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ABSTRACT: The transformation of silica (SiO2) to useful
chemicals is difficult to explore because of the strength of the
Si−O bond and thermodynamic stability of the SiO2 structure. The
direct formation of alkoxysilanes from SiO2 has been explored as
an alternative to the carbothermal reduction (1900 °C) of SiO2 to
metallic silicon (Simet) followed by treatment with alcohols. The
base-catalyzed depolymerization of SiO2 with diols and mono-
alcohols afforded cyclic silicon alkoxides and tetraalkoxysilanes,
respectively. SiO2 can also be converted to alkoxysilanes in the
presence of organic carbonates, such as dimethyl carbonate.
Alkoxysilanes can be further converted to useful chemicals, such as
carbamates, organic carbonates, and chlorosilanes. An interesting
and highly efficient pathway to the direct conversion of SiO2 to
alkoxysilanes has been discussed in detail along with the corresponding economic and environmental implications. The
thermodynamic and kinetic aspects of SiO2 transformations in the presence of alcohols are also discussed.

■ INTRODUCTION

Silicon, the second most abundant element in the earth’s crust
(28%), is primarily bonded with oxygen and exists as silica
(polymeric SiO2) and metal silicates. These constitute more
than 40% of the mineral content in the earth’s crust.1 However,
despite its abundance, terrestrial life forms mainly consume
carbon-based biomass compounds, whereas silicon remains an
“accessory element”.2 Silicon compounds have limited impact
due to the high strength of the Si−O bonds (∼100 kcal/mol)
and resonance delocalization across the Si−O−Si bonds, which
impart considerable thermodynamic stability to the polymeric
SiO2 structure.

3 In addition, silicon exists almost exclusively in
the stable oxidation state of +4.4 Therefore, it is difficult to
cleave the Si−O bonds and form Si−Si and Si−C bonds unless
they are sterically stabilized.
To obtain molecular silicon derivatives for facile manipu-

lation, silica is first reduced to metallic silicon (Simet).
5 Simet is

produced industrially in 70−90% yield by the carbothermal
reduction of SiO2 with carbonaceous reducing agents in an
energy-intensive process (T = 1900 °C) (Figure 1). We have
estimated that the carbothermal reduction of silica requires the
energy of approximately 1.5 L of gasoline for the production of
1 kg of Simet.

6 This Simet is subsequently reoxidized to Si
derivatives containing Si in the +4 oxidation state in a direct
synthesis to produce Si-containing materials, such as Me2SiCl2,
HSiCl3, SiCl4, and Si(OR)4 through chemical processes using
MeCl, HCl, and ROH in the presence of Cu catalysts.7 These
chemicals are widely used to fabricate materials of industrial
importance, such as organosilicon products, semiconductor

wafers, and ceramics. In particular, Me2SiCl2 (or MexSiCl4−x)
is used to synthesize polydimethylsiloxane (PDMS), which is a
typical Si-based polymer.8 The alternative “sand-to-Si” process
has been proposed, which involves metallothermic reduction
using pure Mg or Al metals at 600−650 °C.9a−c Simet has been
recently obtained via metallothermic reduction at lower
temperature (450 °C) using a Mg−Al alloy.9a,b All of these
processes are prohibitively expensive and generate substantial
amounts of byproducts. There are also issues related to the
production of the associated metal or alloy-based reductants.
Therefore, the direct formation of silicon compounds from
silica through a nonredox process that precludes the
production of Simet and can be performed under milder
conditions is a “grand challenge” for chemists.10

A rational approach to overcoming these issues should rely
on development of chemical methods that involve chemical
transformation of renewable feedstock. Since alcohols can be
produced from biomass in biorefineries, SiO2 depolymerization
using alcohols as reagents to generate alkoxysilanes can
support the cause of sustainable chemistry.11 In this review,
discussions on the transformation of SiO2 to alkoxysilanes have
been organized into three sections, with particular emphasis on
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recent reports on the direct synthesis of various alkoxysilanes
from SiO2 using alcohols and the application of alkoxysilanes

in the synthesis of useful chemicals. The structures of the
alkoxysilane products show a remarkable dependence on the

Figure 1. Transformation of SiO2 to various value-added chemicals.

Figure 2. Formation of various alkoxysilanes from SiO2 and alcohols (MS = molecular sieves).

