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Abstract

Multistage disease processes are often characterized by a linear relationship between the log of incidence rates and the log of age. Ex-
amples include sequences of somatic mutations, that can cause cancer, and have recently been linked with a range of non-malignant
diseases. Using a Weibull distribution to model diseases that occur through an ordered sequence of stages, and another model where
stages can occur in any order, we characterized the age-related onset of disease in UK Biobank data. Despite their different underlying
assumptions, both models accurately described the incidence of over 450 diseases, demonstrating that multistage disease processes
cannot be inferred from this data alone. The parametric models provided unique insights into age-related disease, that conventional
studies of relative risks cannot. The rate at which disease risk increases with age was used to distinguish between “sporadic” dis-
eases, with an initially low and slowly increasing risk, and “late-onset” diseases whose negligible risk when young rapidly increases
with age. “Relative aging rates” were introduced to quantify how risk factors modify age-related risk, finding the effective age-at-risk
of sporadic diseases is strongly modified by common risk factors. Relative aging rates are ideal for risk-stratification, allowing the
identification of ages with equivalent-risk in groups with different exposures. Most importantly, our results suggest that a substantial
burden of sporadic diseases can be substantially delayed or avoided by early lifestyle interventions.
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Significance Statement:

Modern statistical methods such as logistic regression, characterize the influence of potential risk factors in terms of relative risks.
As a consequence, modern epidemiology has tended to ignore the influence of risk factors on aging rates or age-related patterns
of disease. By parametrically modeling the incidence of over 450 diseases, we characterized the age-related incidence of disease,
and identified over 100 common diseases whose “sporadic” incidence was only weakly age-dependent. Furthermore, we explored
how common risk factors modify our effective age-at-risk of these diseases, and our results suggest that early lifestyle changes
might substantially delay or even prevent their onset.

Many common diseases are thought to have a multistage aetiol-
ogy (1–12), in which two or more processes are rate-limiting steps
that determine the rate of disease onset. For example, these might
include one or more genetic mutations (5, 13–18), which was the
original reason for using multistage models to describe the on-
set of cancer (2, 3). An important recent discovery is that somatic
mutations are prevalent in the majority of tissues in our body
(14, 19–22). The best known examples include clonal expansions
that co-exist with healthy cells in our blood (14, 15), skin (19), and
esophagus (20). This raises the possibility that somatic or epige-
netic mutations could contribute to the initiation of other non-
cancerous diseases (13–18, 23). This includes generic processes
such as inflamaging (24, 25), and entire classes of diseases, includ-
ing autoimmune and cardiovascular diseases (13–18, 23). Rates of
somatic mutations have also been linked to the lifespan of sev-
eral different species (26), emphasizing their potential importance
for longevity and health. If mutations are involved in triggering
disease, then it is likely that they might constitute one or more
rate-limiting steps for disease onset, in a similar way to cancer

incidence. In that case, multistage models of disease would be ex-
pected to describe a much broader range of diseases than just
cancer. Here, we found this was true of many common diseases
in the UK Biobank cohort (27), and the models provided important
insights about the age of onset of these diseases.

We were primarily interested in common age-related diseases
that usually occur at ages over 45 y, as would be observed in
UK Biobank data. We do not consider rare diseases, that can be
strongly influenced by rare germline genetic variants. The mean
age at enrolment of participants in the UK Biobank was 57 y (SD,
8 y) (27), and their hospital episode statistics were used to iden-
tify the onset of disease. We were interested in disease onset that
arises independently of (unconfounded by), other prior diseases,
and as in previous work (28), use “incidence” to describe the time
to an individual’s first disease in each chapter of the International
Classification of Diseases version 10 (29). This is discussed further
in the next section and in the Supplementary Material. A total of
800 diseases were studied using two simple parametric models of
multistage disease processes, both of which accurately described
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Fig. 1. A multistage model can describe any process that arises through
one or more independent pathways, with one or more sequential or
non-sequential steps. (a) The sequential Armitage–Doll (Weibull) model
requires that stages occur sequentially. (b) The non-sequential model
(NSM), allows the stages to occur in any order.

the incidence rates for approximately 450 of the diseases consid-
ered.

In addition to potential biological insights, the parameterized
models provided important new insights into disease incidence,
that would not be apparent from conventional studies using rela-
tive risks. We identified late-onset diseases that appear to become
inevitable at the extreme ends of observed human lifespan, and
diseases that are more sporadic, often occurring at younger ages,
but only weakly influenced by age and potentially avoidable. The
incidence of these “sporadic” diseases appears to be particularly
sensitive to lifestyle interventions and modifiable risk factors, sug-
gesting that their incidence may be substantially reduced.

