levels of expression from the T7 promoter contained
in the pET29b(+) plasmid. Cells were then harvested via
centrifugation (5,000 × g, 15min), resuspended in 50mL cell
lysis buffer (25mM Tris HCl pH 8.0, 10mM NaCl, 3mM β-
mercaptoethanol) and stored at−20◦C overnight. The frozen cell
suspension was thawed at room temperature and incubated at
37◦C for 30min with lysozyme (1 mg/mL). Both MgCl2 (20mM)
and DNase (0.2 mg/mL; Sigma Aldrich) were then added to the
cell lysate which was subsequently subjected to sonication (20Hz,
10min total time, 1 s on, 2 s off). The cell lysate was centrifuged
(30,000 rpm for 20min at 4◦C) to remove cell debris.

TPL was then purified on a nickel-nitrilotriacetic acid resin
(Ni-NTA, HisTrap FF, GEHealthcare). After loading onNi-NTA,
contaminant proteins were removed by washing the column
with five column volumes (CV) of Ni-NTA buffer A (25mM
Tris-HCl pH 8.0, 20mM Imidazole and 500mM NaCl) followed
by five CV of 90% Ni-NTA buffer A with 10% Ni-NTA buffer
B (25mM Tris-HCl pH 8.0, 500mM Imidazole and 150mM
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NaCl). Proteins were then eluted with five column volumes
of 100% Ni-NTA buffer B. Because PLP-bound TPL is bright
yellow, fractions that were visibly yellow were collected and
concentrated using ultrafiltration (30 kDa molecular weight
cutoff, Sartorius Vivaspin). Proteins were then diluted 10-fold
with anion exchange (IEC) loading buffer A (25mM Tris-HCl
pH 8.0, 10mM NaCl) and further purified on IEC resin (HiTrap
Q FF, GE Healthcare). The column was washed with five CV of
IEC buffer A, followed by five CV of 90% IEC buffer A with 10%
IEC buffer B (25mM Tris-HCl pH 8.0, 500mM NaCl). Proteins
were then eluted with five column volumes of 100% IEC buffer B.
Again, protein fractions that were found to be bright yellow were
consolidated and concentrated to 500 µl using ultrafiltration as
described above. The concentrated protein was then injected
onto a size-exclusion column (Superdex 200 increase 10/300 gl,
GE Healthcare) and eluted from the column with 25mM Tris-
HCl pH 8.0, 500mM NaCl. Fractions that were bright yellow
were collected, consolidated, and concentrated to a volume of
∼1mL. This protocol yielded ∼20mg of purified protein, which
was then refrigerated at 4◦C for use in subsequent experimental
procedures. The purity of all samples was confirmed via SDS-
PAGE (4% stacking/10% resolving, 100V for 90min) after each
round of purification.

Small Molecule Synthesis and Purification
In this study, two variations of common protocols for the TPL-
based synthesis of the tyrosine analogs were used:

Our first protocol followed the methods described by Kim
and Cole (1998) and Kim et al. (2000). To a solution of TPL
(190 nM; 30 units) in tris buffered saline (TBS, 25mM Tris-
HCl, pH 8.0, 500mM NaCl, 5mM β-mercaptoethanol) was
added either resorcinol or phenol (10mM), sodium pyruvate
(60mM), pyridoxal 5’-phosphate (40µM), and ammonium
chloride (30mM). The reaction was stirred for 3 days at room
temperature. The mixture was acidified to pH 3.0 with acetic
acid and filtered over Celite. The filtrate was then extracted with
ethyl acetate (3 × 500mL) to remove excess resorcinol. The
entire reaction mixture was then added to prewashed (6N HCl,
water, 6NNaOH, water) Dowex 50W resin (20 g; Sigma Aldrich),
washed with 5 CV of water and eluted with 10% aqueous
ammonia. Elution fractions were subjected to a ninhydrin test,
which provided a colorimetric indication of the presence of
amino acid.

