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Background: Accumulating literature demonstrates that long noncoding RNAs (lncRNAs)
are involved in ferroptosis and gastric cancer progression. However, the predictive value of
ferroptosis-related lncRNAs for prognosis and therapeutic response is yet to be elucidated
in gastric cancer (GC).

Method: The transcriptomic data and corresponding clinical information of GC patients
were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA) database. The association between ferroptosis-related lncRNAs and ferroptosis
regulators was analyzed by Spearman correlation analysis. Then, we established a risk
predictive model based on the ferroptosis-related lncRNAs using multivariate Cox
regression analysis. Furthermore, we performed correlation analysis for the risk score
and characteristics of biological processes, immune landscape, stromal activity, genomic
integrity, drug response, and immunotherapy efficacy.

Results: We constructed a 17-ferroptosis-related-lncRNA signature via multivariate Cox
analysis to divide patients into two groups: low- and high-risk groups. The low-risk group
was linked to prolonged overall survival and relapse-free survival. The risk score had good
predictive ability to predict the prognosis of GC patients compared with other clinical
biomarkers. We found that the high-risk group was associated with activation of
carcinogenetic signaling pathways, including stromal activation, epithelial-
mesenchymal-transition (EMT) activation, and immune escape through integrated
bioinformatics analysis. In contrast, the low-risk group was associated with DNA
replication, immune-flamed state, and genomic instability. Additionally, through
Spearman correlation analysis, we found that patients in the high-risk group may
respond well to drugs targeting cytoskeleton, WNT signaling, and PI3K/mTOR
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signaling, and drugs targeting chromatin histone acetylation, cell cycle, and apoptosis
regulation could bring more benefits for the low-risk group. The high-risk group was
associated with poor immunotherapy efficacy.

Conclusion: Our study systematically evaluated the role of ferroptosis-related lncRNAs in
t tumor microenvironment, therapeutic response, and prognosis of GC. Risk score–based
stratification could reflect the characteristic of biological processes, immune landscape,
stromal activity, genomic stability, and pharmaceutical profile in GC patients. The
ferroptosis-related lncRNA signature could serve as a reliable biomarker to predict
prognosis and therapeutic response of patients with GC.

Keywords: gastric cancer, ferroptosis, lncRNA, stromal, immune microenvironment, therapeutic response,
immunotherapy

INTRODUCTION

Gastric cancer (GC) ranks in the top 10 of all malignancies
worldwide with more than one million new diagnosed cases
annually. Due to delayed diagnosis and treatment, GC is the
third cause of cancer-related death with an estimated 78,000
deaths annually (Bray et al., 2018). For patients with advanced
stage or distant metastatic adenocarcinoma, the 5-year overall
survival (OS) rate decreases to approximately 5%, and the median
survival is less than 1 year regardless of intensive treatments
(Smyth et al., 2020; Thrift and El-Serag, 2020). There are only
three biological biomarkers that can predict the therapeutic
response of targeted therapy for GC patients: HER2 positivity
for trastuzumab and trastuzumab deruxtecan, microsatellite
instability (MSI) status, and PD-L1 expression for
pembrolizumab (Nakamura et al., 2021). Hence, identifying
novel biomarkers to predict prognosis and therapeutic
response of GC patients is of clinical significance.

The low OS rate of GC patients is usually attributed to the
high invasion ability of GC cells and resistance to current
therapy. The latest study links ferroptosis to invasion,
metastasis, and chemotherapy resistance of GC. However, the
detailed role of ferroptosis is still unclear. This study aims to
investigate the crucial role of ferroptosis in invasion and
chemotherapy resistance and establish a ferroptosis-based
signature to reflect the biological characteristics of individual
GC patients.

Ferroptosis is a newly identified form of programed cell death,
exhibiting distinct manifestations in morphology, biochemistry,
and genetics in contrast to apoptosis and autophagy (Zhuo et al.,
2020). The initiation and execution of ferroptosis are linked to the
iron-mediated accumulation of reactive oxygen species and
overproduction of lipid peroxidation (Stockwell et al., 2017).
Increasing evidence demonstrates that ferroptosis involves
multiple biological processes and therapeutic responses of
gastric cancer patients. A study suggests that the
downregulation of SLC7A11 targeted by MiR-375 attenuates
the stemness of GC cells through triggering ferroptosis (Ni
et al., 2021). Other research demonstrates that inhibiting
ferroptosis decreases chemosensitivity of cisplatin and
paclitaxel through the miR-522/USP7/hnRNPA1/ALOX15 axis

(Zhang et al., 2020a). Besides this, Actinidia chinensis Planch, an
antitumor drug, is also reported to inhibit the proliferation and
migration of GC cells through induction of ferroptosis (Gao et al.,
2020).