One striking observation was that “all diseases are rare,” in the
sense that without germline genetic abnormalities the probabil-
ity S(t) of surviving for a typical human lifetime (in the survival
analysis sense of not getting the disease), is never much less than
1. However, despite the risk of any single disease being relatively
low (30), the large number of potentially fatal diseases means that
living to old age is unlikely. Consequently, it is often reasonable to
approximate the probability density for disease incidence f(t) by
its hazard function h(t) (28), with f(t) � h(t). The Supplementary
Material provides data and calculations to justify these approxi-
mations, and to support other remarks in the main text.

Multistage models
The multistage (or “multistep”) model was inspired in the 1950s by
a biological model in which cancer involves several genetic muta-
tions before symptoms are observed (1–3, 31). The models describe
any process that can arise through one or more independent path-
ways, with one or more sequential or non-sequential steps (28)
(Fig. 1). Whereas proportional hazards models are ideal for study-
ing associations with risk factors, multistage models are ideal for
characterizing incidence rates. They provide a concept of relative
aging rate, that for a specific disease, captures the relative ages
of exposed compared to unexposed individuals. Other advantages
include an interpretation in terms of rate-limiting processes, that
if biological in origin, might be targeted to slow or prevent dis-
ease. They also allow incidence rates to be predicted and extrap-
olated beyond the observed data, allowing unique insights about
disease incidence that cannot be captured by histograms or stud-
ies using (non-parametric) proportional hazards methods (Profes-
sor Sir David Cox devised the proportional hazards model, and
anticipated several points in this paper. In a 1994 interview, he re-
marked (32), “I would normally want to tackle problems paramet-
rically,” because, “various people have shown that the answers are
very insensitive to the parametric formulation of the underlying
distribution.”) Throughout, we use the usual notation of a cumu-
lative probability F(t), survival function S(t) = 1 − F(t), probability

density function f = dF/dt = −dS/dt, hazard function h(t) = f(t)/S(t),
cumulative hazard function H(t) = ∫ t

0 h(s)ds, and these are related
through S(t) = exp ( − H(t)) or equivalently H(t) = −log (S(t)).

Two models are considered here (Fig. 1a and 1b). The first ap-
proximates a sequential multistage model of disease (Fig. 1a), with
a Weibull model. As shown in the Supplementary Material, this
approximation is good when the probability of having the disease
is small over a typical human lifetime, as is the case here. The
Weibull model has a proportional hazards form (33), and its haz-
ard function h(t) can be written as, h(t) = eηX h0(t), where t is time
or age, h0(t) = (t/L)m with m and L (non-integer) estimated parame-
ters, ηX = ∑

jβ jXj with Xj risk factors, and β j estimated coefficients.
Its survival function is

S(t) = exp
(

−eηX

(
t
L

)m)
. (1)

For traditional multistage models with time-independent rates at
each stage, then m is an integer (2, 28). If the rates at each stage
are time-dependent then m can be non-integer (28), and m is best
regarded as an “effective number of steps.” When competing risks
(33) exist then S(t) is the cause-specific survival function, that
would differ from the directly observed survival data because e.g.
death from a different cause could occur first. These, and several
other points mentioned above and throughout the article, are dis-
cussed in more detail in the Supplementary Material. The expo-
nent of S(t) is the cumulative hazard function H(t) = ∫

th(s)ds, and
can be rearranged as

H(t) =
(

te
ηX
m

L

)m

, (2)

This gives an effective age te
ηX
m , that is determined by risk factors

X, with the factor e
ηX
m giving a relative aging rate compared with

the baseline values where ηX = 0 and e
ηX
m = 1. It also emphasizes

that for any given disease, the influence of risk factors on your
aging rate through ηX, will be suppressed by a factor of 1/m. For
multistage models with an effective number of steps (28) m, the
relative aging rate will tend to be smaller for larger m. Also, when
risk factors can be modeled in a proportional hazards framework,
they will only modify the time-scale L to Le

−ηX
m , leaving m un-

changed. This means that ratios that only depend on m, such as
H(100)/H(50) = (100/50)m and the vertical axis of Fig. 2, may be less
sensitive to cohorts having systematically different unmeasured
risk factors.

