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Purpose: Susceptibility maps are usually derived from local magnetic field esti-
mations by minimizing a functional composed of a data consistency term and a
regularization term. The data-consistency term measures the difference between
the desired solution and the measured data using typically the L2-norm. It has
been proposed to replace this L2-norm with the L1-norm, due to its robustness to
outliers and reduction of streaking artifacts arising from highly noisy or strongly
perturbed regions. However, in regions with high SNR, the L1-norm yields a sub-
optimal denoising performance. In this work, we present a hybrid data fidelity
approach that uses the L1-norm and subsequently the L2-norm to exploit the
strengths of both norms.
Methods: We developed a hybrid data fidelity term approach for QSM
(HD-QSM) based on linear susceptibility inversion methods, with total variation
regularization. Each functional is solved with ADMM. The HD-QSM approach
is a two-stage method that first finds a fast solution of the L1-norm func-
tional and then uses this solution to initialize the L2-norm functional. In both
norms we included spatially variable weights that improve the quality of the
reconstructions.
Results: The HD-QSM approach produced good quantitative reconstructions in
terms of structural definition, noise reduction, and avoiding streaking artifacts
comparable with nonlinear methods, but with higher computational efficiency.
Reconstructions performed with this method achieved first place at the lowest
RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge.
Conclusions: The proposed method allows robust and accurate QSM recon-
structions, obtaining superior performance to state-of-the-art methods.
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1 INTRODUCTION

Quantitative susceptibility mapping is an MRI reconstruc-
tion technique that allows the calculation of the magnetic
susceptibility of tissues from the phase of gradient-echo
acquisitions.1 The magnetic susceptibility of a material is a
property defined as the degree of magnetization of a mate-
rial in the presence of an external magnetic field. Most bio-
logical brain tissues are intrinsically diamagnetic. Whereas
diamagnetic myelin or calcium deposits are generating a
magnetic field opposed to the applied field, paramagnetic
materials, such as iron, react by generating a magnetic field
in the same direction as that of the external field.2 Unlike
conventional susceptibility-sensitive techniques (eg, R2*
mapping, susceptibility-weighted imaging), QSM quan-
tifies the diamagnetic and paramagnetic contributions,
yielding exquisite contrast between anatomical structures.

Specific physiological and pathological processes
change the magnetic susceptibility and QSM can be used to
quantify oxygenation levels3 and detect hemorrhages and
microhemorrhages.4 Increased regional susceptibilities
have been consistently found in several neurodegener-
ative diseases,2 including Alzheimer’s,5 Parkinson’s,6,7

Huntington’s,8 and multiple sclerosis.9,10

Susceptibility maps are typically calculated by follow-
ing three consecutive processing steps: phase unwrap-
ping,11 background field removal,12 and dipole inver-
sion.13–20 The unwrapping stage eliminates 2π jumps pro-
duced in the phase of the measured gradient-echo sig-
nal. Background field removal eliminates the magnetic
field contributions originated by objects outside the region
of interest or FOV and field inhomogeneities, leaving
only the magnetization field originated from local objects.
The susceptibility-to-field model considers noninteracting
magnetic dipoles, each associated with a single susceptibil-
ity source. This effectively models the measured magnetic
field as the convolution between a dipole kernel and the
underlying susceptibility distribution.21,22 Therefore, the
susceptibility distribution might be obtained by deconvolv-
ing the local magnetic fields by the dipole kernel. This pro-
cess, known as the dipole inversion, is an ill-posed inverse
problem. The dipole kernel has a zero-valued biconical sur-
face in the Fourier domain, known as the “magic cone,”
which impedes direct division. Truncated solutions14 (ie,
replacing values below a threshold with a small number)
amplify noise and contaminate the reconstructed suscep-
tibility maps with streaking artifacts (ie, conical patterns
originated from noisy voxels).

To address this issue, the dipole inversion process is
usually reformulated as an optimization problem. Opti-
mization models minimize a functional, usually composed
of two terms: a data consistency and a regularization
term. The regularization term is used to include prior

information about the solution, which promotes desired
characteristics, such as smoothness or continuous
solutions (Tikhonov regularizer16) or piece-wise con-
stant solutions (total variation regularizer23). The data
consistency—or data fidelity term—is a measure of the
error between the proposed solution and the local mag-
netic fields, given the susceptibility-to-field or forward
model.