Figure 3. Direct synthesis of cyclic silicon alkoxides from SiO2 and alcohols.
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alcohols and catalysts used. Cyclic silicon alkoxides including
tetra, penta, and hexacoordinate silicon compounds are
produced from diols, and tetraalkoxysilanes (TROS) which
are generated from monoalcohols (Figure 2). Thermodynamic
studies, density functional theory (DFT) calculations, and
technoeconomic and environmental assessments of the
processes involved in the transformation of SiO2 to
alkoxysilanes provide general information that can facilitate
the development of more effective processes with potential
utility in industrial applications.

■ SYNTHESIS OF CYCLIC SILICON ALKOXIDES
FROM SiO2 AND POLYOLS

The chemistry of silicon is naturally dominated by its affinity
for oxygen (oxophilicity), which is responsible for its
tetrahedral configuration. Silicon alkoxides with coordination
numbers exceeding 4 have been known since Rosenheim et al.
synthesized hexacoordinate silicon compounds via the
depolymerization of SiO2 using catechol in the beginning of
the 1930s.12a Since then, the synthesis and structural
characterization of hypervalent silicon compounds, such as
those containing penta-oxo and hexa-oxosilicon centers have
elicited considerable interest.12b This section contains a
literature survey related to the synthesis of cyclic silicon
alkoxides, including hypervalent silicon compounds, via SiO2
depolymerization.
The use of sterically hindered diols is key to the formation of

spirocyclic alkoxysilanes. For example, the commercially
available substrate 2-methyl-2,4-pentanediol has been used
for the NaOH-catalyzed depolymerization of SiO2 to produce
one of the most stable spirocyclic alkoxysilanes, I (Figure 3,
reaction 1).10a Laine and co-workers extended the synthesis of
I using silica derived from various natural resources, such as
rice hull ash (RHA) and diatomaceous earth (DE), achieving a
4−98% yield of I, depending on the surface area (SA). Strong
alkali metal bases can be replaced by aminodiols to accelerate
SiO2 dissolution. The catalytic effects of SiO2 dissolution are
strongly influenced by the basicity of the aminodiols, which is
responsible for the deprotonation of the alcohol solvents to
form alkoxide. Alkoxides are the reactive species involved in
SiO2 dissolution. Using 2-amino-2-methyl-1,3-propanediol as
the starting material, the aminospirosilicate II was produced at
160 °C under vacuum in the presence of triethylenetetramine
(TETA) as an accelerator for the dissolution of SiO2 (Figure 3,
reaction 2).13a II was obtained in an overall yield of
approximately 80% in 14 h using KOH as the cocatalyst and
24 h in the absence of KOH. In this case, fumed silica (SA ∼
280 m2/g) proved to be more reactive than fused silica (SA ∼

182 m2/g). A high-boiling aminodiol, such as triethanolamine
(bp = 193 °C/5 mmHg, pKb = 6.35) is employed to
depolymerize an equivalent amount of SiO2 using ethylene
glycol as the solvent, resulting in ∼35% yield of the silatrane
glycol III, when the reaction is performed at 200 °C for 3 h
(Figure 3, reaction 3).13b The SiO2 derived from RHA can also
be depolymerized under ambient conditions in aqueous
alcohol in the presence of R4NOH (R = Me, CH2CH2OH)
to exclusively form the choline octasilicate [NR4]8[OSiO1.5]8
IV (Figure 3, reaction 4).13c,d The yield of IV increased with
increasing water concentration, which indicated that water was
essential to the formation of IV. According to the results of
crystallographic studies, the crystal structure of IV contains 24
H2O per octaanion or 3 H2O per SiO1.5 unit (SiO1.5 unit
implies that the ratio of the number of silicon and oxygen
atoms in the siloxane cage is 2:3). These octasilicate anions
offer access to novel polyfunctional silsesquioxane platforms as
precursors for polymers and many types of organic/inorganic
hybrid composites.13e,f