The second model considers multistage processes that can oc-
cur in any order (Fig. 1b), and takes all events to happen with ap-
proximately constant rates. This is a reasonable approximation,
because within a non-sequential model all the rate-limiting steps
must have similarly slow rates, or they would not be rate-limiting
and observable from the incidence data. This mathematical fact
is discussed further in the Supplementary Material. We refer to
this non-sequential model as the “NSM” model, and its survival
function is (see Supplementary Material)

S(t) = 1 − (
1 − e−t/L)m

, (3)

where m is the effective number of steps, t is age, and L is a time
scale for the disease processes. This model has a very different
biological interpretation than the Weibull model, typically with a
much larger number of steps.

The Weibull and NSM models are derived in the Supplemen-
tary Material, along with several relevant observations that have
not been published elsewhere. One (important) counter-intuitive
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Fig. 2. Left: For each disease a dot indicates the probability of first hospital admission at 50, plotted versus the relative increase in probability of
disease by age 100. Disease incidence was classified in tertiles to indicate how sporadic or late-onset it was (see main text). Results for the Weibull
model are shown, the NSM model gave similar results (Supplementary Material). Right: The composition of sporadic and late-onset diseases in terms
of ICD-10 chapters, with N the number of diseases.

observation, is that even when a disease proceeds sequentially
through a series of m steps, if the rate of one or more steps increase
sufficiently, then the observed number of steps will decrease, de-
spite the associated biological processes continuing to occur. Al-
though not necessarily obvious, the mathematical result is very
clear. Another observation is that it will often be reasonable to
study multistage disease processes with a proportional hazards
model. If the hazard of every stage can individually be approxi-
mated by a proportional hazards model, then for the “rare” dis-
eases that we study here, a multistage disease can also be de-
scribed by a proportional hazards model. However, the estimated
associations are β = ∑

iβ i, a sum over the associations at each
step, and each β i could be quite different. This is particularly im-
portant for sequential disease processes, because it emphasizes
that the same risk factor could have a different influence at differ-
ent stages of the disease, that in practice could produce different
associations at different ages. A final observation is that because
individual diseases are rare over a human lifetime and the inci-
dence of diseases that are studied are similar, ranging between a
few 100 to a few 1,000 cases in the UK Biobank cohort, the hazard
of the observed diseases must be a similar order of magnitude.
This requires (t/L)m to be similar for all diseases where t ∼ 60, and
leads to m and L being strongly correlated, with mlog (L) being sim-
ilar for the diseases studied here.

Materials and methods
Data sources
The UK Biobank dataset (27) was used, that involved over 500,000
men and women aged between 49 and 69 y, who were recruited
during 2006 to 2010. Primary diagnoses of diseases in hospital
records were considered, that were recorded with an International
Classification of Diseases version 10 code (ICD-10) (29, 34). For data
access, see “Data availability.”

Diseases studied
The data set and disease definitions are described in detail else-
where (27, 35). Diseases were defined in terms of one or more four-
digit ICD-10 codes, selected by two epidemiology-trained clini-
cians with specialities in pathology and general practice. The se-

lected diseases were intended to be accurately diagnosed, distinct,
and typically age-related causes of disease. Any coded diseases
with an ambiguous underlying cause were excluded, as were dis-
eases due to chance events or exposures such as an accident, or an
infection while on holiday. To ensure that disease diagnoses had
passed a threshold of severity, and were unlikely to result from un-
diagnosed or co-occurring disease, we focussed on diseases that
were the primary diagnosis (and primary reason for hospital ad-
mission). As a compromise between avoiding confounding by prior
disease, but retaining sufficient cases for a meaningful statistical
study, we consider each individual’s first hospital admission for a
disease in each ICD-10 chapter. As a result, there could be more
than one case of disease for each individual, but the diseases will
be from different ICD-10 chapters. Data were excluded if partici-
pants had a cancer other than non-melanoma skin cancer before
their first assessment in the UK Biobank study (the start of the
study period).

Statistical analysis
The R software package was used for all analyses (36). Age was
used as the time variable, left-truncated at entry into the study,
and right-censored at either the study end or following incidence
of a cancer other than non-melanoma skin cancer. Maximum like-
lihood estimates for parameters were obtained by numerically
maximizing a left-truncated and right-censored log-likelihood for
the data, using the “maxLik” package (37). When there was adjust-
ment for potential risk factors, initial estimates were calculated
using a proportional hazards model and the “survival” package
(38, 39). To measure goodness of fit, Kaplan–Meier estimates to
the data were compared with the parameterized models. Key to
doing this correctly, is the observation that the Kaplan–Meier fit
assumes S = 1 at the study’s start, whereas it may already be less
than 1 if age is the time variable and participants join the study
in middle- to old-age. The fitted survival functions were used to
estimate S(t1) = exp (−H(t1)), where H(t) is the cumulative hazard
function and t1 is the age at the first observed event, by firstly
writing