Long noncoding RNAs (lncRNAs) are defined as noncoding
transcripts with a length longer than 200 nucleotides (Kim et al.,
2021). Accumulating literature reveals that lncRNAs are
involved in regulating multifarious biological processes of
GC, such as DNA damage repairing, proliferation, immune
escape, and drug resistance. For example, SNHG17, a type of
lncRNA, shifted the double-strand break repair balance from
homologous recombination toward nonhomologous end-
joining in facilitating carcinogenesis upon H. pylori infection
(Han et al., 2020). LncRNA UCA1 repressed expression of
antitumor miRNA, including miR-26a/b, miR-193a, and
miR-214, to facilitate proliferation, migration, and immune
escape of GC (Wang et al., 2019a). Additionally, multiple
lncRNAs in plasm or serum are demonstrated to possess
outstanding ability to predict the prognosis of GC. For
example, the expression of GASL1 is associated with the size,
stage, and metastasis of GC (Yuan et al., 2020). The link between
lncRNA and ferroptosis is also widely investigated. Recent
research indicates that lncRNA OIP5-AS1 inhibits ferroptosis
in prostate cancer through miR-128-3p/SLC7A11 signaling
(Zhang et al., 2021). It is reported that lncRNA ZFAS1 could
serve as competing endogenous RNAs to promote ferroptosis in
patients with pulmonary fibrosis through the miR-150-5p/
SLC38A1 axis (Yang et al., 2020). Despite the abundant
studies focusing on lncRNA and ferroptosis, the role of
ferroptosis-related lncRNA in predicting prognosis and
therapeutic response is not comprehensively investigated in GC.

In this study, the role of ferroptosis-related lncRNAs in GC
was comprehensively evaluated by integrating the TCGA and
GEO databases. Besides this, we constructed a risk score model
based on 17 ferroptosis-related lncRNAs. The predictive
prognostic efficacy was compared between the risk score and
other clinical biomarkers. Besides this, biological
characteristics, immune landscape, stromal activity, and
genomic integrity were compared between the low- and
high-risk groups through a broad array of bioinformatic
analyses. The purpose of our research was to identify a novel
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biomarker with excellent capability to predict prognosis and
drug response of GC in clinics.

METHODS AND MATERIALS

Data Collection and Processing
The gene expression data and corresponding clinical information
were obtained from TCGA (n � 300) and GEO databases,
including GSE62254 (n � 300), GSE84437 (n � 433), and
GSE14549 (n � 192) cohorts. Finally, a total of 1275 GC
patients were included in our study. The TCGA-STAD cohort
was used as a training cohort to construct the risk model, and the
microarray data from the GEO database was used as validation
cohorts. For the TCGA-STAD cohort, we obtained RNA-
sequencing data in raw count format from the UCSC Xena
Browser (https://xenabrowser.net/datapages/) and normalized
it using the Deseq2 package for further analysis. For
microarray data from the Affymetrix platform, the raw
“CEL” files of each cohort were downloaded and normalized
using the adopted multiarray averaging method. For microarray
data from other platforms, we directly downloaded normalized
data from the GEO database. Besides this, the mutation
information of GC patients was obtained from the TCGA
database.

Additionally, we collected expression data and clinical
information of the IMvigor210 cohort, an immunotherapy
cohort, from http://research-pub.Gene.com/
imvigor210corebiologies (Mariathasan et al., 2018). The
expression data in raw count form was normalized using the
DEseq2 package for further analysis.

Identification of Ferroptosis-Related
lncRNAs
Ferroptosis regulators, including 108 ferroptosis drivers and
69 ferroptosis suppressors, were obtained from the FerrDb
website (Zhou and Bao, 2020). Besides this, based on the
annotation file of lncRNA downloaded from the GENCODE
website, the expression of 10,614 lncRNAs was retrieved from
the TCGA database. Spearman correlation analysis was
performed to analyze the relevance between lncRNAs and
ferroptosis regulators. Ferroptosis-related lncRNA was
defined as lncRNAs significantly related to at least one
regulator (|spearman correlation| ≥ 0.2 and p-value < .05).

Construction of Ferroptosis-Related Risk
Model
First, the prognostic ferroptosis-related lncRNAs were selected
through Univariate Cox regression analysis (p < .01). Then,
candidate ferroptosis-related lncRNAs were selected through
the least absolute shrinkage and selection operator (LASSO)
analysis. Finally, stepwise multivariate Cox proportional
hazard regression analysis was performed to establish a risk
model and calculate risk score. The calculation formula of risk
score is below:

Risk score � ∑
n

i�1
CoefipExpi

The Coefi and Expi represent the coefficient and expression
levels of the corresponding lncRNA, respectively. The patients
were classified into the low- or high-risk group based on the
cutoff value of risk score dichotomized by “surv-cutpoint”
function of the survminer package.

Gene Set Variation Analysis and Functional
Annotation
The gene set variation analysis (GSVA) was performed using the
GSVA package to investigate the biological characteristics in
different risk groups (Hänzelmann et al., 2013). The gene set
used in the GSVA algorithm was “c2. cp.kegg.v7.2. symbols”
downloaded from the MSigDB database. Functional annotation
for differential expressed genes between the low- and high-risk
groups was executed on the “Metascape” website (Zhou et al., 2019).

Estimation of the Immune Landscape
The trait gene signatures for 28 types of immune cells were
retrieved from Charoentong’s study (Charoentong et al., 2017).
Single-sample gene-set enrichment analysis (ssGSEA) was
performed to estimate the infiltration abundance of each
distinct immune cell in each sample. The stromal score for
each patient was calculated using the ESTIMATE algorithm in
the estimate package (Yoshihara et al., 2013).

Association Between Risk Score and
Tumor-Related Biological Processes
The trait gene panels of biological processes related to cancers
were obtained from Mariathasan’s study, including 1) EMT
signatures, 2) angiogenesis signature, 3) pan-fibroblast TGFβ
response signature (Pan-F-TBRS), 4) Wnt signaling, 5)
mismatch repairing signature, and 6) cell cycle signature
(Mariathasan et al., 2018). Additionally, the Asian Cancer
Research Group (ACRG) constructed a series of gene panels,
including MSI signature, epithelial-mesenchymal-transition
(EMT) negative signature, EMT positive signature, and
proliferation signature to identify the distinct molecular subtype
of GC (Cristescu et al., 2015). In this study, we estimated enrichment
score of the above gene signatures via the GSVA algorithm and
compared it between the low- and high-risk groups (p < .05).