Synthesis of 2-Amino-2-(2,4-
Dihydroxyphenyl)Propanoic
Acid
The previously described protocol only indicated the presence of
an amino acid in the control (see section Results and Discussion).
We therefore employed a secondmethod reported by Seisser et al.
(Seisser et al., 2010). In this protocol, purified TPL (190 nM; 30
units) in TBS was added to a dialysis cassette (D-TubeTM Dialyzer
Midi, MWCO 6–8 kDa, EMDMillipore) and was placed into 1 L
of TBS containing resorcinol (50mM, Sigma Aldrich) or phenol
(50mM, Oakwood Chemicals), sodium pyruvate (100mM,
Sigma-Aldrich), ammonium chloride (180mM, Sigma-Aldrich),

and PLP (0.04mM, Alfa Aesar). The reaction was covered with
aluminum foil to block ambient light and stirred overnight.
A white powder precipitated when either phenol (control) or
resorcinol was subjected to the aforementioned conditions; both
precipitants tested positive for an amino acid using ninhydrin.
The precipitant from the resorcinol reaction was collected on
filter paper, washed with water (3 × 50ml) and dried under
vacuum to yield 4.56 g of a white powder, which corresponds to
a 46.28% yield. Analysis of the sample was then carried out using
1H NMR and ESI-MS: 1H NMR (D2O, 500 MHz) δ 1.84 (s, 3H),
6.36 (d, 1H, J= 2.10Hz), 6.41 (dd, 1H, J= 6.41Hz and 10.80Hz)
and 7.23 (d, 1H, J = 8.60Hz); 13C NMR (D2O, 500 MHz) δ

20.51, 59.27, 102.64, 107.41, 114.08, 128.68, 155.27, 158.39, and
174.93; ESI-MS calculated for C9H11NO4 (M): 197.0688 Da;
found: 197.0072 Da.

Thin Layer Chromatography of Products
Thin layer chromatography (TLC) was used as a high-
throughput method for the detection of amino acid products.
The precipitated reaction products were washed with water,
dissolved in 1N NaOH, and run on silica plates (6:3:1 n-
butanol:isopropanol:acetic acid). The silica gel plates were then
heated to evaporate solvent and ammonia from the reaction
mixture. Plates were then dipped in a solution of ninhydrin (1.5%
w/v in a 3% v/v acetic acid:n-butanol) and were heated using a
hot plate or heat gun; presence of a purple spot after heating was
indicative of the presence of an amino acid product.

MicroED Sample Preparation, Data
Collection, and Data Processing
Samples for MicroED analysis were prepared by placing a holey
carbon EM grid directly into ∼10mg of the precipitated and
dried white powder synthesized as described above. After gentle
shaking of the grid in the powder, tweezers were used to extract
the grid, and excess material was removed by gently tapping
the tweezers. The grid was then loaded into a standard room
temperature FEI TEM holder. MicroED data were collected at
room temperature on an FEI Tecnai F20 equipped with a TVIPS
XF-416 CMOS camera using standard low-dose MicroED data
collection procedures (Nannenga et al., 2014a; Shi et al., 2016).
Data were collected as the stage rotated at a continuous rate of
0.295 degrees per second and each frame was integrated over
2 s. To process the collected MicroED data sets, they were first
converted to SMV format (Hattne et al., 2015). XDS (Kabsch,
2010) was used to index and integrate, and XSCALE was used to
merge and scale the data from 3 crystals. The data were phased
using SHELXT (Sheldrick, 2015), and the ShelXle (Hubschle
et al., 2011) interface was used to refine the structure.

RESULTS AND DISCUSSION

Our primary goal was to synthesize the tyrosine analog, 2,4-
dihydroxyphenylalanine (24DHF, Figure 1). A review of the
literature suggested a number of possible strategies for achieving
this using standard synthetic organic chemistry methods.
However, we were drawn to an enzymatic semi-synthesis of this
compound using tyrosine phenol lyase (TPL) from Citrobacter
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FIGURE 1 | The enzymatic synthesis method employed in this study is shown.
Sodium pyruvate, ammonium chloride, and resorcinol were incubated with
tyrosine phenol lyase (TPL) with the goal of forming
2,4-dihydroxyphenylalanine (24DHF).

