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Integrative, single-cell analyses may provide unprecedented insights into cellular

and spatial diversity of the tumor microenvironment. The sparsity, noise, and high

dimensionality of these data present unique challenges. Whilst approaches for integrating

single-cell data are emerging and are far from being standardized, most data integration,

cell clustering, cell trajectory, and analysis pipelines employ a dimension reduction step,

frequently principal component analysis (PCA), a matrix factorization method that is

relatively fast, and can easily scale to large datasets when used with sparse-matrix

representations. In this review, we provide a guide to PCA and related methods.

We describe the relationship between PCA and singular value decomposition, the

difference between PCA of a correlation and covariance matrix, the impact of scaling,

log-transforming, and standardization, and how to recognize a horseshoe or arch effect

in a PCA. We describe canonical correlation analysis (CCA), a popular matrix factorization

approach for the integration of single-cell data from different platforms or studies. We

discuss alternatives to CCA and why additional preprocessing or weighting datasets

within the joint decomposition should be considered.

Keywords: data integration, matrix factorization, single cell, scRNA-seq, normalization, standardization, data

preprocessing

INTRODUCTION

Single-cell (sc) molecular profiling provides unprecedented resolution and incredible potential to
discover the heterogeneity of cell types and states and intercellular communication that drives
complex cellular dynamics, homeostasis, response to environment, and disease. We will focus
this review on the challenges and considerations when applying matrix factorization approaches
to integration of sc RNA sequencing data (scRNA-seq). Matrix factorization methods, including
principal component analysis (PCA), are central to scRNA-seq data analysis pipelines, but are often
treated as “black boxes” within computational pipelines, with little consideration of what steps
are included. We will “open the box” to illustrate the exact scaling and transformations that are
performed on data in a PCA, and how different preprocessing steps impact data and cross-platform
batch integration. These tips and considerations will also apply other single cell omics data, as well
as to multi-modal integration of different omics data.

Challenging Properties of Single Cell Data
Single-cell data present a set of unique challenges for data analysis and integration (1–3). In contrast
to traditional bulk RNA-seq which provides the average expression of RNA molecules across tens
of thousands or millions of cells, scRNA-seq measures RNA in each cell.
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The goal of scRNA-seq is frequently to define differential
gene expression within specific cell types that characterize
a phenotype, so cell type identification is a critical early
step. In a tissue or biological sample, the population of
cells is heterogeneous, containing many cell types including
unidentified, new cell types, and cell states. Annotation of
cell types in biological samples is challenging, as methods are
still emerging and are limited by a lack of gold standard
benchmarking data. To classify cell types and states,
unsupervised clustering analysis is often used to partition
cells into clusters, however, the biologically expected cell-to-
cell variation within cell states is poorly understood, and cell
clusters may be associated with systematic, batch, technical,
or methodological artifacts (1). Toward the goal of creating
a comprehensive cell type and state reference, the Human
Cell Atlas will catalog the diversity of cell types in the human
body (4) and anticipates discovering distinct tissue-specific,
disease-specific, age-specific, gender-specific cell phenotypes,
and will identify many new cell types and states that are yet to
be defined.

Most, or at least half, of the transcriptome, is detected in
a typical bulk RNAseq study. In contrast, scRNA-seq studies
frequently measure <5,000 genes in a single cell (1). Most
genes are not measured and these zero counts may represent
zero gene expression or false negative dropout, that is, when a
gene was expressed but was not detected due to technological
limitations (3, 5) such as limited sequencing depth or stochastic
variation. Gene expression may also be missed due to biological
variance; single point-in-time measurements cannot capture
dynamic processes, such as RNA transcriptional bursts. Emerging
evidence suggests transcription occurs in bursts or pulses that
depend on core promoter and enhancers (6) and a three-state
model may be required to capture its biological complexity (7).
These issues of scRNA-seq analysis underscore the importance
of appropriate quality control, preprocessing, and normalization
(1, 8).

Preprocessing of sc Sequencing Data
Several library preparation and read mapping approaches
including genome or transcriptome mapping and pseudo-
alignment can be used to generate a “raw” or unique molecular
identifier (UMI) count matrix from sequencing reads (9), but in
a comparison of over 3,000 preprocessing and analysis pipelines,
Vieth et al. found normalization of the count matrix had greatest
impact on downstream analysis (9). Standard “normalization”
pipelines include scaling using sample-specific size factors, log
transformation to reduce skewness, and feature filtering before
PCA. The selection of a particular normalization routine will
itself embed assumptions about the underlying distribution of
the data. Inappropriate preprocessing may introduce artifacts
that impact the ability to perform further preprocessing (e.g.,
alignment and integration of batches of sc data both within and
between studies) and downstream biological analyses [e.g., cell
type identification, classification, and differential gene expression
(1, 8, 9)].