Commonly, the data-consistency term minimizes the
squared difference between the dipole-convolved solution
and the local field (ie, a squared L2-norm). The squared
L2-norm is a mathematically and computationally effi-
cient function that also defines a convex penalty function
that gives a unique solution. For QSM, this approach per-
forms relatively well with data that have been corrupted by
moderate amount of noise. However, the squared L2-norm
heavily penalizes large discrepancies produced by strong
noise or other sources of discrepancy such as preprocess-
ing artifacts. This high penalty tends to produce suscepti-
bility maps with streaking artifacts, especially in low-SNR
areas. This behavior might be explained from a Bayesian
point of view. Finding the solution that minimizes the
L2-norm with noise-corrupted measured data is equiv-
alent to finding the maximum likelihood estimate in a
maximum a posteriori probability problem, but this only
happens when the noise source has a Gaussian distribu-
tion. Indeed, whereas the noise distribution in phase MRI
signals with high SNR can be approximated as Gaussian,
this approximation is no longer valid for low SNR.24–26

To address this problem, Liu et al17 proposed a non-
linear data fidelity term that computes the error of the
forward model at the complex image domain, improving
robustness to noise at the expense of higher computational
cost. Later, Milovic et al20 proposed using an L1-norm
data-consistency term (least absolute error minimization),
producing a better performance against outlier voxels.27

Compared with the L2-norm, the L1-norm penalizes large
discrepancies between the proposed solution and the mea-
sured data less severely. This prevents energy spilling from
voxels with large discrepancies with respect to their neigh-
bors, which in turn reduces the generation and propaga-
tion of streaking artifacts. However, from a Bayesian point
of view, the L1-norm does not have similar denoising capa-
bilities as the L2-norm, thus the resulting images have a
residual noise component and lower SNR.20

In this paper we present a hybrid data fidelity
term approach for QSM (HD-QSM). This dipole inver-
sion algorithm sequentially uses linear L1-norms and
L2-norms for data consistency. The resulting algorithm
successfully combines the strengths of both norms. The
HD-QSM approach participated at the 2019 QSM Recon-
struction Challenge (RC2, Seoul, Korea),28,29 obtaining the
first place at the lowest RMS error category in stage 1. We
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here present a full validation of our previously reported
method30 using simulations and in vivo data, and exhaus-
tive comparisons with alternative methods.

2 METHODS

2.1 Hybrid data fidelity term approach
for QSM

The proposed method HD-QSM consists of two stages. The
first stage finds a suitable initial solution that is robust to
streaking artifacts.20 For this purpose, we use the following
linear optimization problem:

𝜒1 = argmin
χ

‖
‖
‖

w
(

FHDFχ − 𝜙
)‖
‖
‖1
+ 𝜆L1

1 ⋅ TV(χ), (1)

where || ⋅ ||1 is the L1-norm; F is the Fourier transform
with its inverse FH ; D = 𝛾H0TE

(
1
3
− k2

z

k2

)

is the dipole ker-
nel; 𝜙 is the local phase map; 𝜒1 is the susceptibility
distribution obtained in this first stage; TV(⋅) is the total
variation regularizer23; 𝜆L1

1 is the regularization weight
used in the first stage. The value of w is a region-of-interest
binary mask or a magnitude-based weight, as follows:

w =
∑N

i=1Mag2
i ⋅ TEi

∑N
i=1Magi ⋅ TEi

, (2)

where N is the number of echoes; Magi is the magni-
tude of echo i; and TEi is the ith TE. The idea behind the
weight is to improve the SNR to equal that of the local field,
using magnitude-weighted least-squares magnitude fitting
similar to echo combination.

The second stage solves the following linear functional,
using the solution of the previous stage (𝜒1) as the initial-
ization:

𝜒2 = argmin
χ

1
2
‖
‖
‖

W
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FHDFχ − 𝜙
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‖
‖

2

2
+ 𝜆L2

1 ⋅ TV(χ), (3)

where || ⋅ ||2 is the L2-norm. The value of W is a spatially
variable weight modulated by the voxel-wise phase dis-
crepancy factor between the solution obtained in the first
stage (convolved by the dipole kernel) and the acquired
local phase, as follows:

W = w ⋅
(

1 −
|
|
𝜙 − FHDF𝜒1||

max (|𝜙 − FHDF𝜒1|)

)

. (4)

The discrepancy factor prevents the propagation of streak-
ing artifacts by enforcing the data-consistency term to
penalize areas with low SNR and areas contaminated with
phase inconsistencies less heavily.