In contrast to sterically hindered diols that transform SiO2 to
neutral spirocyclic alkoxysilanes, simple diols, such as ethylene
glycol, can convert SiO2 to anionic organosilicates, such as
pentacoordinate and hexacoordinate silicate compounds.
Pentacoordinate silicates V are prepared by the direct reaction
of alkali metal hydroxides (MOH; M = Li, Na, K, Cs) with 1
equiv of SiO2 in the presence of excess ethylene glycol (Figure
4, reaction 5), whereas VI can be synthesized using alkaline-
earth metal oxides (MO; M = Ba, Ca, Mg) (Figure 4, reaction
6).14a−d The yields of V obtained using alkali metal hydroxides,
such as LiOH, NaOH, KOH, and CsOH, are in the range of
60−95% after 1−2 h of reaction followed by purification.14a

The dissolution rate observed in the presence of alkali metal
hydroxides was reportedly 10 times higher than that in the
presence of amines, suggesting a difference in the basic
strengths of alkali metal hydroxides and amine bases.
Pentacoordinate silicon compounds are highly reactive and
promising materials for the synthesis of silicone polymers,
silicate glasses, and ceramics. The BaO-catalyzed trans-
formation of SiO2 afforded the white microcrystalline product
VI in ∼90% yield.14d However, the yield of VI decreased when
CaO or MgO was used instead of BaO due to the low
reactivity of CaO or MgO toward ethylene glycol. It is
plausible that a dication is necessary to stabilize the
hexaalkoxysilicate product VI.

■ SYNTHESIS OF TROS FROM SiO2

TROS are promising raw materials that can be utilized to
synthesize a variety of zeolites, ceramics, and inorganic−

Figure 4. Divergent synthesis of penta- and hexaalkoxysilicates from SiO2 and diols using alkali metal hydroxides and alkaline-earth metal oxides.
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organic nanocomposite films. Several simpler and more
practical alternative methods for the synthesis of TROS from
SiO2 have been proposed to replace the high-energy
consuming processes that are applied in industries. For
example, Laine et al. reported the synthesis of tetramethyl
orthosilicate (TMOS) and tetraethyl orthosilicate (TEOS)
from spirocyclic alkoxysilanes, which were prepared from SiO2
and diols, in the presence of MeOH and EtOH. The respective
yields were 40 and 60% (Figure 5).10a Other reported methods
for TEOS synthesis include the reaction of calcium silicate
with HCl/EtOH, and the reaction of SiO2 and EtOH followed
by azeotropic distillation.10b,c

Recently, our group has developed a direct synthesis of
TROS from SiO2 and alcohols.15−19 This method appears
promising because of its nontoxicity and the use of abundant
alcohols. However, SiO2 is thermodynamically stable, and the
H2O byproduct easily reacts with the TROS product to form
oligomeric or polymeric SiO2. Therefore, molecular sieves
(MS) were employed as dehydrating agents in the KOH-
catalyzed direct synthesis of TROS from SiO2.

15 To address
the decomposition-related issues, we designed a system in
which a reaction site and dehydrating vessel containing MS
were arranged separately (Figure 6). The reaction was

performed at 260 °C, which enabled the evaporation of H2O
and its adsorption by MS in an upper vessel. The 3 Å MS, with
a pore diameter of ∼0.3 nm, was the most effective at
adsorbing water, resulting in the highest TEOS yield of ∼70%
(entry 1). In the absence of MS, the formation of TEOS
almost leveled off, indicating the importance of the MS (entry
2). This system was also applied for the synthesis of
tetrapropyl orthosilicate (TPrOS) and tetrabutyl orthosilicate
(TBOS), generating 73 and 79% yields, respectively (entries 3
and 4). The large-scale experiment (10 times) afforded a 75%
yield of TEOS, illustrating the potential utility of the developed
method in industrial applications.
The technoeconomic and environmental assessment of the

direct method for the synthesis of TEOS through the reaction
between SiO2 and ethanol in the presence of MS was
performed using simulator Pro/II.16a Compared to the
conventional route, in which TEOS is produced from the

reaction of Simet with ethanol or alternatively by the reaction of
SiCl4 with ethanol,16b the proposed process leads to decreased
production costs and markedly reduced greenhouse gas
(GHG) emissions. The production cost and GHG emissions
can be reduced by approximately 7 and 34%, respectively, by
substituting the proposed process for the conventional one
under optimum conditions. Despite its sensitivity toward utility
cost related to the price of crude oil, the proposed synthetic
technique is more sustainable and has potential for industrial
application.
In the direct synthesis of TEOS via the reaction between

