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Abstract: Considering the metal-based nanocrystal (NC) hierarchical structure requirements in many
real applications, starting from basic synthesis principles of electrostatic spinning technology, the
formation of functionalized fibrous materials with inorganic metallic and semiconductor nanocrys-
talline materials by electrostatic spinning synthesis technology in recent years was reviewed. Several
typical electrostatic spinning synthesis methods for nanocrystalline materials in polymers are pre-
sented. Finally, the specific applications and perspectives of such electrostatic spun nanofibers in the
biomedical field are reviewed in terms of antimicrobial fibers, biosensing and so on.
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1. Introduction

In recent decades, electrostatic spinning has received more and more attention as
an important technology for the preparation of micro/nanomaterials due to the rapid
demand for fiber-based applications. Electrostatic spinning is a process in which a polymer
solution is stretched into nanofibers by applying a high-voltage electric field. The concept
of electrostatic spinning was conceived as early as 1600 by Gilbert, who observed in a
study that polymer solutions could form conical droplets under an electric field [1]. In
1882, Taylor published a series of seminal papers stating that as the electric field strength
increased to a critical level, the spherical droplet would gradually evolve into a cone [2]
(now commonly referred to as a “Taylor cone”) and emit a liquid jet. The application of the
electrojet process to the preparation of fibers eventually evolved into electrostatic spinning
technology. After 1990, Reneker’s group and Rutledge’s group conducted more in-depth
research on electrostatic spinning technology and applications [3,4]. Recently, more and
more attention has been paid to electrostatic spinning by using new materials to fabricate
composite materials and ceramic nanofibers, due to the fact that new applications in electro-
static spinning fibers are used in in soft electronic devices [5–7], biomedicine [8,9], energy
harvesting, conversion and storage [10,11]. The number of publications on electrospinning
keeps increasing, as shown in Figure 1A, which also indicates the new opportunities in the
development of electrostatic spinning.

The ability to encapsulate hydrophobic and hydrophilic compounds and functional
nanomaterials directly into fibers is a major advantage in electrostatic spinning technol-
ogy [12–14]. This is because electrostatic spinning can be performed under relatively mild
environmental conditions, which could retain the activity of the loaded substances during
the forming process, making them more suitable for encapsulating active nanomaterials that
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are sensitive to heat than other conventional processing strategies. As for bio-applications,
it has been demonstrated that cells could also be processed by electrostatic spinning with-
out loss of their activities [15–17]. In addition, electrospun fibers, with tunable diameters
from submicron to nanometer level and high specific surface area, can also facilitate the
dispersion of their loaded compounds into the surrounding medium, thereby controlling
the release of active substances (e.g., drugs) [18–21]. In addition, electrospun fibers can
mimic the microstructure of the human extracellular matrix, thus, greatly improving the
biocompatibility of the material and making it more stable for the loaded bio-nanomaterials
and drugs [22].

Figure 1. Number of publications on (A) electrostatic spinning and (B) bio-applications of electrostatic
spinning indexed by Web of Science.

Due to the aforementioned properties, electrospun fibers have promising applications
in the field of biomedical materials, especially in the controlled release of compounds in
drug delivery [23,24], scaffolds in tissue engineering [25,26] and wound dressings [27,28].
The number of publications on the bio-application of electrospinning technology also keeps
increasing in the most recent 20 years, as shown in Figure 1B. In this work, we summarize
the principles of electrostatic spinning, with emphasis on the two main methods of loading
inorganic NCs onto electrospun membranes and their advantages and limitations. Then,
we review the applications of electrospun fiber membranes loaded with inorganic NCs in
the field of antibacterial and biosensing directions, especially publications reported in the
last 10 years. Finally, we discuss the challenges and opportunities of electrostatic spinning,
especially for nanosynthesis.
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2. The Principle of Electrostatic Spinning Technology
2.1. Principle of Electrostatic Spinning