H(t) = ∫ t1

0 h(s)ds + ∫ t
t1

h(s)ds
= H1 + Ĥ(t),

(4)
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and noting that the Kaplan–Meier estimator approximates Ŝ =
exp(−Ĥ(t)). Then with the parameterized model for H(t), and the
Kaplan–Meier estimate for Ĥ(t), we can rearrange Eq. 4 and aver-
age over the data to estimate

H1 � 1
n

n∑
i=1

(
H(ti ) − Ĥ(ti )

)
. (5)

The Kaplan–Meier estimate can then be adjusted to account for S
�= 1 at the study’s start, with S(t) = exp(−H1) exp(−Ĥ(t)). Without
recognizing the need for this adjustment, and doing so correctly,
the incidence of most diseases in UK Biobank would appear very
differently, and would wrongly suggest that multistage diseases
are very rare. Note that there are no additional free parameters in-
troduced by the estimate. The parameterized fits were compared
with the Kaplan–Meier estimator using standard χ2 tests, using
the estimated variance at each point from the Kaplan–Meier esti-
mate. To provide a stricter requirement for inclusion in the subse-
quent analysis, the fit’s variance was not used in the comparison.
Diseases were excluded if there was a statistically significant dif-
ference after a false discovery rate (FDR) multiple-testing adjust-
ment (FDR will exclude more diseases than a Bonferroni adjust-
ment), or if the estimated effective number of steps m was <0.8.

All analyses were considered in men and women separately. For
studies with adjustment, we considered common established risk
factors of: diabetes (no, yes), smoking status (never, previous, or
current), alcohol consumption (rarely—less than three times per
month, sometimes—less than three times a week but more than 3
per month, regularly—three or more times each week), education
(degree level, post-16 but below degree, to age 16 or unspecified).
We considered tertiles of deprivation, and separately in men and
women, tertiles of height and BMI. For women, we also adjusted
for hormone replacement therapy (HRT) use ever (yes, no), and
one or more children (yes, no). Baseline was taken as: no diabetes,
never smoker, sometimes drink, minimum height tertile, middle
BMI tertile, degree-level education, minimum deprivation tertile,
and women with no children or HRT use. The age ranges in UK
Biobank data were too narrow to allow stratification by birth co-
horts, but as noted earlier, ratios such as H(100)/H(50) are deter-
mined by m alone and are expected to be less susceptible to cohort
effects. Analyses were multiply adjusted. The data had less than
1% missing values, allowing a complete case analysis.

R packages used during the analysis, to manipulate data, and to
create plots and tables include: maxLik(37), survFit(38,39), grr(40),
data.table(41), bit64(42), pracma(43), and fmsb(44).

Results
Goodness of fit - consistency with multistage
models of disease
The Weibull and NSM models both accurately fitted the incidence
of most of the 800 diseases considered, with 485 with Weibull, 466
with NSM, and 450 diseases included in both sets (see Materials
and Methods, and the Supplementary Material, for details and ex-
ample plots). The causes of poor fits may reflect: insufficient data,
diseases that were likely to have afflicted some of the cohort be-
fore electronic health records were recorded, or incidence curves
that could not be approximated well by one of the models consid-
ered. For most diseases, despite the similarly good fit to the data
by both the Weibull and NSM models, they require different num-
bers of steps in a multistage model of disease. This demonstrates
that a good fit to the data with a multistage model, cannot on its
own, be taken as indication of an underlying multistage biological

process. The standard error of the effective number of steps was
greater than 0.35 for 365 (417) of the fitted diseases for the Weibull
(NSM) models, respectively, making it unlikely to see clear indica-
tions of integer-valued m for either model. A plot for the fitted
values of the effective number of steps m, ordered by m, showed
no visual evidence for steps at integer-values (Supplementary Ma-
terial, Fig. S7). Neither was there any evidence for a systematic
reduction in m for smokers, as you would expect if smoking re-
duced the number of steps needed to trigger disease (Supplemen-
tary Material, Fig. S8).