The functionals were solved using the ADMM frame-
work19 as described for FANSI18 and L1-QSM.20 A straight-
forward implementation would require one to fine-tune
six parameters: two regularization weights

(

𝜆
L1
1 , 𝜆

L2
1

)

and
four Lagrangian weights derived from the ADMM solver
associated with gradient consistency weights

(

𝜇
L1
1 , 𝜇

L2
1
)

and data fidelity consistency weights
(

𝜇
L1
2 , 𝜇

L2
2
)

. These
Lagrangian weights are introduced by the variable split-
ting procedure of ADMM, as described in the Supporting
Information. As in most optimization-based QSM algo-
rithms, parameters must be set using some heuristics31 (eg,
L-curve approach32). To simplify the parameter-tuning
process, we propose the following heuristic, derived from
the numerical relationship between the L1 and L2 norms:

𝜆
L1
1 =

√

𝜆
L2
1 , 𝜇

L1
1 =

√

𝜇
L2
1 , 𝜇

L1
2 = 𝜇L2

2 = 1. Considering also
the heuristic proposed for FANSI,18 10 ≤ 𝜇1

𝜆1
≤ 100, where

values within the range do not produce major variations
on the optimal reconstruction. We therefore simplify the
parameter-setting problem to a one free parameter, 𝜆L2

1 .
The number of iterations in each stage (i1, i2) can be

considered as free parameters to be tuned. However, as
shown in our experiments, these are not sensitive parame-
ters and might be fixed a priori. Considering a total number
of iterations N, we recommend i1 ∈ [10,100] and i2 = N −
i1. For the RC2, our winning reconstructions used this
heuristic with the following parameters: i1 = 20, i2 = 280,
𝜆

L2
1 = 6.3096 × 10−6, and 𝜇1

𝜆1
= 10.

The HD-QSM approach was compared with alterna-
tive linear and nonlinear QSM methods using total vari-
ation as the regularizer. For convenience, we will use
the following nomenclature: L1 and nlL1 correspond to
the linear and nonlinear L1-norm methods proposed in
L1-QSM,20 respectively; L2 and nlL2 correspond to the
linear and nonlinear L2-norm methods included in the
FANSI Toolbox18 (ADMM-based fast solvers for the total
variation–regularized cost functions, similar to linear and
nonlinear MEDI17), respectively; L1L2 corresponds to
the HD-QSM method with the proposed heuristic; and
L1L2wH corresponds to the HD-QSM without the heuris-
tic (ie, optimizing each parameter independently). Com-
parisons were performed using synthetic data and in vivo
acquisitions, as described subsequently.

3 EXPERIMENTAL DESIGN

3.1 COSMOS forward simulation

We used the COSMOS (calculation of susceptibility
through multiple orientation sampling)33 reconstruction
included in the 2016 QSM Reconstruction Challenge34

data set as ground truth. We forward-simulated the phase
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and added complex Gaussian noise with SNR = 40, 100,
and 300. Additionally, we forward-simulated the phase
(SNR = 100) with two phase jumps (±20𝜋) to gener-
ate strong phase inconsistencies. These phase simulations
were used as input for the QSM reconstructions of L1, L2,
and L1L2 methods to compare their performances. Opti-
mal reconstructions were obtained for each method by
optimizing the normalized RMS error (NRMSE). We per-
formed a sensitivity analysis evaluating the quality of the
reconstructions around the optimal regularization param-
eter (𝜆∗) within a range defined by [0.1 ⋅ 𝜆∗, 10 ⋅ 𝜆∗], sam-
pled at 𝜆i = 𝜆∗ ⋅ 10

i
30 , with i = [−30,−29, … , 29, 30].

3.2 2019 QSM challenge—SNR1 data set

In the context of the 2019 QSM challenge,28 two simu-
lated data sets29 with different SNRs were provided. Each
data set consisted of two brain images: Sim1 and Sim2.
Sim2 had higher contrast between white matter and gray
matter than Sim1. Additionally, a strong calcification was
included in Sim2. We used the SNR1 data set, as it presents
a lower SNR ratio (SNR1 = 100 vs SNR2 = 1000). We esti-
mated the local magnetic field from the phase of the simu-
lated multi-echo acquisitions using a magnitude-weighted
least-squares fitting. Field maps were zero-padded to 256×
256× 256 to prevent large-scale aliasing and other artifacts.
All reconstructions were stopped when they reached 300
iterations, and the reconstruction parameters were opti-
mized to minimize NRMSE. For each optimal NRMSE
reconstructions, we computed the error metrics used in
RC2, namely28 dNRMSE, dNRMSE TISSUE, dNRMSE
DeepGM, dNRMSE blood, calcification streaking, and
deviation from calcification moment. We considered two
additional global metrics: susceptibility-tuned SSIM35 and
the high-frequency error norm.36