Calculation of EMT Score
The EMT gene panel, including 25 epithelial markers and 52
mesenchymal markers, was obtained from Mak et al. (2016). The
calculation formula of the EMT score is below.

EMT score � ∑
N

i

MI

N
− ∑

n

j

Ej

n

This calculation algorithm is demonstrated in a previous study, in
which M and E represent the expression of the mesenchymal and
epithelial genes, respectively, and N and n, respectively, represent
the number of mesenchymal and epithelial genes.
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Validation of Ferroptosis-Related Risk
Model
1) The differential expression analysis between the low- and

high-risk groups was performed to identify gene signature
A/B. Gene signature A is a panel of genes with higher
expression in the high-risk group, and gene signature B
exhibits higher expression in the low-risk group.

2) GSVA enrichment analysis was performed to calculate
enrichment score of gene signature A/B in each sample.
Then, a score termed an RS score, an alternative to the risk
score, was equivalent to subtraction of the enrichment score of
gene signature A from the enrichment score of gene signature B.

3) Through calculating the RS score in each GEO cohort, the
Kaplan–Meier method and log-rank tests were performed to
compare OS between the low- and high-RS score groups.

The Potential Therapeutic Value of the RS
Score
We downloaded the transcriptional expression data and drug
response of more than 1000 cancer cell lines from Genomics of
Drug Sensitivity in Cancer database (GDSC, http://www.
cancerrxgene.org/downloads) (Yang et al., 2013). First, we
calculated the RS score of each cell line. Then the Spearman
correlation (Cor) between the RS score of each cell line and half-
maximal inhibitory concentration (IC50) of each cell line to
particular drugs was calculated. We considered | Cor | > 0.2
and p < 0.05 as significant correlations.

Statistical Analysis
All statistical analysis and visualization were done in R 4.0.1
software. Spearman and distance correlation analyses were
performed to quantify relevance among risk, RS, and EMT
scores. Wilcoxon test or t-tests were performed to conduct
difference comparisons of two groups. The cutoff value with
maximum selected log-rank statistics of risk score and RS score
were identified through the “surv-cutpoint” function of the
survminer package. Based on the cutoff value, patients in each
cohort were classified into the low- and high-risk groups. The
Kaplan–Meier method and log-rank tests were performed to
conduct a survival comparison between the low- and high-risk
groups. We executed multivariate Cox analysis to assess
robustness and independence of risk score. Receiver operating
characteristic (ROC) and the area under the curve (AUC) were
utilized to assess specificity and sensitivity of risk score or RS
score using the Time ROC package. We depicted the mutation
profile and calculated tumor mutation burden (TMB) using the
maftool package (Mayakonda et al., 2018). In our study, two-
sided p < .05 was considered as statistical significance.

RESULTS

Identification of Ferroptosis-Related
lncRNAs in GC Patients
The workflow of this study is summarized in Supplementary
Figure S1A. The ferroptosis regulators, including 108

ferroptosis drivers and 69 ferroptosis suppressors, were
retrieved from the FerrDb database focusing on genes, small
molecules, and diseases related to ferroptosis. The expression of
177 ferroptosis regulators and 10,614 lncRNAs were obtained
from the TCGA database. The definition of ferroptosis-related
lncRNAs was set as lncRNAs significantly related to at least one
regulator (|Spearman correlation| ≥ 0.2 and p-value < 0.05).
Finally, a total of 6161 lncRNAs were discerned as ferroptosis-
related lncRNAs. The detailed correlation information between
lncRNAs and regulators is displayed in Supplementary
Table S1.

Construction of Risk Model Based on
Ferroptosis-Related lncRNAs
First, univariate Cox regression analysis was performed to
screen prognostic ferroptosis-related lncRNAs using p-value
< 0.01 as the threshold. A total of 66 ferroptosis-related
lncRNAs displayed significant correlations with the OS of
GC patients (Figure 1A). Then, for enhancing predicting
accuracy and avoiding overfitting, the LASSO-penalized
Cox analysis was performed to sort out 31 ferroptosis-
related lncRNAs with minimum lambda value (Figures
1B–C). Finally, stepwise multivariate Cox proportional
hazard regression analysis was executed to screen 17
lncRNAs independently correlated with OS and construct a
risk model to predict the prognosis of GC patients
(Figure 1D). The patients in the TCGA cohort were
categorized into two groups termed as the low- and high-
risk groups based on the cutoff value of risk score provided by
the surviminer package. The Kaplan–Meier method and log-
rank tests show that patients in the high-risk group had worse
OS compared with the low-risk group (p < 0.001) (Figure 1E).
The expression landscape of 17 ferroptosis-related lncRNAs
and the correlation between risk scores and clinical features
including age, gender, TNM stage, grade, and survival status
are shown in Figure 1F.