Sporadic versus late-onset disease
In contrast with proportional hazards and logistic regression mod-
els, the parametric models allowed extrapolation to compare the
risks of disease (first occurrence of disease in each ICD-10 chap-
ter), at ages 50 and 100. Only diseases whose incidence data were
sufficiently well fitted by a multistage model were considered (as
discussed above). Fig. 2 shows the cumulative probability distri-
bution function F(50) = 1 − S(50), for having had a disease by age
50, versus the relative increase in disease risk by age 100, (F(100)
− F(50))/F(50). Whereas F(50) describes the risk of disease before
age 50, (F(100) − F(50))/F(50) characterizes the rate of change in
risk of disease with age. The probabilities were estimated with a
Weibull model, and the NSM model gave almost identical results
(see Supplementary Material, Fig. S2). Diseases with a late age of
onset are near the top of the figure, where disease risk increases
rapidly at older ages. These contrast with diseases near the bot-
tom of the figure, whose risk increases comparatively slowly. Dis-
eases with the lowest risk-at-age 50 are towards the figure’s left,
and those with highest risk are towards the figure’s right. Diseases
at the bottom right, have a comparatively high probability of oc-
currence by age 50 y (F(50) was larger than for most diseases), and
the increased probability of disease-at-age 100 compared to age
50 is comparatively low (F(50)/F(100) is higher than for most dis-
eases). (F(50)/F(100) is the probability of disease by age 50, given
that you will have the disease by age 100.) Therefore, we distin-
guish between the most “sporadic” and “late-onset” diseases by
the product F(50) × F(50)/F(100), that is largest (smallest), for the
most (least) sporadic diseases. The diseases were classified into
tertiles in Fig. 2, with most sporadic (orange), mid-range (green),
and late-onset (red). The classification enabled a qualitative com-
parison between the late-onset and sporadic diseases.

Fig. 2 also shows the “sporadic” and “late-onset” diseases in
terms of ICD-10 chapters. The late-onset diseases are composed
primarily of: II Neoplasms, VII Diseases of the eye and adnexa, XI
Diseases of the circulatory system, and X Diseases of the respira-
tory system. In contrast, the more sporadic diseases are mainly
composed of: XI Diseases of the digestive system, XIII Diseases of
the musculoskeletal system and connective tissue, XVIII Symp-
toms, signs and abnormal clinical and laboratory findings, not
elsewhere classified. Similar results were found when men and
women were considered separately (see Supplemental Material,
Section D).

Relative aging rates and modifiability of risk
The Weibull model has the form of a proportional hazards model,
which makes adjustment for variables such as smoking status,
easy to interpret. The Weibull model also allows the definition of
a relative aging rate eβX/m (see Eq. 2), that when multiplied by your
age, gives your effective age for each disease in terms of your risk
factors X, using the estimated coefficients β and exponent m for
each disease. This provides an alternative measure to relative risk.
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Fig. 3. Relative risks (top), and relative aging rates (bottom), for potential risk factors associated with sporadic diseases (left), and late-onset diseases
(right). Box plots show the median, the interquartile range, and whiskers at 1 × the interquartile range. Relative risks for diabetes and smoking tended
to be larger for late-onset disease. Relative aging rates tended to be larger for sporadic diseases, suggesting that your effective age-at-risk is more
modifiable for sporadic than late-onset diseases. After an FDR multiple-testing adjustment, a t-test identified statistically significant differences in
mean values at the 0.05 level, for all associations except: height, or between regular drinking and sporadic disease.

Whereas relative risk measures your risk at a given time relative
to the baseline, the relative aging rate allows your effective age to
be determined in terms of your risk factors.

Fig. 3 considers sporadic and late-onset diseases, and shows
box plots for relative risks and relative aging rates. Comparing rel-
ative risks, the influence of diabetes and smoking were more im-
portant for strongly age-related diseases, but the results are oth-
erwise similar. In contrast, the relative aging rates estimated for
sporadic diseases were substantially larger than for diseases with
a late-onset, with the relative aging rates associated with mini-
mum education, maximum BMI, and diabetes, all being of order
1.1, and diseases with a late-onset typically less than half that.
A relative aging rate of 1.1 would indicate that someone aged
50 would be at equivalent risk to someone aged 55 y with base-
line risk factors. For a diabetic, in the maximum BMI tertile, and
minimum education group, the relative aging rate could easily be
1.3, indicating that someone aged 50 y would be at equivalent
risk to someone aged 65 without these risk factors, or someone
aged 70 would be at equivalent risk to someone aged 91. In terms
of disease-free years (45), if someone with baseline risk factors
aged 40 was expected to have 25 disease-free years, then some-
one with a relative aging rate of 1.1 would on average reach (40 +
25)/1.1 � 59 y before their first disease (19 disease-free years from
age 40).