SiO2 and ethanol, the removal of water using dehydrating
agents strongly influences the yields and economic and
environmental implications.17 CaO was found to be the most
effective dehydrating agent among various candidates, such as
MS, CaCl2, MgSO4, and Na2SO4, which produced a TEOS
yield of 76%. The feasibility of the designed process using CaO
was evaluated in comparison with that using MS as the
dehydrating agent and the conventional process. The
evaluation results confirmed that the process involving CaO
was more competitive economically and environmentally
friendly, leading to reductions of 24 and 40% in the production
cost and GHG emissions, respectively, compared to those of
the conventional process. The process using CaO was found to
be more competitive than that using MS. However,
considering the cost of regenerating the dehydrating agent
(MS are easier to regenerate than CaO), additional experi-
ments are necessary for a conclusive estimation of the
effectiveness of the dehydrating agent.
We also extended the experiment using organic dehydrating

agents, such as acetals, for the direct synthesis of TMOS from
SiO2 in the presence of MeOH under CO2 pressure (Figure
7).18 CO2 is significant for promoting the TMOS yield. In the
absence of CO2, the yield of TMOS was only 5%, whereas the
incorporation of 0.8 MPa of CO2 resulted in a 47% yield (entry
1). Increasing the CO2 pressure to 2 MPa produced a 49%
yield of TMOS when 2,2-dimethoxypropane was used as the
dehydrating agent (entry 2). The use of excess acetal (25
mmol) significantly increased the TMOS yield to 83% (entry
3). Another acetal, 1,1-dimethoxycylohexane, afforded a lower
TMOS yield of 36% (entry 4).19 These results indicated that
both CO2 and the acetals were important for optimizing the
TMOS yield. As a dehydrating agent, the acetal was
responsible for DMC (dimethyl carbonate) formation and
accelerated TMOS production (Figure 7). The use of silica
derived from various natural products afforded a TMOS yield
of ∼40% (entries 5−7), demonstrating the potential
application of natural SiO2 feedstocks in TMOS synthesis
using acetals.
Computation of the thermodynamic parameters of silica

depolymerization using alcohols, modeled on the alcoholysis of
cyclic-[SiO(OH)2]4, to Si(OMe)4, 5,5-silaspirocycle, and 6,6-
silaspirocycle (Figure 8, reactions 10−12) was performed by
Torgunrud et al.20 The reaction with methanol is never
exergonic (in all media, the positive value of ΔG increases with

Figure 5. Synthesis of TROS from SiO2 using spirocyclic alkoxysilanes.

Figure 6. Direct synthesis of TROS from SiO2 and alcohols.
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Figure 7. Synthesis of TMOS from SiO2 and MeOH under CO2 pressure using acetals as dehydrating agents and the plausible mechanism.

Figure 8. Calculated thermodynamic parameters for silica depolymerization by methanol, ethylene glycol, and 1,3-propanediol in different media.
aCalculated at the DFT/B3LYP/6-31+G* level of theory using the SM8 solvent correction model.
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increasing temperature) because of its positive enthalpy and
negative entropy values. However, positive entropies were
obtained for the depolymerization reaction with ethylene
glycol and 1,3-propanediol, indicating the existence of a
temperature at which the reaction was exergonic. The
thermoneutral temperature (ΔGreaction = 0) for the reaction
with ethylene glycol was 314 °C in the aqueous medium. The
thermoneutral temperature for the reaction with 1,3-propane-
diol was considerably lower because of the higher stability of
the 6,6-silaspirocycle versus that of the 5,5-silaspirocycle. In
addition, the reaction with 1,3-propanediol was found to be
exergonic at 100 °C and at temperatures exceeding 171 °C in
aqueous and ethanolic media, respectively. Therefore, it is
conceivable that chelating diols would form more thermody-
namically stable alkylorthosilicates and behave as superior silica
depolymerization agents because of the associated entropic
benefits. Such a conclusion is in line with the earlier findings by
Laine and co-workers.10a