A schematic diagram of the electrostatic spinning for preparing nanofibers is shown
in Figure 2, including strategies, such as directly mixing, in situ growth and assembly of
inorganic NCs. The equipment of electrostatic spinning generally consists of three parts:
the spinneret, the high-voltage power supply and the receiving device [29]. In general, the
electrostatic spinning process can be divided into the following four steps: (i) the polymer
solution forms a Taylor cone under an electric field; (ii) the charged jet extends along a
straight line under the electric field; (iii) the jet becomes finer under the electric field and
the electric bending instability (also called agitation instability) increases; and (iv) the jet
condenses into solid fibers and is collected on a grounded collector [30]. Among them, the
formation of the Taylor cone is the most critical step in this process, which determines the
quality of the fibers. In the electrospinning process, the metal whiskers are easily formed.
The static polarization of the wire in the electric field brings about an energy gain, resulting
in a metal whisker that appears as a hair-like protrusion on the surface of some metal [31].
In spite of the potential weakness caused by metal whiskers in the electronic industry, the
mechanisms in the formation of metal whiskers still need further investigation.

Figure 2. Schematic diagram of nanofibers electrostatic spinning and their direct mixing, in situ
growth and assembly of inorganic NCs.

2.2. Main Factors Influencing the Formation of Electrostatic Spinning Nanofibers

The formation of electrospun fibers and the control of their diameters depend largely
on the processing parameters, including the polymer solution concentration, applied
voltage, liquid flow rates, distance between the spinneret tip and the collector, etc.

2.2.1. Polymer Solution Concentration

As the concentration of the polymer solution increases, the viscosity and surface
tension of the solution also increase, resulting in a less stretchable solution, and the jets
formed in the electric field become less likely to split and become finer, resulting in a
larger diameter for the collected fibers. Thus, under the same conditions, the diameter of
nanofibers increases with an increase in polymer concentration. When the concentration
of the solution is too low, the viscosity of the solution is also low, which could be easy
electrostatic atomization, resulting in the presence of a large number of string beads in the
fiber [32]. Therefore, in order to obtain the ideal electrospun fibers, it is necessary to find
the most suitable polymer concentration for electrospinning.

2.2.2. Liquid Flow Rate and Receiving Distance

The injection rate also affects the structures of fibers by influencing the formation of
Taylor cones. In general, as the injection rates increase, the fiber diameter also increases.
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Typically, the jet needs a long enough distance to extend and coagulate before forming solid
fibers. Normally, the fibers become finer as the receiving distance increases. After a certain
distance, the fibers will no longer become finer due to the solidification of the jet [30].

2.2.3. Electric Field Voltage

A static high-voltage direct current is usually applied to the spinneret to generate an
electric field. The magnitude of the voltage determines the amount of charge carried by
the jet and the strength of the electric field. Applying a high voltage usually tends to form
thinner fibers [33], while it might also cause more liquid to be injected, resulting in larger
fiber diameters [34].

3. Noble Metal, Semiconductor Nanocrystalline Materials and Their Electrostatic
Spinning into Polymers
3.1. Noble Metal, Semiconductor Nanocrystalline Materials

With the rapid development of nanotechnology and science, colloidal inorganic NCs
with different morphologies, sizes and functions (Figure 3) have been investigated, in-
cluding noble metal nanoparticles (NPs) [35–37], semiconducting metal oxides [38,39],
single-atom catalysts [40–43], hybrid NCs [44–46], noble metal nanoclusters [47] and semi-
conductor quantum dots (QDs) [48–52], etc. These kinds of nanomaterials are widely used
in the fields of energy [53,54], catalysis [55,56], sensing [57], electronic information [58],
optoelectronic devices [59], biomedicine and imaging [60–62] because of their unique op-
tical, electronic, magnetic, thermal and mechanical properties. Dispersing nanomaterials
into a bulk matrix, such as large-scale polymer fibers, with low concentrations but well-
maintained intrinsic nano effect and properties, has been regarded as a promising strategy
to further explore their potential applications in our daily life.

