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Abstract: Formation of a habit plane during martensitic transformation is related to an invariant
plane strain transformation, which involves dislocation glide and twins. In the current work, the
Phenomenological Theory of Martensitic Transformation (PTMT) is employed to study the crystal-
lographic features while the phase field simulation is used to study the microstructure evolution
for martensitic transformation of Ti-6Al-4V alloy. Results show that mechanical constraints play
a key role in the microstructure evolution. It is shown that a twinned structure with very small
twinned variants is geometrically difficult to form due to the lattice parameters of Ti-6Al-4V alloy. It is
concluded that the predicted habit plane from the PTMT is consistent with results of the micro-elastic
theory. The formation of a triangular morphology is favored geometrically and elastically.

Keywords: Ti-6Al-4V; martensitic transformation; phase field simulation; twins; Phenomenological
Theory of Martensitic Transformation

1. Introduction

Ti-6Al-4V alloy, known as TC4, is widely applied in different fields due to its excellent
mechanical properties, corrosion resistance and superior biocompatibility [1–9]. Complex
microstructures of Ti-6Al-4V alloy may be observed as a result of different manufacturing
procedures due to the phase transformation from the high-temperature β phase (BCC) to the
low-temperature α phase (HCP). In order to improve the alloy’s mechanical performance
and industrial applications, it is important to control the manufacturing procedure by under-
standing the mechanism and microstructure evolution during martensitic transformation.

During martensitic transformation, dislocation glide and/or twins are involved to
accommodate the shear strain and produce the habit plane. Yang et al. [10] used High-
Resolution Transmission electron microscopy (HRTEM) to observe partial dislocations
at the atomic scale during phase transformation in AISI 304 austenitic stainless steel.
Liu et al. [11] confirmed the interaction between dislocations and transformed α′ martensite
and concluded that dislocations are piling up at grain boundaries to induce the nucleation
of new α′ martensite. In terms of twinned microstructures, Bhattacharya proposed several
different twins with compatibility functions [12]. Except for the different twins classified by
the twinning elements, including the compound twin, type I and II twins [13], the crossing
twins were considered, involving four variants that have been observed and predicted
in NiTi and Ti2448 alloy [14–17]. For the Ti-6Al-4V alloy it was reported that twinned
microstructures are attributed to the plastic deformation, which can release significantly the
stress concentration around micro-crack [18,19], but not much research is reported about
the transformation twins within Ti-6Al-4V alloy [20,21].
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In addition to the direct observation of microstructures, many different modeling
methods have been proposed to explain the nature and features of martensitic trans-
formation. One simple, geometrical and generally accepted crystallographic theory is
the Phenomenological Theory of Martensitic Transformation, which was proposed by
Greninger-Troiano [22] and developed by Bowles and Mackenzie (B-M theory) [23,24]
and Wechsler, Lieberman and Read (W-L-R theory) [25,26], respectively. Based on the
lattice parameters, Lieberman [27] and Sun et al. [28] successfully captured important
microstructural features of AuCd alloy and Ti-Nb based shape memory alloys, respec-
tively. Another geometrical method is the topological model (TM) constructed by Pond and
Hirth [29]. Unlike the PTMT theory, the habit plane and orientation relationship between
parent and product phase are predicted based on the interfacial defects, but without High
Resolution TEM the crystallographic geometry of interfacial disconnections is difficult to
confirm [30,31]. Due to the simple calculation and highly accurate physical results from the
PTMT theory, it has been employed widely to obtain the crystallographic features of alloys
during martensitic transformation [21,32–36].

For the martensitic transformation, in addition to the predicted habit plane and shear
deformation, it is also important to simulate the microstructure evolution under different
conditions. One powerful simulation method is phase field modelling based on the ther-
modynamic and micro-elastic kinetic potential, which was proposed by Cahn and Allen,
and developed by Khachaturyan and Wang [37–40]. Phase field models are applied widely
to simulate microstructure evolution for different alloys and study the effect of chemical
composition, internal or external mechanical or magnetic loads on microstructure and
fracture [41–45]. Through phase field simulation, Shi and Qiu et al. [46–49] have studied
the effect of external loading on variant selection mechanisms and the self-accommodation
phenomena of Ti-6Al-4V alloy. However, there are few reports [20,21] about the role of
twins in the transformation strain accommodation in Ti-6Al-4V alloy. In the current work,
the Phenomenological Theory of Martensitic Transformation is employed to analyze the
crystallographic features of twinned microstructure and phase field modelling is used to
simulate the microstructure evolution and compare the results with experiments.