The AUCs of time-dependent ROC curve for the risk score
were 0.809, 0.815, and 0.776 at 1, 3, and 5 years, respectively
(Figure 2A). The prediction accuracy of the risk score in the
disease-specific survival (DSS), progression-free interval
(PFI), and disease-free interval (DFI) survival were
explored. The results of the Kaplan–Meier and ROC
methods indicate that risk score possesses excellent
capability to predict clinical outcome of GC patients
(Supplementary Figure S1B–G). To further assess the
uniqueness and susceptibility of the risk score in predicting
the prognosis of GC patients, the AUC of risk score and other
clinical factors such as age, gender, TNM, and stages were
calculated. The results show that the AUC value of risk score
was much higher than the AUC value of other clinical factors
(Figure 2B), demonstrating that risk grade had a better
prediction efficacy. Then, univariate Cox regression analysis
and multivariate Cox proportional hazard regression analyses
were executed to check whether the risk score could serve as an
independent and robust biomarker to predict OS in GC
patients. The hazard ratio of the risk score and 95%
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FIGURE 1 | Construction of the prognostic ferroptosis-related lncRNA risk signature. (A) Forest plot showing prognostic ferroptosis-related lncRNAs selected by
univariate Cox regression analysis. (B–C) LASSO regression analysis with minimum lambda value. (D) Forest plot exhibiting independently prognostic ferroptosis-related
lncRNAs screened through stepwise multivariate Cox proportional hazard regression analyses. (E) Kaplan–Meier analysis and log-rank test for patients in the different
risk groups. (F) Heat map displaying expression profile of prognostic ferroptosis-related lncRNAs and correlation between clinical features and risk score. (Ns
represented no significance; *p < .05; **p < .01; ***p < .001; ****p < .0001).
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confidence interval were 1.1 and 1.1–1.2 (p < 0.001) in
univariate Cox regression analysis, respectively (Figure 2C).
In multivariate Cox analysis, the hazard ratio and 95%
confidence intervals were 1.2 and 1.1–1.2 (p < 0.001),

indicating that the prediction efficacy of risk score was not
related to other clinical characteristics (Figure 2D). The above
analysis demonstrates that the risk score is a reliable and
robust biomarker to predict prognosis of GC patients.

FIGURE 2 | Evaluating the predictive efficacy of the risk model. (A) Time-dependent ROC curve of the risk score at 1, 3, and 5 years. (B) ROC curve for the risk
score and clinical characteristics. (C) Univariate Cox analysis for clinical characteristics and the risk score with OS. (D)Multivariate Cox analysis for clinical characteristics
and the risk score with OS.
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Biological Characteristics in Different Risk
Score Groups
The GSVA pathway enrichment analysis was performed to
investigate distinctive signaling pathways in different risk score
groups. The high-risk group presented enrichment of

carcinogenetic and stromal-related signaling, including TGF-
beta pathway, Hedgehog pathway, ECM receptor interaction,
and focal adhesion pathways. In contrast, the low-risk group
presented enrichment pathways related to DNA replication and
DNA damage repairing (Figure 3A). Previous studies pinpoint

FIGURE 3 | Biological characteristics in different risk score groups. (A) Heat map showing differentially enriched biological processes between the low- and high-
risk groups. (B) Boxplot presenting different enrichment of EMT-related signaling between the low- and high-risk groups. (C) Box plot showing different EMT scores
between the low- and high-risk groups. (D) Spearman correlation analysis between the risk score and EMT score. (E) Bar plot presenting different immune cell infiltration
between the low- and high-risk groups. Immune cells with fold change >1 and p < .05 were enriched in the high-risk group, and those with fold change <1 and p <
.05 were enriched in the low-risk group. (F) Boxplot showing expression of different molecules in TGF-beta or EMT pathway between the low- and high-risk groups. (G)
Boxplot showing different expressions in transcripts of immune activation between the low- and high-risk groups. (Ns represents no significance; *p < .05; **p < .01;
***p < .001; ****p < .0001).
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FIGURE 4 | Construction and validation of the RS score. (A) Heat map displaying DEG signatures termed as gene signature A or B between the low- and high-risk
groups. (B–E) KEGG and GO enrichment analysis for gene signature A or B. (F) Boxplot showing the difference in the enrichment score of gene signature A or B and the
RS score between the low- and high-risk groups. (G) Spearman correlation analysis between RS score and risk score. (H) Kaplan–Meier analysis and log-rank test
comparing the OS of patients with different RS scores.
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that activation of TGF-beta pathways plays a crucial role for the
EMT, (Xu et al., 2009), indicating that risk score was associated
with EMT to some extent. Subsequent enrichment analysis also
shows that EMT-related signaling, and biological processes such
as pan-F-TBRS, EMT2, EMT3, angiogenesis, and Wnt signaling
were significantly enriched in the high-risk group (Figure 3B).
Additionally, the EMT score of each GC patient was calculated
based on the expression profile of epithelial markers and 52
mesenchymal markers. Compared with the low-risk group,
patients in the high-risk group got higher EMT scores (p <
0.001) (Figure 3C). There was also a positive correlation
between risk score and EMT score (Spearman correlation �
0.274 and p-value <0.001) (Figure 3D). Therefore, these
results suggest that activation of EMT is a major biological
characteristic of the high-risk group.