Figure 3. Various nanocrystalline materials. (A) Various shapes of noble metal NCs [40]. Copyright
2019 American Chemical Society. (B) Subnano- to single-atom catalysts [48]. Copyright 2013 American
Chemical Society. (C) Hybrid NCs [49]. Copyright 2020 American Chemical Society. (D) QDs [57].
Copyright 2008 American Chemical Society.

3.2. Preparation of Nanocrystalline Functionalized Electrospun Composite Fibers

There are many strategies to assemble NCs into electrospun fibers and direct mixing
and in situ growth are two most representative strategies. By combining inorganic NCs
with electrospun nanofibers, the stability of many kinds of such NCs can be effectively



Molecules 2022, 27, 5548 5 of 18

improved. Moreover, their intrinsic properties could be well maintained. In addition, the
advantages and disadvantages of each of these two methods are listed in Table 1.

Table 1. Advantages and disadvantages of direct mixing method and in situ growth method.

Methods Advantages Disadvantages

Direct mixing method

(i) Faster and simpler than
other compared methods;

(ii) Particle sizes and
categories depending on

pre-synthesized NCs.

(i) Easy to aggregation;
(ii) Post-treatment process

needed (purification,
extractions, etc.);

(iii) Lacking size homogeneity
in dense matrices;

(iv) Restrained connection
between NCs and fibers.

In situ growth method

(i) Easy to perform;
(ii) Not necessarily extra time

in polymeric
solution preparation;

(iii) No additional
solvents required;

(iv) Adjustable particle size
determined by precursors.

(i) Multi-step reaction;
(ii) Additional

post-processing time;
(iii) Not applicable to all NCs.

3.2.1. Direct Mixing with NCs in Polymer Precursors

Due to the properties of small size effect and high surface energy, NCs could be aggre-
gated in long-term practical applications. However, when mixing these inorganic NCs with
the solutions of electrospinning polymers, NCs would be coordinated and stabilized by the
surficial ligands of electrospun polymers, which could inhibit the aggregations of NCs. At
present, many kinds of inorganic NCs, such as noble metal, metal oxygen/sulfide and semi-
conductor NCs, have been directly mixed and blended in electrospun nanofibers [63–66].
For example, El-Hefnawy et al. reported the synthesis of Ag NC dispersed polymer
fibers [67]. The fabricated Ag NCs were made into a monodisperse form with a diameter of
no more than 6 nm. Prior to the electrospinning process, they added different volumes of
Ag NCs dropwise into the polymer mixture solution to obtain nanofiber sheets containing
different concentrations of Ag NCs. They found that the fibers containing Ag NCs were
uniform and the diameter of the fibers could be tunable by increasing the concentration of
Ag NCs.

Similarly, Manjumeena et al. reported the synthesis of Au NCs deposited on polyvinyl
alcohol (PVA) nanofibers enabled by the dispersion of PVA and Au NCs in distilled wa-
ter by controlling the corresponding electrospun conditions [68]. Electrospun nanofibers
loaded with Au NCs were obtained and the scanning electron microscope (SEM) and
high-resolution transmission electron microscope (HRTEM) results indicated that Au NCs
were located on the surface of the electrospun fiber. They concluded that the PVA could
become more hydrophilic after being loaded with a small amount of Au NPs. Another
study, by Li et al., reported the synthesis of Fe3O4-modified electrospun fibers [69]. They
found that at high voltages, Fe3O4 could improve the arrangement of fibers compared to
pristine electrospun fibers. Two-dimensional NCs could also be deposited on nanofibers,
as reported by Somia et al. (Figure 4) [70]. Cellulose nanocrystalline-ZnO (CNC-ZnO)
hybrids were obtained using the hydrothermal method followed by dispersion in chlo-
roform/DMF mixed solvent with additionally dissolved pl (PHBV). PHBV/CNC-ZnO
composite nanofibers were successfully obtained through the electrospinning strategy. It
was found that after the combination of sheet-like CNC-ZnO and PHBV, the nucleation den-
sity, overall crystallinity and crystallinity in PHBV composite nanofibers were significantly
improved and their thermal degradation temperature also increased.
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Figure 4. Schematic illustration of possible experimental preparation procedure of sheet-like CNC-
ZnO nanohybrids and their electrospinning process [69]. Copyright 2018 American Chemical Society.