2. Crystallographic Analysis by PTMT
2.1. Transformation Matrix

Theoretically, unlike diffusion transformations, martensitic transformations (also
known as displacive transformations) involve short-range atomic displacements, which
result in a change of crystal structure with minimum transformation elastic strain energy.
Based on the Burgers orientation correspondence [50], for the martensitic transformation of
Ti-6Al-4V alloy, the lattice orthohexagonal reference system between BCC and HCP cells is
shown in Figure 1, and it corresponds to:

xo||[1 0 0]||
[
1 1 0

]
β
||[0 0 0 1]α;

yo||[0 1 0]||[1 1 0]β||
[
1 0 1 0

]
α
;

zo||[0 0 1]||[0 0 1]β||
[
1 2 1 0

]
α
;

Within such a lattice correspondence system, the transformation matrix in the
no= (xo yo zo) orthogonal reference frame is:

Uo=


cα√
2aβ

0 0

0
√

3aα√
2aβ

0

0 0 aα
aβ

 (1)
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where the lattice parameters of α and β phase are: aα = 0.29511 nm, cα = 0.46843 nm and
aβ = 0.33065 nm, respectively [51]. Then the transformation matrix of one variant shown in
the parent β coordinate system is:

Uβ=

1.0474 0.0457 0
0.0457 1.0474 0

0 0 0.8925

 (2)

Theoretically, the atomic shuffle is necessary for phase transformation between BCC
and HCP crystallographic structures through dislocation glide [52–54]. Therefore, in the
current work, without considering the internal shuffle, only six correspondence variants
from a single parent beta grain are produced (in order to distinguish from the 12 crys-
tallographic variants in which the dislocation glide is under consideration, the phrase
‘correspondence variant’ is used, and ‘variant’ refers to the correspondence variant without
specifying the ‘crystallographic variants’). The transformation matrices for all six variants
can be calculated with the cubic symmetry operators and listed below:

U1=

0.8925 0 0
0 1.0474 −0.0457
0 −0.0457 1.0474

, U2=

0.8925 0 0
0 1.0474 0.0457
0 0.0457 1.0474

,

U3=

 1.0474 0 −0.0457
0 0.8925 0

−0.0457 0 1.0474

, U4=

1.0474 0 0.0457
0 0.8925 0

0.0457 0 1.0474

,

U5=

−1.0474 −0.0457 0
0.0457 1.0474 0

0 0 0.8925

, U6=

1.0474 0.0457 0
0.0457 1.0474 0

0 0 0.8925

,

(3)
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2.2. Habit Plane between Single Variant and Matrix

In order to form an invariant plane between a single variant and the matrix, the kinetic
compatibility function is considered, based on Bhattacharya [12], and can be written as:

RiUi − I = b⊗m (4)

where Ri is a rigid body rotation of variant i with respect to parent phase, Ui is the
transformation matrix of variant i in Equation (3), I is the unit matrix, b and m are shape
strain and habit plane normal, respectively and ⊗ represents the dyadic product of two
tensors. From Ball and James’ work [55], we know that, only if the eigenvalues of U2

i
meet the condition λ1 < λ2 = 1 < λ3, does Equation (4) have a solution for the invariant
plane. In the present study, the eigenvalues of U2

1 are 0.7966, 1.0034 and 1.1949, respectively.
Therefore, the transformation matrix from a single variant can induce the formation of an
invariant plane between variant and matrix without involving the lattice invariant shear.
With the subroutine of Hane and Shield [56], solutions of Equation (4) for all 6 variants
are obtained and listed in Table 1. Even though the interface between the parent β phase
and product α phase may partially lose its coherency, the observed {3 3 4} habit plane
normal [57] has been widely accepted. Based on Srivastava’s work [57], the predicted habit
plane normal from the PTMT calculation exhibits a small angular deviation of 2.3◦ with
respect to observed {3 3 4} habit plane normal, which is generally acceptable within an
assumed tolerance of 5◦. It can be concluded that the prediction of the habit plane normal
for a single variant agrees well with experimental results.

Table 1. Predicted habit plane normal and shear vector from Equation (4) in the parent phase
reference system.

Variant Shear Vector b Habit Plane Normal m

1
(0.1567 −0.0885 0.0885) (−0.7147 −0.4946 0.4946)

(0.1567 0.0885 −0.0885) (−0.7147 0.4946 −0.4946)

2
(0.1567 0.0885 0.0885) (−0.7147 0.4946 0.4946)

(0.1567 −0.0885 −0.0885) (−0.7147 −0.4946 −0.4946)

3
(−0.0885 0.1567 0.0885) (−0.4946 −0.7147 0.4946)

(0.0885 0.1567 −0.0885) (0.4946 −0.7147 −0.4946)

4
(0.0885 −0.1567 0.0885) (0.4946 0.7147 0.4946)

(−0.0885 −0.1567 −0.0885) (−0.4946 0.7147 −0.4946)

5
(−0.0885 0.0885 0.1567) (−0.4946 0.4946 −0.7147)

(0.0885 −0.0885 0.1567) (0.4946 −0.4946 −0.7147)

6
(0.0885 0.0885 0.1567) (0.4946 0.4946 −0.7147)

(−0.0885 −0.0885 0.1567) (−0.4946 −0.4946 −0.7147)

2.3. Invariant Plane in Twinned Microstructure

Aside from the habit plane between a single variant and parent matrix, the invariant
plane can be formed within two twinned variants, which is governed by Equation (5). With
two twinned variants, the invariant plane between twinned variants and matrix can be
solved with the kinetic compatibility Equation (6):