Stratification by smoking status and diabetes
Assuming the existence of a multistage disease process, then
qualitative information about the influence of an exposure or risk
factor on disease can be inferred by stratifying the data by smok-

ing status for example, and understanding how to plot and in-
terpret the data. For the cumulative hazard function of a Weibull
distribution H(age) that is adjusted for the survival function be-
ing less than 1 at a participant’s entry into the study, a plot of
log (H(age)) versus log (age)) will appear as a straight line (Figs. 4A
and 5, and Eq. 2). If the Weibull distribution represented a mul-
tistage model of disease, and the rates of one or more stages in
the disease process were increased, then the plot would be dis-
placed vertically upwards (Fig. 4B). If the rate of one or more stages
increased sufficiently that they were no longer a rate-limiting
step (Section B of Supplementary material), then the plot would
be displaced vertically upwards and reduced in slope (Fig. 4C). If
the rates of each stage were being decreased, then the opposite
would happen, with a vertical displacement of the plot down-
wards and possibly associated with an increase in slope if the
rates of one or more stages were decreased sufficiently. There-
fore, if we stratify by strong risk factors such as smoking or di-
abetes status, then we can explore how these risk factors qual-
itatively modify disease risk under the hypothesis of an under-
lying multistage model (Fig. 5, and Figs. S4–S6 in the Supple-
mentary Material). The plots were stratified by smoking status
(or diabetes), but were not adjusted for any other potential risk
factors.

The influence of smoking was strongly disease-dependent.
Fig. 5 illustrates the differences. For benign bowel cancers (D12),
the vertical displacement of plots between smokers and non-
smokers is consistent with smoking increasing the rate of one
or more processes that are leading to the disease, and the strati-
fied data appear as parallel lines. For atherosclerotic heart disease
(I25.1), the increased rate and reduced slope for smokers is consis-
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Fig. 4. Multistage disease processes will usually have a straight line when log (H(age)) is plotted versus log (age) (A) If an exposure increases the rates of
disease processes, but the number of stages are unchanged, then a plot for the exposed group will be displaced vertically upwards. (B) If an exposure
increases the rates of one or more processes sufficiently to reduce the number of rate-limiting stages m, then the exposed group’s plot will be
displaced vertically upwards and reduced in slope. (C) In a proportional hazards Weibull model with H = eβX(t/L)m, then log (H) = βX + mlog (t/L), and
risk factors X displace lines vertically.
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Fig. 5. The incidence of three common smoking-related diseases in men (top) and women (bottom), stratified by smoking status, with Kaplan–Meier
estimates adjusted using Eq. 5. Data for smokers differ by vertical displacements and changes in slope, that can be interpreted as changes in the rates
of processes, and numbers of steps in disease (see main text). Dashed lines indicate 95% confidence intervals.

tent with smoking leading to an effective reduction in the number
of steps needed to trigger disease, and the stratified data appear
as lines that converge with age. However, for lung cancer (C34),
the disease that is most strongly influenced by smoking, both the

rate and slope of the curve increase, with the stratified datasets
diverging with age. Reasons for this unexpected increase in slope
(effective number of steps), that are specific to lung cancer, are
discussed later.
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Disease risks associated with diabetes could be driven by
shared genetic or other risk factors, or mediated by diabetes. As
an example, three common cardiovascular diseases affecting men
and women were considered (Supplementary Material, Fig. S4).
Atherosclerotic heart disease and atrial fibrillation are consis-
tent with a multistep disease process in which diabetes increases
the rates of disease processes, possibly sufficiently to reduce the
number of rate-limiting steps needed to trigger disease. For pul-
monary embolism, the rates were similar in diabetic and non-
diabetic women, but there was evidence for a reduction in risk
of pulmonary embolisms (I26) in the strata of diabetic men.

Discussion
Prevalence of multistage disease processes
Approximately two thirds of the diseases considered were consis-
tent with a multistage model of disease, in which diseases require
several distinct events, or a sequence of stages before the disease
is observed. However, several authors have remarked (28) that the
Weibull model in particular, would be expected to fit a wide range
of models. Both the Weibull and NSM models provided good fits
to the data, despite their mathematical differences and distinct
biological interpretations. Therefore, based on goodness of fit to
incidence data alone, it is unlikely that all the diseases have an
underlying multistage aetiology.

Stratification by smoking status or diabetes
Smoking is associated with higher risks of multiple diseases, es-
pecially cancer and cardiovascular disease. If a disease develops
through a multistage process, then exposure to smoking might be
expected to change the rates of one or more disease processes.
As demonstrated mathematically in Section B of the Supplemen-
tary Material, if the rate of any given stage increased sufficiently,
then exposure to smoking can reduce the effective number of
rate-limiting steps m observed in the incidence data. Therefore,
we might expect that if smoking was increasing the rate of one
or more disease processes, then m should either decrease or re-
main unchanged. This is certainly what is seen for benign bowel
cancers (D12) and bladder cancer (C67), in Fig. 5, with a vertical
upward displacement of the curves indicating an increased rate
of processes, and for heart disease (I25.1), that shows an increased
rate and a decreased slope (decreased number of steps m). In these
cases, the interpretation in terms of multistage processes is com-
pelling, and may warrant further investigation.