3.3 In vivo data set

We performed an in vivo acquisition on a Siemens 3T scan-
ner (Magnetom Trio Tim; Siemens Healthcare, Erlangen,
Germany) with a 12-channel phased-array head coil. We
used a gradient-echo sequence with six echoes of a patient
showing extensive brain hemorrhage with the follow-
ing sequence parameters: TE1 = 4.92 ms, ΔTE = 4.92 ms,
TR = 35 ms, flip angle = 15◦, matrix = 232× 288× 64
with 0.8× 0.8× 2 mm3 voxel size, and acquisition
time = 4:51 min. Phase unwrapping was performed with
SEGUE (speedy region-growing algorithm for unwrapping
estimated phase),37 and background field removal was
performed by projection onto dipole fields.38 We estimated
the local field using a magnitude-weighted least-squares

phase fitting. Background field residuals were removed
using the harmonic phase estimation obtained with the
weak-harmonic QSM method.39 Two additional experi-
ments with in vivo data sets are included in Supporting
Information Section E.

MR images from patients with brain hemorrhage were
selected retrospectively. The study was approved by the
IRB and the subjects gave informed consent.

4 RESULTS

4.1 COSMOS forward simulation

The L1L2 reconstruction obtained the best performance
for medium and low SNRs (Figure 1A,B), whereas L1
achieved the best results for high SNR (Figure 1C). Inde-
pendent of the SNR level, L1L2 obtained the most sta-
ble performance, by varying the regularization parame-
ter around the optimum produced the smallest NRMSE
change. The same performance was obtained by analyzing
11 zones of interest (Supporting Information Table S1), as
described in Langkammer et al.34

Although L2 reconstructions yielded streaking arti-
facts in the presence of phase inconsistencies, both L1 and
L1L2 could successfully suppress those artifacts (Figure 2).
To compensate for the generation of streaking artifacts,
minimization of the NRMSE produced an overregular-
ized L2 reconstruction. The L1L2 reconstructions demon-
strated better delineation or definition (without overreg-
ularization) of small blood vessels, along with better con-
trast between white matter and gray matter.

4.2 QSM challenge 2.0—SNR1 data set

The HD-QSM (L1L2 and L1L2wH) reconstruction
achieved the best performance in most of the analyzed
metrics, especially when considering RMS error–based
metrics (Table 1). The metrics obtained using the pro-
posed heuristic (L1L2) are similar to those obtained by
tuning all parameters (L1L2wH). The nlL1 reconstruction
obtained the second-best performance in NRMSE (opti-
mized variable), but the processing time was more than 2
times larger than those of the linear competitors.

The optimal number of L1 iterations (i1) was 40 and
280 for L1L2 and L1L2wH, respectively. For different i1, the
optimized reconstructions of L1L2 and L1L2wH showed
differences less than 1% in NRMSE (Supporting Informa-
tion Figures S1–S5).

The reconstructions obtained for each method are
presented in Supporting Information Figures S6 and S7.
Figure 3 shows the evolution of NRMSE per iteration of
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F I G U R E 1 (A–C) The RMS error for
different regularization parameters
normalizing the scale with center at the
optimum. Abbreviation: NRMSE,
normalized RMS error

the optimal reconstructions achieved for each method.
The curves for L2 and nlL2 are overlapped, as their per-
formances were almost identical. Stage 1 of L1L2 and
L1L2wH diverged before the transition to stage 2, and then
it quickly converged again.

The optimal regularization weights of our proposed
methods (L1L2 and L1L2wH) were smaller than those
respectively obtained for the L1 and L2 methods (Table 1).
Having a smaller 𝜆1 might explain the divergence observed

in NRMSE curves in our stage 1. Supporting Informa-
tion Figures S4 and S5 present reconstructions at the
end of stage 1 and stage 2, with and without the use
of the weight modulated by the voxel-wise phase dis-
crepancy factor. Use of the discrepancy factor helps the
L2-norm to reduce the artifacts present in the image
provided by stage 1. This is done by penalizing with
a low weight those voxels that might produce strong
artifacts.
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F I G U R E 2 Optimal
reconstructions of L1, L2, and L1L2
over the simulation with SNR = 100 and
phase jumps. Areas of interest are
enclosed in bounding boxes and
magnified to show details

4.3 In vivo data set

Figure 4 presents the in vivo reconstructions for each
method. The optimal reconstructions were chosen by
visual inspection around the optimum indicated by the
L-curve analysis. The reconstruction of the linear L1-norm
method shows a hallucinated suppression of the frontal
lesion, which limits the clinical useability of this method.
All other methods were able to successfully recover the
lesions, with L1L2 showing the fewest shadow artifacts
adjacent to the frontal and posterior lesions.