Depending upon the analysis method selected, objective
defined, and the dataset itself, different approaches to
preprocessing may be appropriate; various data scaling,
centering, standardization, and transformation (Figure 1)
approaches can be applied. Frequently these terms are used
interchangeably even though they represent different data
manipulations (11, 12). Often the goal of preprocessing steps is
to generate data that meet the linearity, homoscedasticity (that
the points have the same scatter, i.e., there is no relationship
between mean and variance), and normality assumptions that
are required for most parametric statistical methods, including
linear regression. A recent review of metabolomics data includes
an extensive review of scaling and transformation approaches on
sparse data (13).

• Scaling adjusts the range of the data, by dividing by a value.
There are two broad subclasses of scaling factors: sizemeasures
(e.g., mean or library size) and data dispersion measures (e.g.,
standard deviation). Unit or unit variance scaling uses the
standard deviation as the scaling factor, such that points have a
standard deviation of one and therefore the data are analyzed
on the basis of correlations instead of covariances. If data
are scaled by dividing by the standard deviation, then the
correlation is equal to the covariance of those two variables,
since the Pearson correlation coefficient of two variables is
equal to dividing the covariance of these variables by the
product of their standard deviations. Scaling by size measures
is important when integrating multiple datasets in cases where
the range of values and means of the data differ substantially.

• Centering is subtracting the mean of a set of points from each
data point so that the new mean is 0. The scale does not
change, one unit is still one unit. In Figure 1, we see centering
produces data with a mean at zero, but the standard deviation
is unchanged

• Standardization includes centering and scaling. A Z-score
standardization is subtracting the mean and dividing by the
standard deviation of all points. A one-unit difference after this
adjustment now indicates a one-standard deviation difference.
Note whilst it changes the range of the data it may not affect the
distribution, and may require an additional transformation

• Transformations, including log transformations (log2 or log10)
or log with pseudocount (e.g., log +1), are commonly
applied to sc data that increase proportionally (% or fold
change) rather than linearly (8). A log transform or power
transform may make skewed data look more symmetric or
Gaussian (normally distributed in a bell-curve shape) and
correct for heteroscedasticity (unequal scatter of points, where
variance differs with mean). Recent studies reported that
log2+1 transformation may distort data, introducing false
variability in dimension reduction and impacting downstream
analysis (8, 14, 15). Given that heteroscedasticity in omics
data is both multiplicative and additive, generalized log
variance-stabilizing transformations such as arcsinh (asinh)
of scRNA-seq data (16, 17) and CyToF proteomic data
(18, 19) are recommended. Rank-based inverse normal
transformation has also been used to rescale scRNAseq gene
expression (20).

Frontiers in Oncology | www.frontiersin.org 2 June 2020 | Volume 10 | Article 973

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hsu and Culhane Integrative Analysis of Single Cell Data

FIGURE 1 | Common data preprocessing steps include scaling, centering, standardization, and transformation. Graphical examples of these preprocessing routines

are applied to two datasets (1) “toy data” with a mean and standard deviation (SD) of 1.5 generated for purposes of illustration, and (2) the 10X raw counts matrix in

the scMix benchmarking dataset used in Figure 2 (10).
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• Normalization transforms the data points so that their
distribution resembles a normal, also called Gaussian,
distribution. In a normal distribution (i.e., the classic bell
curve) points are distributed symmetrically around the mean,
most observations are close to the mean, and the median and
mean are the same. Depending upon the distribution of the
original dataset, this may be achieved by a log transformation,
or may require more extensive preprocessing. Two recent
articles have proposed analysis of Pearson residuals rather
than log normalized counts (8, 14). In bioinformatics and
computational fields, this term may also refer to size and/or
range scaling transformation whichmay not produce a normal
distribution (21).

Feature selection, for instance restricting analysis to over-
dispersed genes which are expected to capture a disproportionate
amount of the variance in the data, is included in many analysis
pipelines to reduce the computation time (16, 22). Furthermore,
selecting genes with high biological variability, to exclude many
genes with low biological signal and high numbers of zeros, may
increase the signal to noise ratio in dimension reduction.