Currently, accumulating literature links ferroptosis to
infiltrating immune cells within the tumor microenvironment
(Tang et al., 2020). Therefore, the ssGSEA algorithm was
performed to calculate the infiltration abundance of immune
cells within the tumor microenvironment. The infiltration of
CD8+ T cell and CD4+T cell was higher in the low-risk group, and
tumors in the high-risk group present higher abundances of mast
cells, plasmacytoid dendritic cells, macrophages, immature
dendritic cells, and effector memory CD4+ T cells (Figure 3E).
To better reveal the role of the risk score in the regulation of the
tumor microenvironment, the cytokines and chemokines
characterizing different risk groups were extracted from the
published literature (Barbie et al., 2009; Zeng et al., 2019), for
example, PDGFRA, TGFB2, SMAD9, TWIST1, CLDN3,
TGFBR2, ACTA2, COL4A1, ZEB1, and VIM are correlated
with the transcripts of TGF-beta or EMT pathway, and TNF,
IFNG, TBX2, GZMB, CD8A, PRF1, GZMA, CXCL9, and
CXCL10 are thought to be related to the transcripts of
immune activation. The differential expression analysis reveals
that almost all mRNA related to EMT processes were significantly
higher in the high-risk group. In comparison, the low-risk group
presents higher expression of mRNA involved in immune
activation except for IFNG, TBX2, and TNF, demonstrating
that the high-risk group is categorized as EMT-like subtype
and the low-risk group is considered to be immune-activated
phenotype (Figures 3F–G).

To better understand the functional role of the risk score, two
gene signatures termed gene signatures A and B were identified.
Gene signature A is a set of genes with higher expression in the
high-risk group, and those exhibiting lower expression are
categorized into gene signature B. The distinct expression
landscape of gene signature A/B is displayed by heat map
(Figure 4A). The KEGG and GO enrichment analysis show
that genes from gene signature A usually target stromal-
related signaling or biological processes, including focal
adhesion, extracellular matrix organization, and mesenchyme
development (Figures 4B–C). In contrast, genes in gene
signature B–regulated activation, apoptosis, the proliferation of
T cells, and other immune-related biological processes, such as
cytokine–cytokine receptor interaction and T cell chemotaxis
(Figures 4D–E). Apart from the risk score, we also establish a

novel score model named gene signature score (GS score), which
is equivalent to subtraction of the enrichment score of gene
signature A from the enrichment score of gene signature B.
The distribution of GS score and the other two enrichment
scores are significantly different between the low- and high-
risk group (Figure 4F). Additionally, there is a highly positive
correlation between GS score and risk score (Spearman
correlation � 0.61, p < 0.001) (Figure 4G), indicating that GS
score could be an alternative score model to risk score when risk
score is not available to calculate. Additionally, patients with high
RS scores were associated with worse clinical outcomes
(Figure 4H).

The Mutation Landscape in the High- and
Low-Risk Score Groups
The distribution difference of somatic mutation between the low-
and high-risk score groups was compared using the “maftool”
package. The waterfall plot shows that the low-risk group
presented a high genetic mutation rate (Figures 5A–B).
Besides this, the low-risk group was remarkedly correlated
with higher TMB in TMB quantification analysis (Figure 5C).
We also confirm that there is a significantly negative correlation
between TMB and risk score (Cor: 0.224, p < 0.001) (Figure 5D).
In our study, patients with the top 25% of mutations in the TCGA
cohort were considered as a high-mutation group, and patients
with the bottom 25% of mutations belonged to a low-mutation
group. The risk score quantification analysis demonstrates that
the low-mutation group exhibited significantly higher risk scores
(Figure 5E). A histogram of frequency distribution also indicates
that patients in the high-risk score group are more likely to be
classified into low-mutation groups (Figure 5F). Additionally,
patients with MSI-H (microsatellite instability-high) subtypes
exhibit lower risk scores compared with other two phenotypes
with low microsatellite instability such as MSI-L and MSS
(Figure 5G). These results indicate that the risk score based
on 17 ferroptosis-related lncRNAs could reflect the genomic
stability of patients with gastric cancer.

Validating Prediction Efficacy of Risk Score
Because the ferroptosis-related lncRNAs in the risk model were
not detected in the microarray data, RS score was selected as an
alternative indicator to validate the prediction efficacy of the risk
score. Therefore, we investigated the prognostic value of RS score
in GSE62254 (n � 300, log-rank test, p < 0.0001), GSE84437 (n �
433, log-rank test p < 0.0001), GSE14549 (n � 192, log-rank test
p < 0.0001) (Figures 6A–C). The predictive value for relapse-free
survival was proved in the GSE62254 (log-rank test p < 0.0001)
(Figure 6D). The above analysis indicates that the risk score is a
reliable prognostic indicator. Given that the GSE62254 provides
comprehensive clinical information, we analyze the correlation
between RS score and clinical characteristics. In the GSE622454
cohort, patients with advanced GC (stage III/IV) were associated
with higher RS scores (Figure 6E). Patients with a diffuse
histological subtype exhibit a higher RS score (Figure 6F),
demonstrating that tumors with high RS score were
significantly associated with high malignancy and rapid
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progression. Besides this, the EMT subtype presented the highest
RS score, and the MSI subtype exhibited the lowest RS score
among four consensus molecular subtypes (Figure 6G). The
distribution of molecular subtypes between the low and high
RS score groups was significantly different (Figure 6H). Patients
with the EMT subtype were more likely to be classified into the

high RS score group, and patients with the MSI subtype were
more linked to the low RS score group. Similar to the risk
score–based stratification, GSVA and ssGSEA analysis also
confirmed EMT-related signaling pathways were significantly
enriched in the high RS score group. In contrast, the low RS
score group was associated with higher infiltration of CD8+T cells