In addition to the previously mentioned methods using
alcohols, direct synthesis of TROS from silica can also be
realized by the reaction with dialkyl carbonates (Figure 9,
reaction 13).21a−g Ono et al. reported the complete trans-
formation of SiO2 to TMOS in a fixed-bed flow reactor within
30 min at 327 °C by passing DMC at 96 kPa (43 mmol·h−1) in
the presence of a KOH catalyst.21a The completion of the
reaction between SiO2 and diethyl carbonate (DEC) to form
TEOS necessitates a higher temperature. One hundred percent
SiO2 conversion was observed at 427 °C in a 4 h reaction using

the same catalyst and reaction system, which indicated the
lower reactivity of DEC toward SiO2 depolymerization. The
SiO2 present in RHA also reacts with DMC to afford a
quantitative yield of TMOS at 388 °C, and an 80% yield of
TEOS was obtained by reaction with DEC at 452 °C.21b This
method demonstrates the promising prospect of using various
natural SiO2 sources as feedstock for the production of
tetraalkoxysilanes. In addition to alkali metal hydroxides,
Suzuki, Ono, and co-workers screened alkali metal halides (KF,
KCl, NaCl, Na2CO3, and CsF) as catalysts and found that the
catalytic activity generally increases with the polarity of the
metal halide salts.21c The chemists from the General Electric
Research Center also contributed to the field by screening
many different mineral Si sources which enabled the
transformation of alkoxysilanes to alkylalkoxysilanes (that is,
conversion of the Si−O to the Si−C bond).21d,e

Two different pathways for SiO2 activation were proposed
by Ono et al. using gas chromatography.21f It is plausible that
the surface SiO2 was activated by the interaction with DMC.
DMC initially interacted with the catalyst to form a reactive
CH3O

− species, which subsequently reacted with the surface
SiO2 (Figure 9, route 1). Once a reactive SiO2 surface site
containing SiO− is formed, it directly reacts with DMC to form
an SiOCH3 moiety and the cleavage of the Si−O−Si bonds is
completed. The activation might also proceed through a direct
interaction of SiO2 with the alkali-base catalyst, which cleaves
the Si−O−Si bonds (Figure 9, route 2). Herein, our group
modeled the mechanistic details of the reaction between silica

Figure 9. Direct synthesis of TMOS from SiO2 and DMC (dimethyl carbonate): mechanistic studies.
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and DMC catalyzed by an alkali metal base through the MOH-
activated SiO2 pathway using DFT calculations.21g The results
confirmed that the reaction typically proceeds through four
mechanistic steps. Initially, the alkali metal base catalyst
activates the Si−O bonds (step I) and cleaves them to form
−SiO− and −SiOH (step II). The −SiO− moiety subsequently
reacts with the methyl group of DMC to form an Si−OCH3

fragment in step III, which is the rate-determining step. Finally,
a methoxy group from DMC is transferred to the Si to produce
a species in which the two Si−O bonds in SiO2 are replaced by
two Si−OCH3 to form a dimethoxysilyloxide (step IV). The
rate-determining step depends strongly on the nature of the
cationic part of the alkali metal base catalysts, and the
activation barrier height follows the order of LiOH > KOH >
CsOH. LiOH was found to be the poorest alkali metal catalyst
in terms of activating the SiO2 surface toward the reaction with
DMC because of the formation of stable intermediate species
in the rate-determining step, whereas CsOH was the most
active catalyst, which is in line with previously reported
experimental trends.

■ TETRAALKOXYSILANES FOR THE SYNTHESIS OF
USEFUL CHEMICALS

In addition to being important to sol−gel chemistry, TMOS
and TEOS are widely used in silicone sealants and the
semiconductor industry. However, they have limited applica-
tion in the synthesis of useful chemicals. Laine et al. reported
the conversion of tetraalkoxy spirosiloxanes synthesized from
SiO2 and diols to diverse silicon-containing products through
the nucleophilic attack of alkyllithium on the tetrahedral Si
centers in the alkoxysilanes.22a This group has also developed
SiO2-derived silatrane and octasilane for the synthesis of
polymer and ceramic precursors.22b−d By incorporating CO2,
our group has reported a reaction system for the synthesis of
carbamates and carbonates from the corresponding TROS.
A simple catalytic synthesis of carbamates is achieved by the

reaction of CO2, aniline, and TROS with a Zn complex catalyst
(Figure 10, reaction 14).23a Upon using 1,10-phenanthroline as
a ligand and TMOS as a methoxy source, the carbamate was
selectively obtained in 84% yield (entry 1). Expanding the
scope of the catalytic reaction with TROS containing longer
alkyl groups, such as TEOS, TPrOS, and TBOS, afforded lower
yields of the carbamate products (entries 2−4). Extending the
reaction time to 72 h increased the yield remarkably to 92%,

Figure 10. Carbamate synthesis from TROS, aniline, and CO2 using Zn catalysts.