Dimension Reduction
Data dimension reduction is indispensable in single cell data
analyses because it facilitates exploratory data analysis and
visualization, and is an essential step in many downstream
analysis including cell clustering (23, 24), cell-type identification,
cell trajectory, lineage reconstruction, and trajectory inference
(25–27). It is also a critical first step in many algorithms that align
and integrate sc datasets (11, 22, 28).

Dimension reduction transforms the data to a new coordinate
system (i.e., a low-dimensional shared latent space) such that
the greatest variance can be identified and distinguished from
background noise, or less informative variance. The output
is a set of embeddings for each data point which encode
their location in the low-dimensional shared latent space.
It is frequently achieved using matrix factorization, a class
of unsupervised techniques that provide a set of principled
approaches to parsimoniously reveal the low-dimensional
structure while preserving as much information as possible from
the original data.

Principal component analysis (PCA) is arguably the oldest,
fastest, and the most commonly used matrix factorization
approach (29). PCA is a deterministic algorithm that seeks
linear combinations of the variables that explain the variance
in the data and ranks these such that the first component
explains most of the variance or “strongest” pattern in the data.
PCA uses a Gaussian likelihood and is best applied to data
that are approximately normally distributed. Whilst it is not
recommended to be applied to highly skewed data (Figure 1),
nonetheless, in a recent systematic analysis of 18 linear and
non-linear dimension reduction approaches, PCA and other
classical linear methods performed surprisingly well in both
clustering and lineage inference analysis when assessed on 30
scRNA-seq datasets (30). Linear (straight-line) analysis methods
including PCA, independent component analysis (ICA), factor
analysis (FA) ranked best in clustering. PCA, FA, non-negative
matrix factorization [NMF, (31, 32)], and uniform manifold

approximation and projection [UMAP, (33)] ranked top in
lineage inference analysis (30). We compare ICA and NMF
matrix factorization in a recent review (31).

Dimension reduction methods optimized for count data
that apply a better-fitting likelihood model (e.g., Poisson or
negative binomial) are promising for addressing the skewed
distribution of sc count data (8, 14). However, glmPCA (8),
Poisson factorization (34–36), and probabilistic count matrix
factorization [pCMF, (37)], as well as methods designed to model
zero-inflated sparse data, including ZIFA and ZINB-WaVE (38,
39) did not outperform PCA across the full range of analyses
and evaluations performed in the study Sun et al. (30). While
there are particular settings where these methods may be most
appropriate, they are not necessarily appropriate as “general-
purpose” approaches. The high computational cost and long
run time make many of these models difficult to integrate into
multi-step bioinformatics pipelines.

Non-linear dimension reduction methods can identify
variance in subsets of features by fitting local linear maps
on subsets of points. Non-linear methods applied to sc
data include diffusion maps (40), locally linear embedding,
isoMap, kernel adaptations of linear methods, uniform manifold
approximation and projection (UMAP) (41), and t-distributed
stochastic neighbor embedding [tSNE, (42)]. However, similar
to the methods that apply non-Gaussian likelihoods, non-
linear dimension reduction methods are often computationally
expensive and since they are not deterministic may produce
different embeddings when re-applied to the same dataset.
To improve computational tractability, PCA is frequently used
as a preprocessing step prior to non-linear dimensionality
reduction approaches including t-distributed stochastic neighbor
embedding [tSNE, (43)] and UMAP (33). Although not required
to run UMAP, in practice, it can be applied to accelerate
computation time by significantly reducing dimensionality and
noise while preserving underlying latent structure.

In this review, we focus on PCA because of its popularity,
performance, and widespread use. PCA is a central step in
many sc analysis algorithms and pipelines. When used with
sparse-matrix representations, it can easily scale to large datasets.
Excellent general tips for dimension reduction have been
described (44), so we will focus on considerations and limitations
when applying dimension reduction to sc data, including a step-
by-step explanation of how PCA works, especially when applied
to integrative sc analysis (Figure 2A).