FIGURE 5 | Mutation landscape in the different risk groups. (A–B) Waterfall plot displaying the mutation profile of genes with high mutation rates in the low- and
high-risk groups. (C)Boxplot exhibiting the difference in TMB between the low-and high-risk groups. (D) Spearman correlation analysis between TMB and the risk score.
(E) Boxplot exhibiting the risk score difference between the low-and high-mutation groups. (F) The bar plot displaying the relative distribution of different risk groups
between the low- and high-mutation groups. (G) Boxplot showing the risk score differences among MSS, MSI-L, and MSI-H.
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FIGURE 6 | Validation of the prognostic ferroptosis-related lncRNA gene signatures. (A–C) Kaplan–Meier curve and log-rank test comparing OS in patients with
low or high RS scores in GSE62254, GSE84437, and GSE14549. (D) Kaplan–Meier curve and log-rank test comparing relapse-free survival in patients with low or high
RS score in GSE62254. (E–G) Boxplot comparing RS score in different stages, histological subtypes, and molecular subtypes in the GSE62254. (H) Bar plot presenting
the relative frequency of four molecular subtypes between the low- and high- RS-score groups. (I)Heat map showing the difference in the biological characteristics
and immune landscape between the low- and high- RS-score group.
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and CD4+T cells, higher enrichment of MSI signature, DNA
replication, and DNA damage repairing signaling (Figure 6I).
The high coincidence of tumor microenvironment trait and
biological characteristics between the two risk models further
demonstrate that RS score is a promising alternative to the
risk score.

The Role of Ferroptosis-Related Risk Score
in Immunotherapy
Currently, increasing efforts are being made to discover novel
biomarkers to predict immunotherapy efficacy, including TMB
and expression of PD-L1. In the TCGA-STAD cohort, multiple
immune checkpoints (Zhang et al., 2020b), including TNFRSF9,

FIGURE 7 | Predicting the therapeutic response of RS score to immunotherapy. (A) Boxplot presenting the expression of multiple checkpoints between the low-
and high-RS score groups. (B) Kaplan–Meier curve and log-rank test compare the OS of patients with low or high RS scores in the IMvigor210 cohort. (C) Time-
dependent ROC curve for RS score at 2 years in IMvigor210 cohort. (D) Bar plot displaying the relative frequency of different clinical response subgroups in the low or
high RS score group. (E)Boxplot demonstrating the RS score difference between response group and no-response group. (F) Boxplot showing different activation
degrees of gene signatures characterized by ACRG molecular subtype in the low and high RS score groups. (G) Boxplot presenting stromal score difference in the low
and high RS score groups. (H) Spearman correlation analysis between stromal score and RS score in IMvigor210 cohort. (Ns represented no significance; *p < .05; **p <
.01; ***p < .001; ****p < .0001).
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LAG3, CD40, CD40LG, CD274, IDO1, CTLA4, TIGIT, and
PDCD1 are significantly higher in the low-risk group
(Figure 7A). Therefore, we investigate whether the risk score
could predict response to immunotherapy based on the anti-PD-
L1 cohort (IMvigor210). To conduct this, patients in the
IMvior210 cohort were assigned RS scores. It was found that
patients with low RS scores had prolonged survival time
compared with patients with high RS scores (log-rank test p �
0.028) (Figure 7B). The AUC of the time-dependent ROC curve
for the RS score reached 0.877 at 2 years (Figure 7C). The
response degree to immunotherapy was classified into four
categories, including complete response (CR), partial response
(PR), stable disease (SD), and progressive disease (PD). The
objective response rate was significantly higher in the low RS
score group than in the high RS score group (Figure 7D). Also,
the no-response group presented higher RS scores (Wilcoxon test:
p � 0.031) (Figure 7E). Collectively, the above results indicate
that RS score is correlated with response to immunotherapy.

Additionally, tumors with high RS scores exhibit higher
enrichment scores of EMT-positive signature, and low RS
score groups are associated with MSI signature and
proliferative signature in the IMvior210 cohort (Figure 7F).
Besides this, patients with high RS scores exhibited
pronounced elevation of stromal score (Figure 7G). Moreover,
there was a significantly positive correlation between stromal
score and RS score (Cor: 0.796, p < 0.0001) (Figure 7H). The
above analysis indicates that stromal activation is part of the
causation of immunotherapy resistance.

ThePotential Therapeutic Value of RSScore
To explore the effect of RS score on drug response, Spearman
correlation analysis was performed to calculate the association
between RS score of cell lines and half-maximal inhibitory
concentration (IC50) of cell lines to specific drugs. A total of
87 drugs were correlated with the RS scores. Among them, 41
drugs exhibited drug sensitivity associated with the RS score,

FIGURE 8 | Potential predictive therapeutic value of the RS score. (A) Bar plot exhibiting Spearman correlation between RS score and drug sensitivity. (B) Dot plot
and corresponding bar plot demonstrating the pathways targeted by drugs whose sensitivity is associated with the RS score.
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including DNA replication inhibitor Bleomycin (Cor: 0.44, p <
0.0001), RTK signaling inhibitor FGFR_0939 (Cor: 0.36, p <
0.001) and PI3K/mTOR signaling inhibitor Temsirolimus (Cor:
0.33, p < 0.001), and 46 drugs presented drug resistance
associated with RS score such as Cyclopamine (Cor: 0.38, p <
0.001), Dacinostat (Cor: 0.30, p < 0.001), and AT-7519 (Cor: 0.31,
p < 0.001). Other drugs associated with RS score are summarized
in Figure 8A and Supplementary Table S2. The pathways
targeted by these drugs are depicted in Figure 8B. We find
that drugs whose sensitivity was correlated with high RS score
usually targeted cytoskeleton, WNT signaling, and PI3K/mTOR
signaling, and drugs related to low RS score were more likely to
target chromatin histone acetylation, cell cycle, and apoptosis
regulation. The above results indicate that the RS score might be a
reliable biomarker to predict the drug response of individual GC
patients.