RijUi −Uj = a⊗ n (5)
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R[λRijUi + (1− λ)Uj] = I + b⊗m (6)

where Rij is a rigid body rotation of variant i with respect to variant j, a and n are a shear
vector and twin plane normal, respectively: λ is the volume fraction of the twinned variant
i; R is a rigid body rotation of the twinned region with respect to the parent phase. The
transformation strain of the twinned region for Equation (6) is taken as the average strain
of the two twinned variants. In terms of solutions of twinned region for all combinations
with six variants, there are six compound twins, 12 type I and 12 type II twins. The results
are listed in Tables 2–4. It should be pointed out that the predicted twin plane of compound
and type I are already observed [58]. The twin planes of {1 0 0} and {1 1 0} are transformed
into {2 1 1 0} and {0 0 0 1} plane in the hexagonal cell, respectively. However, the angular
deviation of the predicted twin plane of type II from the frequently observed {1 1 2} twin is
16.82◦, whereby the {1 1 2} β phase twin plane is transformed into a {1 1 2 3} twin plane in
the hexagonal cell [58]. With the solutions of Rij, the volume fraction of twinned variants,
and invariant plane between twinned region and parent β phase can be predicted based
on Equation (6). Here the combination of variants 2 and 5 is taken as an example, and
the predicted results are listed in Table 5. It can be seen that for the twinned region, the
volume fraction of the minor part is very small, with ~4%, which is consistent with the
observed TEM morphology of Ti-6Al-4V alloy [59–61]. The small volume fraction within
twinned region would be the reason that the transformation twin microstructure is difficult
to observe for Ti-6Al-4V alloy.

Table 2. Twin elements for compound twins with different variant combinations.

Compound Twin Shear a Twin Plane Normal n

Variant: 1/2
(0 −0.1824 −0.008) (0 0 1)

(0 −0.008 −0.1824) (0 1 0)

Variant: 3/4
(−0.1824 0 −0.008) (0 0 1)

(−0.008 0 −0.1824) (1 0 0)

Variant: 5/6
(−0.1824 −0.008 0) (0 1 0)

(−0.008 −0.1824 0) (1 0 0)

Table 3. Twin elements for type I twins with different variant combinations.

Type I Twin Shear a Twin Plane Normal n

Variant:1/3 (−0.2357 −0.1968 0.1189) (1 −1 0)

Variant:1/4 (−0.2357 0.1968 −0.1189) (1 1 0)

Variant:1/5 (−0.2357 0.1189 −0.1968) (1 0 −1)

Variant:1/6 (−0.2357 −0.1189 0.1968) (1 0 1)

Variant:2/3 (−0.2357 0.1968 0.1189) (1 1 0)

Variant:2/4 (−0.2357 −0.1968 −0.1189) (1 −1 0)

Variant:2/5 (−0.2357 0.1189 0.1968) (1 0 1)

Variant:2/6 (−0.2357 −0.1189 −0.1968) (1 0 −1)

Variant:3/5 (−0.1189 0.2357 0.1968) (0 −1 1)

Variant:3/6 (−0.1189 −0.2357 0.1968) (0 1 1)

Variant:4/5 (0.1189 −0.2357 0.1968) (0 1 1)

Variant:4/6 (0.1189 0.2357 0.1968) (0 −1 1)
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Table 4. Twin elements for type II twins with different variant combinations.

Type II Twin Shear a Twin Plane Normal n

Variant:1/3 (−0.2590 0.2207 0.0113) (0.6455 0.6455 −0.4082)

Variant:1/4 (−0.2590 −0.2207 −0.0113) (0.6455 −0.6455 0.4082)

Variant:1/5 (−0.2590 0.0113 0.2207) (0.6455 −0.4082 0.6455)

Variant:1/6 (−0.2590 −0.0113 −0.2207) (0.6455 0.4082 −0.6455)

Variant:2/3 (−0.2590 −0.2207 0.0113) (0.6455 −0.6455 −0.4082)

Variant:2/4 (−0.2590 0.2207 −0.0113) (0.6455 0.6455 0.4082)

Variant:2/5 (−0.2590 0.0113 −0.2207) (0.6455 −0.4082 −0.6455)

Variant:2/6 (−0.2590 −0.0113 0.2207) (0.6455 0.4082 0.6455)

Variant:3/5 (−0.0113 0.2590 −0.2207) (0.4082 −0.6455 −0.6455)

Variant:3/6 (−0.0113 −0.2590 −0.2207) (0.4082 0.6455 −0.6455)

Variant:4/5 (0.0113 −0.2590 −0.2207) (−0.4082 0.6455 −0.6455)

Variant:4/6 (0.0113 0.2590 −0.2207) (−0.4082 −0.6455 −0.6455)

Table 5. Predicted variant volume fraction, habit plane normal and angular deviation from experi-
mental result [20,58].