FIGURE 2 | MicroED analysis of 24DPHA. (A) Small crystals could be
identified on the grid, and a representative crystal used for data collection is
circled. All data were collected from crystals of similar size and shape. (B)
Crystals produced high-resolution diffraction data and continuous rotation
data sets were collected from quality crystals. Scale bar in (A) represents 5µm
and the resolution ring in (B) represents 0.70 Å.

intermedius because the desired product could be synthesized in a
single step from very inexpensive, commercially available starting
materials. Namely, in previous reports, TPL was found to catalyze
the synthesis of the 24DHF using only resorcinol, pyruvic acid
and ammonia (Yamada et al., 1972; Sawada et al., 1975; Nagasawa
et al., 1981) as reactants. These data were in contrast another
report in which both resorcinol and 24DHF were suggested to
represent potent inhibitors of TPL activity (Lambooy, 1954).
Nonetheless, given the ease of synthesis, as well as the benefits
of enzymatic rather than chemical synthesis (Koeller and Wong,
2001), we chose to explore an enzymatic route to this compound.

We tested two distinct protocols for 24DHF synthesis (see
section Materials and Methods) that differed primarily in
the concentration of reagents used. In a first protocol (Kim
et al., 2000) with low reagent concentrations, no product was
observed when resorcinol was used. However, when phenol
(the native substrate of TPL) served as a positive control, the
expected product, tyrosine, was generated. We then employed a
second protocol reported by Seisser et al. (2010) in which high
concentrations (50mM or greater) of the reactants were used. In
this case, both the phenol and resorcinol reactions yielded a white
precipitate after only 2 h. Notably, both precipitates gave positive
results when analyzed with ninhydrin on TLC, which suggested
that an amino acid product had formed in both cases.

The product isolated from the reaction containing resorcinol
was analyzed by ESI-mass spectrometry (ESI-MS), which
indicated that our product had a mass of 197.01 Da. This is

TABLE 1 | Data collection and refinement statistics.

Data collection

Excitation voltage 200 kV

Wavelength (Å) 0.0251

Number of crystals 3

Data processing

Space group Pca21

Unit cell length a, b, c (Å) 10.40, 22.80, 8.16

Angles α = β = È (◦) 90

Resolution (Å) 0.62

Number of reflections 24,851

Unique reflections 2,990

Robs (%) 22.1 (96.0)

Rmeas (%) 23.5 (114.9)

I/σI 5.32 (1.00)

CC1/2 (%) 97.8 (51.3)

Completeness (%) 62.1 (42.3)

Structure refinement

R1 0.1839 (0.1549 for Fo > 4σ)

wR2 0.4394

GooF 1.288

consistent with the calculated molecular mass of 24DHF (197.07
Da). Furthermore, analysis of this compound by 13C NMR
indicated the presence of 9 carbons, which is also consistent with
the 24DHF structure (Supplementary Figure 1). However, the
1H NMR spectrum (Supplementary Figure 2) was inconsistent
with the predicted product. Namely, a singlet that integrated to
three protons was observed at 1.84 ppm, which is indicative of
a CH3 functional group; no methyl groups were expected in the
product. Furthermore, neither a CH2 (corresponding to protons
on the β-carbon) nor a CH proton peak (corresponding to the
α-carbon proton) was observed in the 1H spectrum. These data
suggest that an isomer of 24DHF had been synthesized in lieu of
the desired product.