DISCUSSION

Ferroptosis is a type of programed cell death (RCD), exhibiting
distinct manifestation in terms of morphology, biochemistry, and
genetics compared with apoptosis, necrosis, and other types of
cell death. It is considered to be a promising antitumor target and
is reported to regulate the progression of multiple cancers
(Friedmann Angeli et al., 2019; Chen et al., 2020a).
Additionally, multiple biomarkers with robust prediction
efficacy for prognosis and antitumor therapy have been
established based on ferroptosis (Liu et al., 2020; Zhuo et al.,
2020). However, previous studies primarily focus on the protein-
coding genes involved in the regulation of ferroptosis. Given that
a wealth of literature demonstrates that epigenetic effectors such
as lncRNA participate in the regulation of ferroptosis (Wang
et al., 2019b), a comprehensive investigation of prognostic
significance of ferroptosis-related lncRNAs is essential in GC.

In our study, 33 prognostic ferroptosis-related lncRNAs were
selected through univariate Cox and LASSO regression analysis.
Then, 17 of them were used to construct the risk-score model. In
the TCGA-STAD cohort, the low-risk group exhibited a better
OS, DSS, PFI, and DFI. Compared with other clinical biomarkers,
such as TNM and stage, the risk score possesses a good predictive
efficacy of prognosis. The biological characteristics, immune
landscape, stromal activity, and genomic integrity were
significantly different between the low- and high-risk groups
through bioinformatic analysis. For expanding the application
scope of the risk score, RS score was established based on gene
signature A/B obtained from the differential analysis between the
low- and high-risk groups. Similarly, the RS score showed reliable
capacity in predicting clinical outcomes in multiple validation
cohorts. Finally, we uncovered differential pharmacological
profile and immunotherapy remission rates between the low
and high RS score groups, indicating that risk score–based
stratification could herald chemotherapy and immunotherapy
therapeutic efficacy.

A panel of epigenetic effectors is closely linked to the induction
of ferroptosis and tumorigenesis. As an essential regulator of
epigenetic modification, the role of lncRNA in ferroptosis and

tumor progression has been gradually excavated. For instance,
lncRNA TINCR promoted trastuzumab resistance and EMT
through facilitating the release of HER-2 and upregulating
Snail-1 in breast cancer (Dong et al., 2019); LINC00336, a
nuclear lncRNA, served as an endogenous sponge of
microRNA 6,852 to inhibit ferroptosis (Wang et al., 2019b).
Another study suggests that upregulation of cytosolic lncRNA
P53RRA caused nuclear sequestration of p53, resulting in
persistent activation of the p53 pathway and induction of
ferroptosis (Mao et al., 2018). However, the role of lncRNA in
ferroptosis remains mysterious, especially for GC. There is no
report on using lncRNAs in a risk model to associate ferroptosis
and tumorigenesis in GC. Our study reveals the role of these
lncRNAs in ferroptosis and progression of tumor, providing a
significant reference for future in-depth experimental studies.
Interestingly, in lung cancer, RSF1-IT2 functions as a ceRNA to
sponge miR-129-5p targeting SNAI1 and HMGB1, facilitating
tumor metastasis and invasion (Wu et al., 2020). Nevertheless,
RSF1-IT2 is linked to better clinical outcomes in the TCGA-
STAD cohort. This contrasting phenomenon may be caused by
tissue heterogeneity and other biological processes regulated by
RSF1-IT1.

Increasing evidence demonstrates that ferroptosis is associated
with tumor invasion and metastasis. A study of Jessalyn suggests
that lymph fluid with high levels of glutathione and less free iron
could increase their ability to form metastatic tumors through
inhibiting ferroptosis (Ubellacker et al., 2020). Tumor plasticity,
stemness, invasion, and metastasis are closely associated with
EMT status (Pastushenko and Blanpain, 2019). Other research
demonstrates that β-elemene, a ferroptosis inhibitor, could lower
the expression of mesenchymal markers and upregulate
expression of epithelial markers (Chen et al., 2020b). In our
study, the pathway enrichment analysis reveals that the high-risk
group had high expression of EMT markers and activation of
EMT-related pathways such as TGF-beta signaling. Besides this,
the risk score exhibits a significantly positive correlation with
EMT score. Our results suggest that the high-risk group is an
EMT-subtype with increasing plasticity, stemness, invasion, and
metastasis capacity. The occurrence of EMT may partly explain
the poor clinical outcomes of the high-risk group. Because
plentiful damage-associated molecular patterns (DAMPs)
could be released during cell death, ferroptosis is considered to
be immunogenic cell death and could shape the immune
landscape within thhe tumor microenvironment to some
extent (Sun et al., 2020). In our study, The DEGs between the
low- and high-risk groups usually targeted immune-related
signaling, such as regulation for activation, apoptosis, and
proliferation of T cells, cytokine–cytokine receptor interaction,
and T cell chemotaxis. The low-risk group exhibited an
abundance of activated CD8+T cells and activated
CD4+T cells and upregulated expression of multiple immune
chemokines, including GZMB, CD8A, PRF1, GZMA, CXCL9,
and CXCL10. Although the high-risk group presented high
infiltration of multiple innate immune cells such as
plasmacytoid dendritic cells and macrophages, stromal
activation in the high-risk group would cause immune cells to
be excluded from parenchyma and trapped in stroma, resulting in
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the incapability of immune cells (Salmon et al., 2012; Joyce and
Fearon, 2015). These discoveries indicate that the low-risk group
ias in a relative immune-activated state. Additionally, the
ferroptosis process is accompanied by vast production and
accumulation of reactive oxygen species (ROS), causing
frameshift mutation and microsatellite instability (Granofszky
et al., 2018). Microsatellite instability augments neo-antigen load,
resulting in increased immunogenicity and appealing more
immune cells to tumor parenchymal (Shin et al., 2019). In our
study, we found that the risk score or RS score was significantly
higher in the MSI-H or MSI subtype, respectively. TMB was
pronounced in the low-risk group and negatively correlated with
the risk score. These results imply that the occurrence of MSI is
another critical cause for the immune-flamed tumor
microenvironment in the low-risk group.