In contrast, the influence of smoking on lung cancer incidence
was initially surprising. Both the rate, and the slope (effective
number of steps m), increase (Fig. 5). It is possible that the influ-
ence of cigarette smoke was so strong that it is entirely changing
the landscape of rate-limiting steps that are needed to trigger dis-
ease. For example, if the rates of the previously rate-limiting steps
were increased sufficiently, then there would be an entirely new
set of rate-limiting processes that would determine the observed
incidence data. This could produce an increased rate and an in-
crease in m, and could involve several secondary smoking and age-
related changes.

Importantly, lung cancer has several different types, that
within ICD-10, are grouped into a single composite endpoint de-
noted by code C34 that was studied here. It is known that the
proportions of adenocarcinoma are much higher in non-smokers
than smokers, with smoking more rapidly increasing the risk of
other types of lung cancer. It seems likely that different subtypes
of diseases are influencing, and possibly dominating, the inci-

dence patterns of lung cancer in smokers. This would provide
one biological manifestation of a scenario that could substantially
change the landscape of rate limiting processes, and the resulting
incidence of disease.

If smoking is increasing the risks of different cancers to those
in non-smokers, then either different processes such as differ-
ent patterns of mutation in cells are occurring, or the cancers
are being triggered in different cell types. A recent study of so-
matic mutations in the bronchial epithelium found that cells with
high rates of mutations in previous smokers, are replenished over
time with near-normal cells, and hypothesized that there is an
ongoing replacement of progenitor cells from a pool of quiescent
stem cells (46). However, smoking exposure would be greatest in
the progenitor cells. If cancer initiation were solely in progenitor
cells, then it would involve a competing-risk process between the
cell acquiring sufficient mutations to form a cancer, and the cell’s
death. Cancer risk in smokers would then be expected to satu-
rate with age at a level where cells are being regularly replaced,
with a similar statistical burden of mutations among cells. How-
ever, if smoking slowed the rate of cell turnover and death, then
there would be a longer time period where cells are exposed to
the carcinogenic effects of smoking. Alternately, if smoking were
increasing the rate of cell turnover and death, then the increased
rate of cell replication would also increase the rate of mutations
occurring. Both possibilities are consistent with the suggestion
that smoking may modify the rate constants for both an early
and a late-stage in a multistage model of lung cancer, but not all
of them (3).

The differences in incidence rates between diabetics and non-
diabetics were generally consistent with the hypothesis that dia-
betes increases the rates of disease processes (Fig. S4 in the Sup-
plementary Material), and this can be sufficient to reduce the
effective number of steps prior to disease. An alternate expla-
nation is that one or more genetic risk factors for diabetes are
acting to reduce the effective number of steps needed to trig-
ger disease. An interesting anomaly is pulmonary embolism in
men, for which the incidence rate appears to be substantially re-
duced in diabetics. In contrast, for women there were no differ-
ences between those survival curves. There is no adjustment for
other factors in the plots, just stratification by diabetes status at
entry to the study. Nonetheless, the differences warrant further
investigation.

Comparison with Kaplan–Meier and
proportional-hazard methods
Differences in incidence data can be identified by comparing
conventional Kaplan–Meier survival curves, but survival curves
would not appear as straight lines, and the differences would not
have any particular interpretation. Equivalent plots to Fig. 5 re-
quire adjustment for the survival function being less than 1 at
a participant’s entry into the study, for example, using a Weibull
model for the adjustment. Differences between stratified data can
subsequently be interpreted in terms of changes to the rates of
processes or the number of steps, in an assumed multistage model
of disease. Irrespective of whether the data reflect an underly-
ing mechanistic process with distinct biological steps, it can be
helpful to identify when the data can be modeled with several
rate-limiting steps, providing a conceptual (hypothetical) model
for disease onset that can be tested and explored.

Proportional hazards models are often used to estimate asso-
ciations with risk factors. The proportional hazards assumption
allows adjustments that correspond to vertical displacements of
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the curves in Fig. 5. Therefore, if adjusting for smoking with a
proportional hazards model and the data considered here, Fig. 5
suggests that the model could accurately describe benign bowel
cancers (D12), and approximate atherosclerotic heart disease
(I25.1) or acute myocardial infarctions (I21), but it would be a poor
approximation for lung cancer (C34). Whereas these differences
are clear in Fig. 5, they may not be clear from a statistical test of
the proportional hazards assumption.