The difference maps highlight that the L1L2 recon-
struction is smooth like the L2-norm reconstructions, but
comes with a better structural definition such as the
nlL1 reconstruction. The L1L2 and nlL1 reconstructions
resolved structural details such as the posterior lesion,
generating only minor shadows around it.

Supporting Information Figures S8 and S9 present
additional in vivo data reconstructions. In these
less-challenging data sets, the proposed L1L2 method
better reconstructs structures such as the vein shown
in Supporting Information Figure S8 and mitigates the
streaking artifact shown in Supporting Information
Figure S9.

5 DISCUSSION

The hybrid data fidelity term approach for QSM is an iter-
ative method that differs from current methods in that it
is composed of two consecutive stages using the L1 and
L2 norm in a linear data consistency term. The HD-QSM
method provides good reconstructions at low, medium,
and high SNRs, and obtains superior performances at
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T A B L E 1 Metrics of RMSE-based optimal reconstructions

Note: We evaluated the QSM challenge 2.0 metrics plus XSIM, HFEN, and computation time. In simulation 1, L1L2 and L1L2wH scored highest in 6 of 8
metrics evaluated. In simulation 2, L1L2wH scored best in 6 of 10 metrics. L1L2wH is slightly superior to L1L2; removing L1L2wH from the comparison,
the best performance is obtained by L1L2.
Abbreviations: DGM, deep gray matter; HFEN, high-frequency error norm; XSIM, susceptibility-tuned SSIM metric.

low and medium SNRs compared with single-stage linear
methods using the L1-norm, or alternatively, the L2-norm.
The use of two stages allows HD-QSM to exploit the
strengths of both norms. The reconstructions are robust to
outliers, providing good noise-reduction capabilities and
stability with respect to the regularization parameter.

The data-consistency weights (Eqs. 2 and 4) play a fun-
damental role in HD-QSM. They help to identify voxels
that generate artifacts so that the L2-norm data consis-
tency penalizes them less heavily and avoids generating
artifacts. It also allows stage 1 to search for a subregular-
ized solution rich in structural information and provides

stage 2 with an initial solution closer to the optimum. This
makes HD-QSM regularization parameters lower than
their single-stage counterparts. Similarly to the MERIT17

heuristic, the L1-norm rejects outliers dynamically at each
iteration, but at a threshold that depends on the data dis-
tribution without the need of parameter tuning. The rede-
fined data-consistency weight (Eq. 4) maintains the effect
of this threshold on the last iteration of stage 1 throughout
stage 2.

Our method has six free parameters to be tuned. How-
ever, we propose a heuristic to reduce this complexity
to only one free parameter. After a fixed total number
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F I G U R E 3 Evolution of
NRMSE by iterations for all
methods on Sim1 and Sim2.
The curves of L2 and nlL2
overlap. The first stage of L1L2
and L1L2wH diverges, while
stage 2 converges fast. The
difference in NRMSE between
L1L2 and L1L2wH is 0.5 points

of iterations, the difference of the NRMSE obtained
between the six free parameter method and the proposed
heuristic was always less than 1%, independent of the dis-
tribution of iterations between the first and the second
step. Even though the L1 minimization step appears to
diverge after a few iterations, the L2 stage plus the use
of data-consistency weights can rapidly reduce the errors.
In other words, setting only one free parameter and run-
ning only a few iterations for the L1 minimization step
would be enough to define a good initialization for the L2
minimization step, and lately, achieve high-quality QSM
reconstructions.

In terms of image quality, the proposed two-stage
solver represents an improvement over linear and nonlin-
ear formulations in terms of reducing noise and prevent-
ing streaking artifacts emanating from low-SNR regions.
Compared with L2-norm methods, HD-QSM produced
reconstructions with better structural definition and bet-
ter artifact management. Compared with L1-norm meth-
ods, HD-QSM produced reconstructions with a less noisy

visual appearance and closer to the ground truth. The
HD-QSM method requires similar computational time
compared with linear methods and outperforms nonlinear
methods.