There is emerging evidence that ferroptosis is involved in cancer
immunotherapy. The study ofWang reports that immunotherapy-
activated CD8+T cells could promote ferroptosis via IFNγ/
SLC2A11 signaling, contributing to the antitumor efficacy of
immunotherapy (Wang et al., 2019c). Considering the marked
differences of the tumor microenvironment landscape between the
low- and high-risk groups, we speculated that the risk score–based
risk stratification could herald therapeutic efficacy of
immunotherapy. In addition, the different expressional profiles
of checkpoints between the low- and high-risk groups also support
the above assumption. In the IMvior210 cohort, patients with low
RS scores had a prolonged survival time, implying that the
checkpoint blockade was an excellent regimen for patients in
the low-risk group. Through GSVA enrichment analysis, the
high-risk group was closely linked to the EMT subtype with
activation of EMT-related signatures and high stromal score.
Previous studies also demonstrate that mesenchymal tumor cells
could define the tumor microenvironment by regulating the
extracellular matrix and promoting T cell exclusion from
tumors, facilitating acquired resistance to immune checkpoint
blockades (Horn et al., 2020). Therefore, the dedifferentiation of
tumor cells plays an essential role in resistance to immunotherapy.

Currently, chemotherapy is the foremost treatment for
advanced GC, and drug resistance is a critical reason causing
treatment failure and cancer-related death. Recent studies
highlight the linkage between ferroptosis and chemoresistance.
Zhang’s study demonstrates that cancer-associated fibroblasts
secrete miR-522 to inhibit ferroptosis through suppressing
ALOX15 and decreasing the accumulation of lipid peroxidation,
ultimately leading to chemoresistance (Zhang et al., 2020a). Sun’s
research also reveals that Metallothionein-1G facilitated sorafenib
resistance through inhibition of ferroptosis (Sun et al., 2016). In our
study, the high-risk group responded well to drugs targeting the
cytoskeleton, WNT signaling, and PI3K/mTOR signaling, and
drugs targeting chromatin histone acetylation, cell cycle, and
apoptosis regulation could bring more benefits for the low-risk
group. The previous study also identifies GC subtypes with
differing drug responses. For example, tumor cells with a
mesenchymal subtype were susceptible to PI3K/AKT/mTOR
inhibitors, including ZSTK474 and GSK690693 (Lei et al.,
2013). Although responses of ZSTK474 (Cor: 0.199, p � 0.002)
and GSK690693 (Cor: 0.194, p < 0.0001) did not reach a significant

correlation with the RS score, it was interesting that the high-risk
group with EMT features was also sensitized to PI3K/mTOR
inhibitors, suggesting that the risk score–based stratification had
the reliable capability to predict therapeutical response of
individual GC patients.

Considering the crucial role of ferroptosis in modulating
biological behaviors of tumor cells and profound modulation
of lncRNA in ferroptosis, risk models based on ferroptosis-related
lncRNA have been constructed in multiple cancer types.
Nevertheless, most studies mainly focus on the risk model’s
prognostic value rather than its underlying mechanism and
other application scope. Our study finds that the prediction
efficacy of our risk model is attributed to its incredible ability
to reflect stromal activation, TME landscape, genomic instability,
and mutation landscape. In addition, we find that the risk
score–based stratification could guide personal chemotherapy
and immunotherapy for individual tumors, improving the
prognosis of GC patients.

Inevitably, there are some limitations in our study. First,
because few lncRNAs were examined in the microarray data,
we had to use RS score other than risk score to validate the
robustness and effectiveness of the prognostic model. Although
the RS score exhibited a highly positive correlation with the risk
score, the validation was indirect. Second, the detailed
mechanisms between ferroptosis-related lncRNAs and
ferroptosis, between ferroptosis and tumor microenvironment,
and between ferroptosis and chemoresistance are still unclear.
Further in-depth studies are required to explore the above
interactions. Third, the establishment and validation of the
risk model were based on the public databases, and using a
prospective GC cohort could provide more evidence for assessing
its clinical utility.

In conclusion, the risk model constructed in our study is a
reliable and robust marker to predict the survival outcome of GC
patients. Besides this, the risk score–based stratification is
associated with different biological processes, immune
landscape, stromal activity, and genomic stability. Also, the
risk stratification provides promising clinical evidence to guide
treatment regimens for GC patients. Our research further
investigates the role of ferroptosis-related lncRNAs in the
tumor microenvironment, pharmaceutical landscape, and
prognostic prediction in GC, providing a novel insight for
future research and clinical practice.
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