Variants:
2/5 Volume Fraction λ of V2 Habit Plane Normal m Angular Deviation (◦)

from {3 3 4}

Type I

0.0398 (0.4720 −0.5039 −0.7233) 3.2961

0.0398 (−0.4771 0.5210 −0.7078) 2.5103

0.9602 (−0.7233 0.5039 0.4720) 3.2961

0.9602 (−0.7078 −0.5210 −0.4771) 2.5103

Type II

0.0539 (0.4720 −0.5039 −0.7233) 3.8003

0.0539 (−0.4771 0.5210 −0.7078) 2.8937

0.9461 (−0.7233 0.5039 0.4720) 2.8937

0.9461 (−0.7078 −0.5210 −0.4771) 3.8003

2.4. Orientation Relationship

For the twinned region with two variants, the total macroscopic distortion E is:

E = R[λRijUi + (1− λ)Uj] = λRRijUi + (1− λ)RUj = λEi + (1− λ)Ej (7)

where shape deformation Ei and Ej originate from variant i and j, respectively. Therefore,
any vector vβ in the parent β phase will be transformed into vα in the product α phase
with total shape deformation and can be separated into two parts corresponding to each
twinned variant, cf. Equation (8). As a result, the orientation relationship between parent
phase and each twinned variant depends on the distortions to which each twinned variant
is subjected separately, i.e., it depends on Ei and Ej.

vα = Evβ = λvαi + (1− λ)vαj = λEivβ + (1− λ)Ejvβ (8)

In order to compare the predicted orientation relationship with experimental results,
the type I twin with combinations of variant 1/3, 2/5 and 4/6 are selected in the current
work, and the {0 0 0 1}, {1 0 1 0} planes and <1 1 2 0> directions are checked.

The (0 0 0 1) and (1 0 1 0) planes in the hexagonal unit cell correspond to (1 0 0)
and (0 1 0) in the orthogonal no coordinate system; thus, the (1 0 0) plane from variant
1 and 3 back-transformed to the parent β phase by the distortion tensors E′1 and E′3 are
(−0.0999 −0.7030 0.7042) and (−0.7269 −0.0743 0.6827), respectively. The angular devi-
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ation of the predicted back-transformed planes from (0 1 1) and (1 0 1) are 5.7329◦ and
4.6233◦. The angular deviations of compared (0 1 0) in orthogonal no coordinate system for
variant 1 and 3 are 0.0715◦ and 2.2665◦ from (0 1 1) and (1 0 1) plane in parent beta phase,
respectively. The predicted orientation relationship for the planes can be written as:(

0 1 1
)

β
5.7329◦ from (0 0 0 1) 1

α,
(
1 0 1

)
β
4.6233◦ from (0 0 0 1) 3

α,

(0 1 1)β0.0715◦ from
(
1 0 1 0

) 1
α, (1 0 1)β2.2665◦ from

(
1 0 1 0

) 3
α,

Similar to the calculation for predicting transformed planes, the orientation relation-
ship for crystallographic directions can be obtained. The selected [1 1 2 0] direction from
hexagonal cell has the coordinates [0 0.8660 0.5000] in the orthogonal no coordinate sys-
tem by applying the hexagonal lattice parameters. These correspond to the unit vectors
[0.4982 0.6479 0.5762] and [0.5571 0.5175 0.6495] in the parent β phase for variant 1 and 3,
the angular deviations of these predicted directions are 6.0797◦ and 5.4979◦ from [1 1 1]
and [1 1 1], respectively. The results are written as:[

1 1 1
]

β
6.0797◦ from

[
1 1 2 0

]1
α
, [1 1 1]β5.4979◦ from

[
1 1 2 0

]3
α
,

The predicted orientation relationship for all six variants with selected planes and
direction are listed in Table 6. It should be noticed that the predicted orientation relationship
of certain variants can be obtained from different twinned regions, such as the orientation
relationship of variant 1 can be captured from twinned variants 1/3 and 1/4. Hence, the
results for variant 1 would exhibit minor differences due to different volume fractions
of different twinned variants. The results, shown in Table 6, are based on the minimum
angular deviations.

Table 6. Predicted orientation relationships of different variants based on PTMT.

Variant Predicted (0 0 0 1) Plane Predicted (1 0
¯
1 0) Plane Predicted [1 1

¯
2 0] Direction

1
(
0 1 1

)
β5.1311◦ (0 1 1)β0.0715◦

[
1 1 1

]
β5.6713◦

2
(
0 1 1

)
β5.1311◦

(
0 1 1

)
β0.0715◦

[
1 1 1

]
β5.6713◦

3
(
1 0 1

)
β4.6233◦ (1 0 1)β0.4025◦ [1 1 1]β5.4979◦

4
(
1 0 1

)
β5.7329◦

(
1 0 1

)
β0.0715◦

[
1 1 1

]
β0.9657◦

5
(
1 1 0

)
β4.6233◦

(
1 1 0

)
β2.2665◦

[
1 1 1

]
β5.4979◦

6
(
1 1 0

)
β4.6233◦

(
1 1 0

)
β2.2665◦

[
1 1 1

]
β0.9657◦

2.5. Cross-Twin Structure

Bhattacharya [12] mentioned that, for some alloys, a special crossing twinned mi-
crostructure would be formed with four transformation variants during phase transforma-
tion. The compatibility functions for such crossing twins are:

RjiUj −Ui = a1 ⊗ n1; (9a)

RkjUk −Uj = a2 ⊗ n2; (9b)

RlkUl −Uk = a3 ⊗ n3; (9c)

RilUi −Ul = a4 ⊗ n4; (9d)

RjiRkjRlkRil = I; (9e)

n1, n2, n3 and n4 in a plane (9f)
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The meaning of the quantities of Equation (9) are the same as in Equation (5).
Equations (9a)–(9d) generate the interfacial invariant planes between two variants.
Equation (9e) guarantees that a quadruple junction point is formed without disloca-
tions along interaction lines of variants and Equation (9f) makes sure that all four twin
planes meet along a line. The solutions of the crossing twin will be discussed later.

3. Phase Field Simulation

Given a set of lattice parameters, the Phenomenological Theory of Martensitic Transforma-
tion above can capture important crystallographic features during martensitic transformation
through geometrical analysis. The habit plane between variants and matrix can also be
predicted by phase field simulation based on the micro-elastic (KS) theory [37–40]. Phase
field modelling is usually employed to study microstructural evolution during martensitic
transformation with different conditions [16,17,39,40]. In the present work, the stress-free
transformation strain (SFTS) during β to α martensitic transformation is set at input to sim-
ulate the microstructure evolution for all six variants by time-dependent Ginzburg–Landau
(TDGL) equation.

3.1. Stress-Free Transformation Strain

During martensitic transformation, the change of lattice structure leads to transforma-
tion deformation. The SFTS can be calculated with following equation [16,17]:

ε00
ij (p) =

U′pUp − I
2

(p = 1 ∼ 6) (10)

In Equation (10) I refers the unit matrix, Up is the transformation matrix and U′p
its transpose.

3.2. Free Energy Formulation

In the current study, six non-conserved fields ηp are introduced to present six different
correspondence variants, where ηi(r) = 1 stands for variant i in position r, while ηi=1∼6(r) =
0 stands for β matrix. Here the atomic shuffle is not under consideration. Therefore, the
local chemical free Gibbs energy can be expressed in a Landau-type polynomial [62] as:

Fch =
1

Vm
[
A
2 ∑6

p=1 η2
p −

B
3 ∑6

p=1 η3
p +

C
4
(∑6

p=1 η2
p)

2
] (11)

where A = 32∆G∗, B = 3A + 12∆Gm and C = 2A + 12∆Gm are expansion coefficients, ∆Gm
is the driving force, which is the difference of Gibbs free energy between the β and α

phases in equilibrium status, ∆G∗ is the Gibbs energy barrier that opposes the martensitic
transformation and Vm is the molar volume.

The gradient energy in the interfacial region between α variants and β matrix in
non-equilibrium conditions is given as:

Fgrad =
1
2

k|
∂ηp(r, t)

∂xi
||

∂ηp(r, t)
∂xj

| (12)

where k is the gradient energy coefficient under the assumption of isotropic interface
between α variants and β matrix. When the simulation system reaches a stable status,
the non-conserved structural parameter profiles remain constant in the local reference
system attached to the interface, hence the Gibbs energy barrier ∆G∗ and gradient energy
coefficient k are related to interfacial energy γ by the following equations [62]:

∆G∗ =
3γVm

4
√

2δ
, k =

3γδ

2
√

2
(13)
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For a martensitic transformation, the local elastic strain energy is attributed to the
change of crystallographic cells. Therefore, the local transformation elastic strain is assumed
to be a linear superposition of SFTS with all local variants, given as:

εij(r) =
6

∑
p=1

ηp(r)ε00
ij (p) (14)

With the local transformation elastic strain, the elastic strain energy of the simulated
system can be formulated as:

Fel =
1
2

6

∑
p=1

∮ d3k

(2π)3 Bpq(n)
{

η̃p
}

k

{
η̃q
}∗

k (15)

where the elastic strain energy density Bpq in a clamped boundary condition is represented
by [39,40]:

Bpq(n) =

{
Cijklε

00
ij (p)ε00

kl (q) n = 0

Cijklε
00
ij (p)ε00

kl (q)− niσ
00
ij (p)Ωjk(n)σ00

kl (q)nl n 6= 0
(16)

In Equations (15) and (16), Cijkl is the elastic stiffness tensor under the assumption that
its components for α and β phases are the same and isotropic in a homogeneous simulation
system, ε00

kl (p) is the SFTS of variant p, σ00
kl (p) = Cijklε

00
ij (p) and Ω−1

il (n) = Cijklnjnk is the

inverse of the Green’s function in the reciprocal space, n = k
|k| is a unit vector and k is a

vector in the reciprocal space,
{

η̃p
}

k is the Fourier transformation of ηp(r), r is the position
vector in real space and the asterisk stands for the complex conjugate.