The idea of solving QSM reconstructions using a pre-
vious reconstruction as a starting point might be extended
to single-step formulations (ie, including phase unwrap-
ping and background field removal into the functionals).
Initialization based on solutions that do not require param-
eter tuning can also be explored (ie, nonregularized func-
tional, deep learning models), in which case this model
would serve as a refinement step.

6 CONCLUSIONS

The HD-QSM method combines the beneficial features
of the L1-norm and L2-norm to obtain high-quality
QSM reconstructions (ie, good structural definition,
noise reduction and preventing streaking artifacts), while
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F I G U R E 4 Optimal reconstructions obtained by visual inspection around the optimum indicated by the L-curve analysis. Areas of
interest are enclosed in bounding boxes. The red box shows the basal ganglia region and encloses a zone with a hyperintense structure (might
be a blood vessel shown as a white circle) in the center. nlL1 generates an artifact in the structure, generating a different geometry and
propagating a streaking artifact. The blue and white boxes enclose frontal and posterior lesions, respectively. L1L2 generates reconstructions
with less artifacts around the lesions

maintaining the computational complexity of a linear
method. We also proposed a simple and effective heuristic
that reduces fine-tuning to only one parameter to achieve
optimal performance. The HD-QSM method demon-
strated exquisite numerical performance in the QSM chal-
lenge 2.0 and in pathological MRI data sets with structural
abnormalities and conspicuous features.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Table S1. Local measurements (mean value ± SD [local
RMSE], in parts per billion) of evaluation areas for the
COSMOS (calculation of susceptibility through multiple
orientation sampling)–based phantom
Figure S1. Normalized RMS error (NRMSE) evolution of
Sim1 optimal reconstructions for different i1. The error
difference obtained between the free parameter method
and the proposed heuristic is less than 1 point for all i1.
The difference between the best and the worst reconstruc-
tion is less than 1 point, indicating that the number of
iterations of L1-norm is not an extremely determinant fac-
tor, which confirms the hypothesis that the stage of an
L1-norm solution is a better starting point than 0
Figure S2. The NRMSE evolution of Sim2 optimal recon-
structions for different i1
Figure S3. Solutions at the end of stage 1 and stage 2 for
Sim1 and Sim2. The solutions at the end of stage 1 show
a noisy appearance with streaking artifacts (see around
the calcification), but with good structural definition. The
final solutions maintain the structural details but do not
show the noise and streaking artifacts
Figure S4. The first column presents the solution at the
end of stage 1; the second column shows the discrep-
ancy factor, which weights the data-consistency weight;
the third column shows the solution of stage 2 using the
adjustment factor; and the fourth column shows the solu-
tion without using the adjustment factor with the same
parameters
Figure S5. The NRMSE-optimized solutions of the hybrid
data fidelity term approach for QSM (HD-QSM) with-
out the discrepancy factor. The first column presents the

solution at the end of stage 1, and the second column
shows the final solution
Figure S6. Optimal NRMSE reconstructions of Sim 1. For
the search of the optimum of L1L2wH, a search was per-
formed in a vector space of 5× 5× 5× 5

(

𝜆
L1
1 , 𝜇

L1
1 , 𝜆

L2
1 , 𝜇

L2
1

)

;
once the optimum of this space was located, a second
search was performed in a space of the same size in the
vicinity of the optimum. In total, three search processes
were performed for each simulation, which equates to
3750 reconstructions, whereas for L1L2 only 50 recon-
structions were necessary
Figure S7. Optimal NRMSE reconstructions of Sim2. To
find the optimum of L1L2wH, a search was performed in
a vector space of 5 × 5 × 5 × 5

(

𝜆
L1
1 , 𝜇

L1
1 , 𝜆

L2
1 , 𝜇

L2
1

)

. Once
the optimum of this space was located, a second search
was performed in a space of the same size in the vicin-
ity of the optimum. A total of three search processes were
performed for each simulation, which equates to 3750
reconstructions, whereas for L1L2, only 50 reconstructions
were necessary
Figure S8. Additional in vivo reconstruction of a healthy
patient. The red arrows indicate a cortical vein. L1L2 and
nlL1 were able to correctly reconstruct the veins of the
cortex
Figure S9. Additional in vivo reconstruction of a patient
with brain calcifications. Red arrows indicate the origin of
a streaking artifact. The L1L2 reconstruction succeeds in
mitigating this spread.
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