3.2.2. In Situ Growth of NCs on Electrospun Fibers

In situ growth of NCs on electrospun fibers is another efficient strategy to achieve
NC-modified nanofibers. Generally, the precursor solution of the metal salt is dissolved in
the electrospinning solution followed by using light, electricity, heat, chemical reduction
and other methods to trigger the reduction in and oxidation of metal ions in the electrospun
solution or electrospinning fiber. As shown in Figure 5, Song Lin et al. reported two in situ
growth methods to obtain Ag NC-loaded PVA nanofiber pads. The first method was to
reflux the AgNO3-soluble PVA solution at 105 ◦C for 1 h, resulting in Ag NCs being gener-
ated in this process, and then the nanofibers were obtained by the electrospinning process.
The second method was to dissolve PVA in deionized water to obtain a viscous solution
and then add AgNO3 as an electrospinning solution. After the end of electrospinning,
Ag NCs could be formed inside the nanofibers under full ultraviolet (UV) lamp illumina-
tion. Among them, the size and yield of doped Ag NCs can be adjusted by controlling
preheating treatment or UV irradiation [71]. Soon et al. prepared polyacrylonitrile (PAN)
electrospun fiber membranes supporting Pt NTHFPs (NPs) by in situ calcination [72]. The
PAN electrospun fibers were prepared first followed by immersion in Pt(acac)2 acetone
solution to load Pt. After heat treatment in an inert atmosphere, the nanofibers loaded
with Pt NPs were carbonized at high temperatures. In another representative study by
Dakota et al., Ag NP-modified polycaprolactone (PCL) nanofibers were fabricated by in
situ plasma treatment [73]. First, the PCL and AgNO3 were dissolved in acetone followed
by electrospinning under appropriate conditions. The electrospun fibers were then treated
with air plasma, which could be a simple and effective method to generate Ag NPs on
fiber membranes.

Similarly, Wang et al. dissolved polylactic acid (PLA)/PCL and Cu2S NPs in a N-N
dimethylformamide/tetrahydrofuran (DMF/THF) solvent mixture forming Cu2S NC-
mixed polymer fibers, as shown in Figure 6A [74]. It was shown that these fiber films
exhibited excellent and controllable photothermal properties under NP (NIR) irradiation,
showing great promise in tumor-induced wound healing applications. Compared to
single-component-modified nanofibers, Yu’s group reported the fabrication of assembled
binary component NC-modified nanofibers by embedding Au nanorods (NRs) and silver
nanowire (Ag NW) assemblies into PVA electrospun nanofibers to improve the stability
of Au NRs/Ag NWs, as shown in Figure 6B [75]. When using a woven-structured copper
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mesh as the receiver device, the Au NRs/Ag NW assemblies were mostly distributed in a
directional manner within the electrospun fibers. Furthermore, because of the polarization
effect of the Ag NP-polymer solution under the high-voltage power supply, they distributed
the dimer and small aggregates of Ag NPs directionally inside the PVA fiber and the
composite fiber finally produced a more desirable surface-enhanced Raman scattering
(SERS) effect [76].

Figure 5. Overview of electrospinning process of Ag NP-doped PVA nanofiber mats under different
prepared conditions [70]. Copyright 2022 Dove Press Ltd.