The Impact of Data Preprocessing on Dimension

Reduction
There are two types of PCA, which differ in data centering and
scaling prior to matrix decomposition. PCA of a covariance
matrix or a correlation matrix is achieved by applying matrix
factorization to a centered but unscaled matrix, or a centered
and scaled matrix, respectively (Figure 2A, Step 2). The latter
is the most popular form of PCA. Linear regression using non-
linear iterative partial least-squares (NIPALS), eigen analysis,
or singular value decomposition (SVD) are a few of the many
ways to factorize or decompose a matrix. SVD is a basic matrix
operation, and fast approximations of SVD, including IRLBA,
are commonly applied to sc data [extensively reviewed by (45)].
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FIGURE 2 | Matrix Factorization of sc data: (A) schematic diagram of a PCA or CCA workflow, includes: (1) filtering of datasets to intersecting genes; (2) scaling,

transformation, and normalization of individual and joint count matrices; (3) concatenating matrices and applying a matrix factorization, usually singular value

decomposition (SVD); and (4) visualizing results. SVD is a matrix operation that finds for a given input matrix the left singular vectors (U), the right singular vectors (V),

and the singular values (D), such that the product of U and V with their respective transpose matrices is the identity matrix. Each singular vector is orthogonal to the

others, and they are ordered such that the first component explains the greatest variance, and each subsequent component explains less than the preceding. (B) The

first two principal components of SVD performed on counts and log-transformed counts of the scMix benchmarking data (10), comprising 3 cell lines (HCC827,

H1975, and H2228), that were unprocessed, centered, and centered and scaled, to reflect SVD, covariance-based and correlation-based PCA, respectively. Results

from covariance-based and correlation-based PCA applied to log-transformed data are similarly effective, showing moderate data integration and separation by cell

type but an arch effect is visible on PC1 and PC2 in SVD of the raw counts. (C) Covariance-based and correlation-based PCA of log-transformed data, colored by

sequencing depth, show that unadjusted differences in sequencing depth limit integration, forming a gradient across each cluster. (D) The first three principal

components from Canonical Correlation Analysis (CCA) of scMix data. In both raw counts and log-transformed data, PC1 provides poor separation by cell type and

batch integration. The plot of PC2 by PC3 from CCA on log-transformed data show reasonable clustering by cell line, though exhibit poor batch integration; in

contrast, PC2 by PC3 plot from CCA on raw data shows better batch integration and poorer separation by cell type.
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SVD factors an input matrix into three matrices U, D, and
V, as illustrated schematically in Figure 2A (46) (R code to
perform PCA via both eigen analysis and SVD are provided in
Supplementary Methods). The maximum number of principal
components or rank of the analysis is the number of rows
or columns of the matrix (whichever is lower, n-1, or p-1),
though typically 30 or fewer components are examined in most
scRNA-seq pipelines (22). Selection of the correct number of
components is non-trivial and most commonly achieved by
heuristic approaches. To understand the distribution of variance
explained by each component, scree-plots can also be helpful
visual tool (47, 48) and permutations based approaches are
recommended (49, 50).

Figure 2B displays SVD of raw count or log2 transformed
count matrices that were (1) unprocessed data (top row); (2)
centered by subtracting column means (middle row); and (3)
scaled and centered to reproduce SVD. (2) and (3) show PCA
of a covariance matrix (princomp in R), and PCA of a correlation
matrix (prcomp in R), respectively (Figure 2B). These are applied
to a small, well-described benchmarking dataset (10), comprising
scRNA-seq measurements of a three cell line mixture on three
technological platforms (10X, Dropseq, and CELseq2). Both
forms of PCA had greater success in finding structure in the
data as compared to SVD alone. However, clusters of cell lines
could only be distinguished in data that were log transformed.
Moderate cross platform integration was observed in data that
were centered, or centered and scaled (equivalent of PCA of a
covariance or correlation matrix, respectively). Nonetheless, as
illustrated in Figure 2C, we observe that systematic differences
in sequencing depth between the three platforms still creates a
gradient across each cluster, preventing full integration. Whilst
this analysis was performed on all variables (genes), we and others
have found that excluding genes with low variability and high
numbers of zeros prior to dimensionality reduction may increase
the signal to noise ratio (12, 48, 51).