Figure 11. Synthesis of DEC using TEOS and CO2 in the presence of Zr catalysts.
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indicating that TROS species containing longer chains
required longer reaction times (entry 5). Studies on the
relationship between the reactivity and number of alkoxy
groups in alkoxysilanes showed that the yield of carbamates
gradually decreased with a decrease in the number of alkoxy
groups (entries 1 and 6−8), underlining the importance of the
latter for carbamate synthesis. An efficient synthetic route to
carbamates is thus established, which is useful in the synthesis
of polyurethane and medicinal and agricultural chemicals.
Compared to conventional methods (phosgenation method or
reductive carbonylation of nitroaromatics),23b the above-
discussed approach has the advantages of low toxicity and
easy handling.
An improved sustainable synthesis of DEC has been

reported using TEOS and CO2 as substrates.
24 In the presence

of Zr(OEt)4 catalysts, the maximum yield of DEC was ∼50%
at 180 °C. No improvement in the yield was observed upon
extending the reaction time from 15 to 40 h due to
equilibration. The reverse reaction between disiloxane and
DEC led to the recovery of the starting TEOS and CO2. As
mentioned previously, TEOS was successfully synthesized
from SiO2 through the direct depolymerization of SiO2 using a
base catalyst. Hence, the depolymerization of the disiloxane
byproduct was performed using the same reaction system as
that used for the regeneration of TEOS. In the presence of the
KOH catalyst, ethanol, and MS, the disiloxane was reconverted
to TEOS in 74% yield. A combination of these cyclic protocols
enables the waste-free synthesis of DEC, which is used as a fuel
additive and in electrolyte batteries, using regenerable TEOS
(Figure 11).
The development of improved and energy-efficient routes to

synthesize chlorosilanes (SiCl4) through the reaction between
TROS and gaseous HCl or SOCl2 as a chloride source has
been reported (Figure 12).25a,b Traditionally, the production of

SiCl4 has been based on the chlorination of Simet with methyl
chloride (the Rochow−Muller process) or HCl. Although
these methods are robust, they rely on the carbothermal
reduction of SiO2 to Simet. Similar to the alternative low-energy
methods for synthesizing TROS from SiO2, the direct synthesis
of SiCl4 via the chlorination of TROS has been reported. An
exclusive yield of SiCl4 was achieved by employing a LiCl
catalyst (among other Lewis acid catalysts) in the reaction
between TMOS and HCl using acetonitrile (MeCN) as an

MeOH trap and/or a solvent.25a Upon using a Lewis base
catalyst, for example, hexamethyl phosphoramide (HMPA), an
86% yield of SiCl4 was obtained at 0 °C. HMPA was effective
at catalyzing the chlorination of TMOS in the presence of
SOCl2 (as a replacement for corrosive HCl) in DMF at 90 °C,
producing an 85% yield of SiCl4.

25b Other Lewis bases, such as
Bu4NCl, Me4NCl, and Bu4NBr were effective in generating an
exclusive yield of SiCl4, which is used as a raw material in the
synthesis of high-purity polysilicon and silica.

■ CONCLUSION

Silica is one of the most significant minerals on Earth.
However, the production of useful Si-based chemicals from
SiO2 necessitates the highly expensive carbothermal reduction
process. Therefore, a high demand exists for elegant, cost-
effective methods for the production of various Si derivatives
from SiO2. Integrating catalysis and innovative technology will
facilitate more efficient exploitation of the SiO2 present in
natural resources. For example, a KOH catalyst combined with
a CaO dehydrating agent is more economically and environ-
mentally competitive, reducing the cost and GHG emissions
by 24 and 40%, respectively, compared with the traditional
method for producing TEOS. The development of a state-of-
the art alternative method to generate various silicon
compounds must also include economic and environmental
considerations to implement the concept of sustainable
chemistry. Consequently, only those processes that require a
low-energy input and employ environmentally friendly
reagents have the potential for industrial use.
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