As a result, the total free energy of system is given by:

F =
∫
(Fch+Fgrad) d3r+ Fel (17)

3.3. Kinetic Equation

The Allen–Cahn equation is employed to describe the time dependent microstructure
evolution during martensitic transformation:

∂ηp

∂t
= −M

∂F
∂ηp(r, t)

+ ξp(r, t), ( p = 1 ∼ 6) (18)

where M is the kinetic coefficient and ξp(r, t) is the Langevin random noise term that
describes the local thermal fluctuation of structural order parameters [63–65].

3.4. Simulation Parameters

In order to simplify calculations and save time, all simulation parameters are used in
their reduced form as proposed by Chen et al. [66]:

F̃ = F/∆Gm, k̃ = k ∗Vm/(∆M ∗ dx),

d̃t = dt ∗ ∆M ∗ ∆Gm/(dx)2, M̃ = M ∗ (dx)2/(∆M ∗Vm)
(19)

Based on Lindwall’s work [67], by setting the simulation temperature as 1073 K, and
with equilibrium compositions of α phase and β matrix as Ti-10.25Al-3.21V and Ti-9.01Al-
10.99 V (at%), the driving force ∆Gm can be obtained. All simulation parameters used in
phase field modelling are listed in Table 7 below.
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Table 7. Simulation parameters used in the phase field simulation.

Physical Parameters Symbol Value Unit

Temperature T 1073 K
Grid size dx 25 nm

System size lx, ly, lz 128, 128, 128 -
Interface thickness δ 5dx nm
Interfacial energy γ 50× 10−3 J/m2

Molar volume Vm 10−5 m3/mol
Kinetic coefficient M 1.6× 10−7 J/m3/s

Elastic constant C11, C12, C44 97.7, 82.7, 7.5 GPa
Time step dt 2× 10−3 s

Normalization factor ∆M 10−18 m2 mol/J/s

4. Simulation Results

In the current work, the phase field simulations are carried out with periodic boundary
conditions in all three directions. No external load is applied. The Langevin random noises
are introduced in the early simulation stage. Once enough nuclei have been formed, the
noise term is turned off. With the SFTS as input, the Allen–Cahn function (Equation (18)) is
solved by semi-implicit Fourier-spectral method in Fourier space [68].

4.1. Microstructure Evolution

Figure 2 shows the microstructure evolution and volume fraction of variants during
martensitic transformation predicted by the phase field simulation, including nucleation,
growth and twin formation. The β matrix in Figure 2a–e is set to be transparent, and the
morphology of different α variants are outlined based on the condition that η2

p(r) ≥ 0.5 with
different colors. As obtained by the PTMT above, a habit plane would be formed between a
single α variant and β matrix. In Figure 2a, two variants 4 and 5 are nucleated in the early
transformation stage. During growth they assume a plate shape with different directions,
and the remaining variants nucleate and grow around the primary variant 4 and 5, which
are induced by the interaction energy between variants, known as autocatalytic effect. A
small triangular pyramidic structure is formed with 3 variants of 1, 4 and 5 (Figure 2b).
While the martensitic transformation continues, different variants keep growing, impinge
on each other (Figure 2c) and rearrange the morphology into a complex microstructure.
Some small regions display twinned microstructure, such as area A and B in Figure 2e.
Figure 2f shows the change-of-volume fraction for different variants. Most β matrices
transform to product α variants but ~11% parent phased is still retained after 200s. Even
though the quantitative comparison of microstructure between simulation and experiments
is absent, the twinned microstructure and triangular morphology in current simulation
agrees well with experimental observation on Selective Laser Melted (SLM) Ti-6Al-4V alloy
in Figure 3. The microstructure evolution simulated by Phase- Field model can found in
the Supplementary Materials.

4.2. Twinned Microstructure

As calculated by the PTMT, compound Type I and Type II twins would form with
different variant combinations. In order to compare the predicted twins, several phase field
simulations are employed for the formation of twins. It can be seen from Figure 4 that, with
a small Langevin noise term, the autocatalytic effect would arrange the variants’ morpholo-
gies according to the minimum elastic energy path, leading to a twinned microstructure,
which is also favored geometrically by PTMT.
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5. Discussion
5.1. The Habit Plane between α Variants and β Matrix

With the specific lattice parameters of HCP and BCC crystallographic structure in
Ti-6Al-4V alloy, the PTMT can predict most important crystallographic features with small
angular deviations during martensitic transformation. Additionally, the orientation rela-
tionship between parent β phase and product α phase, the habit plane and microstructure
evolution can also be captured by phase field modelling.