The Horseshoe or Arch Effect
PCA is optimized for continuous, normally distributed data and
is suboptimal when applied to sparse data with many zero counts.
The arch or horseshoe is a common pitfall and has been described
in detail in the literature (44, 52, 53). This distortion results
from the presence of a gradient or sequential latent ordering
in the data [Tutorial by (54)]. In the top row of Figure 2B

all of the cell lines on the first component (PC1) are on the
same side of the origin, forming a classical horseshoe pattern,
characterized by a distinctive “arched” shape, with points mostly
on one side of the origin and folding back on itself in one of the
dimensions. This indicates that additional data preprocessing is
required; cell lines cannot be distinguished, and the data are not
integrated across batches. In the top right plot of Figure 2Bwhich
shows SVD on unprocessed log counts, the first 2 PCs appear
correlated, but are by definition orthogonal—their dot product
is 0. Orthogonal vectors are uncorrelated only when at least one
of them has mean 0. In contrast, when data are centered (e.g.,
middle and bottom row of Figure 2B), these artifacts are gone. It
is vital that such arch effects are identified, especially when PCA
forms part of a computational workflow that extracts the first n
principal components without inspection. As seen in Figure 2,

preprocessing and data normalization can remove arch artifacts
and we refer the reader to excellent recent reviews on the subject
(44, 52–54).

Examining PC plots can illuminate issues beyond the arch
effect, in this case for instance, showing that the 10X data
are located further from the origin on PC1 and PC2 as a
result of difference in sequencing depth between platforms
(Figures 2B,C). This can be corrected for by scaling the size
factors by dataset to account for these systematic differences prior
to log-normalization (55).

Integrating Two or More Datasets With
K-table Matrix Factorization
Matrix factorization approaches have been highly effective and
widely applied to removing batch effects in bulk omics data
(56, 57). Whilst dimensionality reduction methods like PCA can
discover batch effects (1, 11, 28), and could also be applied to
remove within or even between batch effects in sc data, it is more
common to explicitly define the blocks, groups, or datasets to
be integrated and apply matrix factorization that is designed to
extract correlated structure between groups. Emerging sc data
integration and cross-study batch correction methods frequently
use PCA or joint matrix decompositions as a first step.

Matrix factorization approaches that integratemultiple groups
or matrices with matched rows or columns, often called K-
table, multi-block component analysis or tensor decompositions
(46), have been applied to both bulk and scRNA-seq data
integration (46). The simplest K-table approach is possibly
Procrustean analysis (58, 59). Procrustes was a figure from Greek
mythology who was famous for cutting limbs or stretching
unknowing passers-by such that they fit into his bed, and
similarly, Procrustean analysis involves rotation or reduction of a
component from one PCA to best fit a second PCA. Several other
matrix factorization approaches for K-table exist (46).

Arguably the most popular K-table approach applied to omics
data is canonical correlation analysis [CCA, (60, 61)], which
maximizes the correlation between components, or canonical
variables of each dataset, and has been widely applied to
integration of bulk omics data [reviewed by (46, 62)]. Classical
CCA requires more observations than features, and therefore
sparse implementations that include feature selection are used in
the analysis of bulk omics data (63, 64). CCA and adaptations
of CCA have been applied to integrate scRNA-seq including
the cross-study integration of stimulated and resting human
peripheral blood mononuclear cells (PBMCs); cross-platform
integration of mouse hematopoietic progenitors scRNA-seq data;
and heterogeneous case-control cell populations after drug
exposure (16, 22). Seurat 3 uses CCA with anchors to align
datasets that are extracted using mutual nearest neighbors on
the CCA subspace (65). Harmony uses PCA as a first step (66).
PCA or CCA is the first step in scAlign, a neural-network
based method for pairwise or data to references, alignment of
single cell data (67) which was reported to outperform other
single cell alignment methods (CCA in Seurat, scVI, MNN
scanorama, scmap, MINT, and scMerge). Non-linear matrix
factorization approaches for integration of datasets include joint
NMF [LIGER, (68)] but in a recent comparative study this was
reported to be computationally slow and may overlay samples
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of little biological resemblance compared to the other methods
(69). A benchmark comparison of 14 methods for integration of
scRNA-seq datasets, on datasets from different technologies with
identical cell types, non-identical cell types, multiple batches, big
data, and simulated data revealed that harmony, LIGER, and
Seurat 3 CCA are most performant (65).

Other matrix decomposition approaches, including multiple
co-inertia analysis (48, 70), multiple factor analysis (71, 72),
and consensus PCA (73–75), maximize a covariance or squared
covariance criterion and are not limited by a requirement
for more observations than features. These have been applied
to bulk omics data and clustering, for example Meng et al.,
applied Westerhuis’s modified implementation of consensus
PCA to integrate methylation, proteomic and genomics data,
reporting it was performant and faster that iCluster/iCluster+
(75). Dimension reduction methods for both single and K-table
analysis, including a summary of the mathematical formulae
and overview of available software packages for each mode of
analysis, have been recently reviewed (46). Of note, there is also
a recently described generalized framework to easily modulate
between covariance and correlation-optimization in integrative
matrix factorization (62, 76).