As for the synthesis of semiconductor NC-modified nanofibers, as shown in Figure 7A,
Kampara et al. used an in situ calcination strategy to obtain a PVA electrospun fiber mem-
brane loaded with CdO semiconductor NCs [77]. The precursor to synthesize CdO NCs
was cadmium acetate dihydrate. After the initial electrospinning, the original nanofiber
membranes were transferred to the muffle furnace and calcined at high temperature to
obtain the product. As shown in Figure 7B, Kamal et al. prepared PLA/titanium dioxide
hybrid nanofibers using the in situ hydrothermal method. The coated fibers were obtained
by combining electrospinning and electrospraying techniques. The electrospinning solution
was prepared by dissolving PLA in a mixed solvent of dichloromethane/methanol. A
mixture of tetraisopropoxide Ti(O-iPr)4 (TIP), ethanol and hydrochloric acid was used for
electrospraying, as a precursor to Ti. The obtained coating fibers were sufficiently dried
under vacuum and then transferred to an autoclave for hydrothermal treatment and the Ti
precursors were finally converted into TiO2 NPs [78].
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Figure 6. Preparation of nanocrystalline/electrospun composite fibers by direct mixing method.
(A) Cu2S-incorporated PLA/PCL fiber membrane [74]; Copyright 2017 American Chemical Society.
(B) Au NR-Ag NWs/PVA electrospun fibers [75]. Copyright 2012 The Royal Society of Chemistry.

Figure 7. (A) Experimental procedure for electrospinning of CdO nanograins [77]. Copyright
2020 Elsevier Ltd. (B) Schematic diagram nanoparticle coating on nanofibers using electrospinning
and electrospraying [78]. Copyright 2012 Elsevier B.V.
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4. Functionalized Electrostatic Spinning Composite Fibers for Biomedical
Applications

By virtue of the aforementioned advantages of electrospun nanofibers, such as nanoscale
size, high porosity and large specific surface area, their potential applications have been
widely studied in many fields [5–11]. Specifically, nontoxic electrospun nanofibers were
regarded as promising candidates for biomedicines [23–28], with adjustable properties,
such as drug release, wound dressing, tissue engineering and trauma repair.

4.1. Electrostatic Spun Nano-Antimicrobial Fibers

Many kinds of noble metals and oxides of some metals can exhibit certain antimicrobial
properties [79–81]. Ag NPs are some of the most typical antibacterial NCs by virtue of
the advantages of adjustable size, excellent antibacterial effect, continuous antibacterial
effect, etc., which exhibits a wide range of applications in the field of antibacterial biology.
As shown in Figure 8A, Yan et al. prepared PVA nanofibers loaded with Ag NPs using
an in situ hydrothermal assay [82]. They assessed the bactericidal properties of pure PVA
and Ag NPs/PVA through turbidity and absorption methods for E. coli and S. aureus.
Their results indicated that the latter exhibited more excellent antibacterial properties.
The amount of fiber-loaded Ag NPs was also controlled by adjusting the concentration of
AgNO3, which indicated that samples with a concentration of AgNO3 at 0.066 mol/L had
the highest antimicrobial rates against E. coli and S. aureus, at 98% and 99%, respectively.
By direct mixing, Erick et al. incorporated Ag NPs into PCL electrospun nanofibers
to study their antimicrobial properties. They demonstrated the antibacterial activity of
fiber scaffolds by agar diffusion and the results indicated that the antibacterial activity
of fiber scaffolds on S. aureus, E. coli, K. pneumoniae and P. aeruginosa was directly
proportional to the concentration of Ag NPs. Compared with Gram-negative bacteria
(E. coli, P. aeruginosa and K. pneumoniae), Gram-positive strains (S. Aureus, S. mutans,
B. subtilis) were more sensitive to PLA-Ag NPs nanofibers [83]. Reza et al. studied the
wound healing effects of compound nanofibers embedded with Ag NPs. The antibacterial
activity of the product against E. coli, P. aeruginosa and S. aureus was studied in vitro and
the results indicated that the higher the silver content, the better the antibacterial effect. The
product was tested for cytotoxicity in vitro using the MTT assay and the results showed that
the fiber scaffold was nontoxic and had good biocompatibility. They used nanofiber pads
on wounds caused by resection of white rabbits in New Zealand to study their effects as
wound dressings. Silver-containing nanofiber membranes showed good healing properties
compared to Ag-free polyvinylalcohol/polyvinylpyrrolidone/pectin/mafenide acetate
(PVA/PVP/PEC/MF) nanofibers and obtained the best wound healing effect when the
composition ratio of Ag NPs/PVA/PVP/PEC/MF was 0.7:91.8:2.5:2.5 wt% [84]. As shown
in Figure 8B, Qian et al. developed a novel Ag-modified/collagen-coated electrospun
p/polycaprolactone (PLGA/PCL) scaffold (PP-pDA-Ag-COL) with improved antimicrobial
and osteogenic properties [85]. The scaffold was generated by electrospinning a basic
PLGA/PCL matrix, followed by Ag NPs impregnation via in situ reduction, polydopamine
coating and then coating by collagen I. The three intermediate materials involved in the
fabrication of the scaffolds, namely, PLGA/PCL (PP), PLGA/PCL-polydopamine (PP-pDA)
and PLGA/PCL-polydopamine-Ag (PP-pDA-Ag), were used as control scaffolds. There
was a wider antibacterial zone associated in PP-pDA-Ag-COL and PP-pDA-Ag scaffolds
versus control scaffolds (p < 0.05) and bacterial fluorescence was reduced on the Ag-
modified scaffolds after 24 h inoculation against Staphylococcus aureus and Streptococcus
mutans. In a mouse periodontal disease model, the PP-pDA-Ag-COL scaffold enhanced
alveolar bone regeneration (31.8%) and was effective for periodontitis treatment. These
results demonstrate that this novel PP-pDA-Ag-COL scaffold enhanced biocompatibility
and osteogenic and antibacterial properties.
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Figure 8. (A) Schematic illustration of fabrication and antibacterial test for Ag/PVA composite
nanofibers through the electrospinning and solvothermal methods [82]. Copyright 2020 by the
authors. (B) Triple PLGA/PCL scaffold modification including silver impregnation, collagen coating
and electrospinning significantly improve biocompatibility, antimicrobial and osteogenic properties
for orofacial tissue regeneration [85]. Copyright 2019 American Chemical Society.