In order to further characterize the isolated compound,
we used MicroED for high-resolution structure determination.
There are several methods for preparing small molecule samples
for the TEM, including applying powdered sample directly
to the grid, applying a crystalline suspension to the grid
followed by drying, and direct crystal growth on the grid
by solvent evaporation (van Genderen et al., 2016; Gruene
et al., 2018; Jones et al., 2018; Banihashemi et al., 2020;
Levine et al., 2020). For this analysis, preparing the EM
grids with the sample was performed by simply placing the
grids in a small amount of material as described above,
a process which took less than 1min. Upon loading the
sample into the TEM, extremely small crystals could be found
on the grid (Figure 2A), and the many of these diffracted
to high-resolution (Figure 2B). Diffraction data were quickly
collected from several crystals that all showed similar size
and morphology. Ultimately, using standard procedures in
XDS (Kabsch, 2010), data from 3 of the highest quality
MicroED data sets were processed, all in space group 16
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FIGURE 3 | The MicroED structure of 24DHPA (A,B). The space group of the
crystal is Pca21 and contains two enantiomers in the asymmetric unit (dark
gray), and the packing of the crystals shows hydrogen bonding between
adjacent molecules (C,D). The unit cell is shown as a black outline in (C,D).

with similar unit cell parameters (Supplementary Table 1).
These data were then merged into a final data set that was
62.1% complete (Table 1). Despite the low completeness, a
solution could be found using SHELXT (Sheldrick, 2015),
which allowed us to determine and refine the structure of
the compound (Figures 3A,B). The structural model shows
that instead of 24DHF, the resorcinol was added to the
α-carbon to yield 2-amino-2-(2,4-dihydroxyphenyl)propanoic
acid (24DHPA) (Figure 3B), which confirmed the unexpected
findings from NMR.

An additional finding from the high-resolution structure was
that both enantiomers were observed in the asymmetric unit,
suggesting that the compound was present as a racemic mixture.
This was subsequently confirmed using circular dichroism
(Shinitzky et al., 2004) (CD, 10mM sample in 300 µL 1M HCl),
which resulted in a featureless spectrum (Figure 4). Because
racemic mixtures of compounds are difficult to identify with
NMRwithout first subjecting the sample to a chiral derivatization
agent, the use of electron diffraction has the advantage of
providing this information concurrently with the determination
of the structure.

Furthermore, the fact that a racemic mixture of products
was observed seems inconsistent with a TPL-based enzymatic
synthesis. Namely, because TPL’s native substrate is the L-
amino acid tyrosine, a single product with L- stereochemistry

FIGURE 4 | CD spectra of the racemic mixture of
2-amino-2-(2,4-dihydroxyphenyl)propanoic acid (24DHPA) and L-tyrosine
(10mM in 1mM cuvette).

should have been produced using these conditions. Asmentioned
above, both resorcinol and the desired 24DHF product
have been previously suggested to be inhibitors of TPL
(Lambooy, 1954). That we observed a racemic product
supports the possibility that either the resorcinol or a
small amount of 24DHF synthesized by TPL in an initial
reaction may have inhibited TPL and precluded enzymatic
synthesis by blocking access to the active site. Although
beyond the scope of this study, the mechanism of the
reaction that led to the aberrant product could warrant
additional inquiry.

CONCLUSION

In this work, we demonstrate the utility of MicroED as a
rapid method for determining the structure of a synthetic
product. Although standard analytical techniques (e.g., 1H
NMR) indicated that our isolated product was not 24DHF
as we had set out to make, the MicroED data rapidly
confirmed our interpretation. Furthermore, the structure of
the aberrant product that was determined using MicroED
methods immediately suggested the presence of a racemic
mixture of products, which obviated the need to carry
out an analysis of the stereochemical properties of the
product using chiral separation or polarimetry. The MicroED
process, including sample preparation, data collection, data
processing and structure refinement, was completed in ∼1 h
and yielded a structure at 0.62Å resolution. Thus, our
results further confirm that MicroED represents a rapid
method of gaining insight into the structural features of
organic molecules that may prove difficult to obtain using
more traditional methods. While it is unlikely that structure
determination by electron diffraction will supplant more
commonly used analytical techniques, we believe it could be
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reasonably added to the existing set of analytical tools in
future studies.
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