Horseshoes in CCA
Similar to PCA, a problematic arch effect is seen on PC1 and
PC2 (Figure 2D) when CCA is applied to align and integrate raw
counts or log counts of scRNA-seq measurements of three cell
lines that were obtained on three technological platforms: 10X,
Dropseq, and CELseq2 (10). The raw data had more platform
overlap, and the log-transformed had less overlap in cell types
in PC2 and PC3 (Figure 2D). These data demonstrate that, if
CCA is used as a first step in a pipeline, it should include a check
for the presence of such artifacts. For example, upon examining
Figure 2D, one could exclude PC1, since CCA integrates the data
across platforms in PC2 and PC3.

Scaling of Datasets in CCA
Simultaneous integration of multiple matrices is more complex
than integrative analysis of a single dataset because each dataset
may have different numbers of observations (cells), internal
structure, and variance. In this CCA (Figure 2D) vignette the
10X dataset exhibited less correlated structure with the Dropseq
and CELseq2 datasets, which had lower sequencing depth
(Figure 2C). Therefore, in K-table matrix decomposition two
levels of preprocessing are recommended. First, each individual
dataset is normalized, centered, and scaled. Secondly, datasets
are scaled by cross-dataset size factors (55), weighted to inflate
or deflate the contribution of individual datasets, such as scaling
by the square root of their total inertia, the percent variance on
the first principal component, sample size, or another measure of
data quality or expected contribution [reviewed by (46)].

Key Takeaways
When applying matrix factorization methods including PCA,
it is recommended to consider the impact of scaling, log-
transforming, standardization, and normalization. Common
data challenges, and tips to address them, include:

1. Preprocessing of data. Consider each step in the pipeline
and how it transforms the data. If necessary, consider
preprocessing the data yourself. Visualize data after
intermediate steps to ensure data are processed as expected,
and to diagnose any issues that may arise.

2. Heteroscedasticity. Whilst widely used, log2
transformation of expression values combined with
pseudocounts may not be appropriate, consider using a
variance-stabilizing transformation.

3. Arch effect in PCA. Examine PCs if weights are not centered
around the origin with negative and positive scores, to check
if there is an arch artifact. This can be mitigated by scaling
and/or normalization.

4. Systematic differences in sequencing depth. When working
with data from multiple batches, we found that the
multiBatchNorm function from the batchelor R/Bioconductor
package corrected for the differences in sequencing depth.

5. Uncertainty around ground truth. Test methods using a
well-characterized benchmarking dataset, if possible. The
CellBench R/Bioconductor package provides access to several
datasets, including the scmix dataset used in Figure 2 (77).

SUMMARY

Single cell omics data are expanding our understanding of
tumor heterogeneity, the tumor microenvironment, and
tumor immunology. Algorithms for cell clustering, cell type
identification, and cell trajectory analysis rely on dimension
reduction to achieve computationally tractable solutions.
The sparsity, noise, and high dimensionality of these data
present unique challenges and underscore the importance of
dimension reduction in sc analysis. PCA is widely used and
popular for its speed, scalability, and performance, though
it may not be the most optimal method for sc data. Matrix
factorization approaches optimized for count matrices or
distances matrices have been described [reviewed by (38)],
and it is likely that more performant data preprocessing,
scaling, and transformation approaches will continue to be
developed. These methods will improve the performance
of dimension reduction approaches in sc data integration
and analysis.

RESOURCES

We include below a short list of single cell analysis resources,
vignettes, and reference materials

https://osca.bioconductor.org/
https://github.com/seandavi/awesome-single-cell
https://satijalab.org/seurat/
https://hemberg-lab.github.io/scRNA.seq.course/
https://github.com/SingleCellTranscriptomics

SUPPLEMENTAL MATERIAL

R Code to reproduce these figures which describes different
implementation of SVD and PCA is publicly available at https://
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github.com/aedin/Frontiers_Supplement/. It includes a code
to generate PCA, computed by SVD, eigenanalysis and PCA
using R packages princomp, prcomp, ade4, FactoMineR.
In each case, the relationship between these methods
is described.
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