In the current study, the effect of external loading, chemical elements and temperature
is not considered. Hence, the microstructure evolution is driven by the elastic strain energy
from phase transformation. With the micro-elastic theoretical framework described in Part
4, the habit plane of a single variant can be determined by minimizing the elastic strain
energy density Bpp(n) with respect to orientation n [39]:

∂Bpp(n)
∂n

= 0 (20)

where p represents the pth variant of martensite phase. According to Equation (20), the
minimum Bpp(n) can be obtained at the habit plane normal. The results of all six variants
are shown in Table 8. It can be seen that the predicted habit planes are almost the same
as the predicted results from the PTMT. The angular deviation of the habit plane from
KS theory is ~2.1◦ with respect to the observed {3 3 4} plane. However, as analyzed by
Gao [16], such a habit plane in Ti-6Al-4V alloy is not an invariant habit plane, because the
minimum Bpp(n) is larger than 0. In the PTMT calculation, the eigenvalue of U2

i that is
closest to 1 is 1.0034, which indicates that the predicted habit plane between a single variant
and matrix is not an invariant plane. However, it is very close to 1, thus, the twinned
regions of two variants with small volume fraction of one twinned variant exist in the
microstructure. Moreover, different dislocations and structural ledges have been observed
in the interface between α variant and β matrix [29,31], which produce a semi-coherent
zigzag interface. Therefore, the generally accepted {3 3 4} habit planes only refer to a
semi-coherent interface, which would be the main source of the small angular deviation for
the PTMT and micro-elasticity theory calculation.

Table 8. Predicted habit plane normal, minimum Bpp(n) and angular deviation.

Variant Habit Plane Normal n Bmin(n) (J/m3)
Angular Deviation(◦)

from {3 3 4}

1 (0.7122 −0.4972 0.4955) 1.70 × 105 2.10

2 (0.7122 −0.4972 −0.4955) 1.70 × 105 2.10

3 (−0.4972 0.7122 0.4955) 1.70 × 105 2.10

4 (−0.4972 0.7122 −0.4955) 1.70 × 105 2.10

5 (−0.4968 0.4968 0.7115) 1.75 × 105 2.04

6 (0.4968 0.4968 0.7115) 1.75 × 105 2.04

The habit plane separating the twinned region and the β matrix can be determined in
a similar way but the transformation strain with two twinned variants for Equation (16) is:

εij = λεij(p) + (1− λ)εij(q) (21)

The results for twinned variants with combination of 1/2, 1/3, 1/4, 1/5 and 1/6
are listed in Table 9. From Table 9 it can be seen that the predicted habit normal from
twinned variants have larger angular deviation than the habit plane from a single variant.
But minimum Bpq is much smaller than the one of a single variant, except for the B12
between variants 1 and 2. During martensitic transformation, the microstructure evolution
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is dominated by the elastic strain energy, which can be reduced by twins and dislocation
glide. In the present work dislocations at the interface are ignored and, thus, the twinned
region relaxes the larger part of the elastic strain energy, which becomes obvious by com-
paring the Bmin(n) between twinned and single variants. However, from PTMT, one of the
twinned variants has a very small volume fraction and is hardly observed by experiments.
Shi et al. [46] calculated the minimum Bpp(n) with consideration of dislocations at different
faces in the interfacial region between α variants and β matrix, and predicted the habit
plane with ~0.8◦ angular deviation with respect to experiments, while Cayron [54] con-
cluded that the atomic shuffle is necessary for BCC to HCP phase transformation. Therefore,
it can be concluded that, even if the twinned region can reduce the elastic strain energy to a
large extent, the dislocation would have a larger effect on the microstructure evolution for
all 12 crystallographic variants during martensitic transformation. For the twinned region
with variant 1 and 2, the type of twin is compound. Bhattacharya [12] implied that there
is no invariant plane in compound twins. The minimum B12(n) with compound twinned
variant 1 and 2 is about 10 times larger than for a single variant, which would explain that
no invariant plane exists for compound twins.

Table 9. Predicted habit plane normal, minimum Bpq(n) and angular deviation with twinned variants.

Variant Habit Plane Normal n Bmin(n) (J/m3)
Angular Deviation (◦)

from {3 3 4}

1/2 (−0.7141 0.4919 0.4982) 1.65 × 106 2.27

1/3 (0.4811 0.7176 −0.5036) 2.13 × 104 2.71

1/4 (0.4811 −0.7176 0.5036) 2.13 × 104 2.71

1/5 (−0.4742 0.5245 0.7071) 2.10 × 104 2.71

1/6 (0.4742 0.5245 0.7071) 2.10 × 104 2.71

5.2. Crossing Twins

As reported in B2 to B19/B19′ martensitic transformation for TiNiPt alloy [15], crossing
twins can be formed with 4 different variants. 6 solutions can be obtained based on
Equation (9) for Ti-6Al-4V alloy with combinations of variants 1/2/3/4, 1/2/5/6 and
3/4/5/6. Similar to the β-Ti alloy [17], a crossing structure can be classified into C-II and
I-C types for each variant combination in the current work.