Can sporadic disease be avoided?
The risk of late-onset diseases increases rapidly with age, mak-
ing them increasingly likely at the extreme end of observed hu-
man lifespan. In contrast, the slow increase in risk of sporadic
diseases with age, suggests it might be possible to avoid them
entirely. In addition, because the effective number of steps m is
usually smaller than for the late-onset diseases, they tend to be
the most modifiable by established risk factors when measured
in terms of relative aging rates. For example, someone with di-
abetes in the lowest education and maximum BMI tertiles, has
an equivalent age-at-risk of the “sporadic” diseases that is about
30% higher than someone at baseline. This would be expected to
increase rates of hospitalization, irrespective of disease–disease
interactions, or multimorbidity. From a statistical perspective, the
results suggest that lifestyle interventions or appropriate medica-
tions might substantially reduce the incidence of a large propor-
tion of these more sporadic diseases.

An important distinction between the diseases considered
here, is whether they are curable. Whereas many of the diseases
can be treated with surgery, drugs, or lifestyle interventions, dis-
eases such as cancers have a much less certain longer-term prog-
nosis. The sporadic diseases seem likely to have the biggest po-
tentially avoidable impact on general health and health costs, but
if you are unlucky enough to get an incurable disease then this
is much more serious for the individual involved. This must be
bourne in mind when deciding whether to focus extra effort on
sporadic diseases to reduce hospital admissions.

What can we learn from parametric and
multistage models?
Multistage models can quantify the age-dependence of disease in-
cidence, and provide a simple conceptual model for the progres-
sion of disease. Because two different models with very different
biological interpretations, both describe the data well, any biolog-
ical interpretation of the results should be treated with caution.
However, the models provide a helpful picture of disease onset,
that appears to have been valuable within cancer research. They
also encourage us to think more carefully about modeling disease.
For example, Section B of the Supplementary Material observes
that a sequential progression of disease through stages could have
age-dependent differences in associations, if the associations dif-
fered between e.g. an earlier and a later disease stage. Early in can-
cer research, a stage-dependent influence of exposures was sug-
gested for smoking and lung cancer risk (3), but such issues are
rarely considered in epidemiology. Another example in the Sup-
plementary Material shows that if somatic mutations determine
lifespan, then lifespan will be inversely proportional to the muta-
tion rate (26).

The clearest advantage of the models used in this study, was the
parametric description of disease incidence, that provided new
perspectives on the age-dependent causes of hospital admission.
Specifically, by being able to estimate disease risk at two very dif-
ferent ages, we were able to clearly demonstrate that statistically

at least, some disease-risk increases rapidly with age, but others
might be avoided entirely. Note that these observations were in-
dependent of the specific parameter values in the model, such
as the effective number of stages m, only a good data fit was
required.

The Weibull model’s relative aging rate also provides a more
meaningful measure of risk modification than relative risk, with
the former determining an effective age for each disease in terms
of risk factors. A potential application when screening for dis-
ease, is to use effective age for risk stratification, by identifying an
equivalent age-at-risk for groups with different risk factors. This
could help to reduce over-diagnosis in low-risk groups and under-
diagnosis in higher risk groups. Dedicated epidemiological stud-
ies are needed to obtain the best possible estimates, preferably
involving several datasets and accounting for important genetic
risk factors.

Conclusions
Simple, biologically inspired, parametric models of disease, were
found to accurately approximate the incidence rates of approxi-
mately 60% of age-related diseases in the UK Biobank dataset. Be-
cause the incidence data of most diseases were described equally
well by two models with very different biological interpretations,
we should be cautious about inferring that such diseases arise
from a multistage process. The parametric models yielded two im-
portant new insights. The first was that the risk of some diseases
increases rapidly with age, but others are more sporadic. Statisti-
cally at least, over a human lifetime we might hope to prevent the
more sporadic diseases. Secondly, the Weibull model introduced
the concept of relative aging rate, that provides an intuitive alter-
native to relative-risk for understanding how your likelihood of
disease is modified by risk factors. Relative aging rates and effec-
tive ages have the potential to improve risk-stratification by iden-
tifying equivalent ages for screening groups with different risk
factors. The more sporadic diseases tended to have relative aging
rates that were more modifiable by established risk factors than
the diseases with a late-onset in life. Overall, the findings sug-
gest that a substantial proportion of hospital admissions for the
more sporadic diseases, might be avoided by adopting a healthier
lifestyle.
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