The solutions of C-II crossing twins with variant 1/2/5/6 are taken here as an example,
as illustrated in Figure 5. By taking Ui = U1; Uj = U2; Uk = U6 and Ul = U5, the 4
invariant plane normal directions are n1 = (0 −1 0); n2 = (0.6455 0.4082 0.6455); n3 = (0 1 0)
and n4= (0.6455 0.4082 −0.6455). A small angular deviation of ~1.1◦ of n1n2n3n4 from
the identity matrix I implies that the crossing twins can be predicted geometrically and
that no dislocations are involved in the interfacial region by PTMT. However, to the
authors’ knowledge, no experimental work about such a special crossing twin with four
transformation variants has been reported for Ti-6Al-4V alloy. A more detailed explanation
based on the elastic energy will be given in the next section.
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5.3. Triangular Morphology within 3 Variants

The triangular morphology or pyramid structures are commonly observed within
many alloys during martensitic transformation, which is also reproduced by the current
phase field model. Four different variants clusters are presented in Figure 6. This type
of structure, formed on the basis of reduction of elastic strain energy, is known as a self-
accommodation phenomenon. This nearly pyramidal structures cannot be explained
geometrically based on the PTMT, but Gao [16] proposed a similar geometrical method to
explain it, which will be employed here.

Unlike the crossing twins, whereby a quadruple connection point has to be formed
between four variants and all shear vectors have to be in a plane, the three variants within
a pyramidal structure needs to form at an interfacial plane between them, which can be
expressed geometrically as:

RjiUj −Ui = a1 ⊗ n1; (22a)

RkjUk −Uj = a2 ⊗ n2; (22b)

RikUi −Uk = a3 ⊗ n3; (22c)

For C3
6 = 20 combinations of 3-variant clusters, the minimum misorientation angle of

n1n2n3 from the identity matrix I is ~ 7.01◦, and solutions of three variants that form the
clusters of Figure 6 are consistent with the phase field simulation, i.e., the formation of
3-variant clusters obtained by phase field modelling with elastic strain energetic view can
be explained geometrically with the compatibility condition of Equation (22). However,
if any variant in the 3-variant clusters is replaced by the β matrix, i.e., assuming Uk= I in
Equation (22), the minimum misorientation angle of n1n2n3 from the identity matrix I is
~ 2.41◦, which is smaller than the angular deviation of 3-variants.

The small angular deviation of 2/3-variant clusters would not explain geometrically
the formation of triangular morphology with three variants. However, by considering the
degree of self-accommodation (DSA) in Ref. [58], it can be explained based on elastic strain
energy minimization. By setting the transformation matrix in Equation (3) as input, the
transformation matrix of the n-variant clusters can be given as:

U(n) = ∑n
i=1 Ui (23)

and then the transformation strain for the n-variant cluster is obtained according to
Equation (10). The DSA is derived according to the following equation by considering the
Von Mises equivalent strain and stress, and the elastic strain energy density W(n) of the
n-variant clusters:
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DSA =
W(1) −W(n)

W(1)
∗ 100% (24)

Given different combinations of 2-, 3- and 4-variant clusters, which are assumed to
correspond to the patterns of 2 variants with matrix, triangular morphology and crossing
twins, respectively, it can be concluded that the clusters with the variants exhibited in
Figure 6 are mostly favored during martensitic transformation.

About the crossing twins mentioned in the previous section, these have been observed
and predicted by experiments and PTMT for TiNi alloy [16,70]. However, in the currently
studied Ti-6Al-4V alloy, such crossing twin morphology can be predicted geometrically but
has not been reported thus far. The DSA for the four-variant clusters is higher than for the
three-variant cluster in TiNi alloy, but smaller in the Ti-6Al-4V alloy, which would explain
why few reports about crossing twins in Ti-6Al-4V alloy are reported. The occurrence of
simulated crossing twins in Figure 5 is due to the fact that only four variants that can form
such a special microstructure are taken into consideration, but any three of them cannot
evolve into a triangular morphology. In reality, there are six correspondence variants and
twelve crystallographic variants. The absence and presence of some variants lead to the
change of interaction energy, thus decomposing the formation of special crossing twins
in reality.
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6. Summary

The Phenomenological Theory of Martensitic Transformation (PTMT) is a geometrical
theory with specific lattice parameters while the Phase Field Model (PFM) is based on
the reduction of Gibbs free energy in the simulated system. In terms of crystallographic
features during martensitic transformation for Ti-6Al-4V alloy both theories are capable
of predicting the habit plane normal with satisfactory results. The PTMT and PFM reveal
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different aspects with regard to microstructural study. They can be compared on the
following points:

• The PTMT is a geometrical (mechanical) theory requiring less time-consuming calcula-
tions while the PFM is based on thermodynamic principles; the PFM simulations are
computationally more expensive;

• The PTMT is able to calculate the volume fractions of twinned regions and twinning
elements, predict the orientation relationship between the parent and product phase,
which the PFM in its current implementation is not capable of;

• The PTMT is not able to simulate the microstructural evolution as a function of time,
but the PFM has this ability to capture the event of nucleation and growth of α variants
and reveal the formation of triangular morphology of variant clusters;

• The special crossing twins observed in other alloys can be predicted geometrically by
the PTMT; based on the elastic strain energy minimization with PFMs it was revealed
that such special twin configurations are not compatible with the occurrence and/or
absence of some variants.

Based on the results and analysis, with proper calculation parameters as input and
acceptable angular deviation (normally less than 5◦), the present numerical works about
PTMT and microstructure simulation from phase field models can be applied to other alloys.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15155325/s1, Video: microstructure evolution with 6 corre-
spondence variants.
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