TiO2 NCs, as an inorganic antibacterial agent, especially under light irradiation, have
also gradually received attention as a promising nano-antibacterial material by virtue of
their advantages of high stability, nontoxicity and easily manipulated properties. Pant
et al. prepared TiO2-containing nylon-6 nanofibers using electrospinning technology and
experimentally demonstrated that the nanofibers had good antibacterial properties [86].
Toniatto et al. reported the synthesis of TiO2-modified PLA by direct mixing [87]. The
prepared composite nanofibers were tested using thiazole blue colorimetry (MTT method)
and the results showed that the composite nanofibers had no significant cytotoxicity.
Through the evaluation of antibacterial experiments, the composite nanofibers with a
content of 5 wt% show strong bactericidal properties.

In addition to the above materials being widely used in the field of antibacterial
biology, nanomaterials, such as Au NPs [88], Se NPs [89] and ZnO NCs [90], also exhibit
excellent performance in this field.

4.2. Biosensing Applications

Biosensing is an important branch of chemical sensing, which has been applied for
the detection of small biological molecules, enzymes, nucleic acids, disease markers, cells,
bacteria, etc. As for different biological reactions, designing and constructing suitable
NC/electrospun composite fiber membranes are important for biosensing applications.

In a recent study reported by Beak et al., Cu nanoflower-modified Au NP-graphene
oxide (GO) nanofibers were synthesized as electrochemical biosensors for glucose detection
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using a novel electrospinning method [91]. Electrochemical experiments showed that Cu-
nanoflower@AuNPs-GO nanofibers have the advantages of high sensitivity, low detection
limit and good reproducibility and selectivity in detecting glucose. In addition to the
special catalytic properties, metal oxides could also facilitate electron transfer, which could
provide a more friendly electroactive surface, thus, enabling the direct transfer of electrons
to the electrode. For example, Li et al. prepared uniformly dispersed Pd NPs anchored on
CuO nanofibers through the electrostatic spinning method, which were used to construct
enzyme-free glucose sensors, with the advantages of fast response, high sensitivity and
low detection limit [92]. Liu et al. also used ZnO nanostructures as an immobilized
substrate for an enzyme glucose sensor and immobilized glucose oxidase on it, thus,
enabling it to directly undergo electron transfer with the electrode and exhibit high catalytic
activity, with a wide linear range and high sensitivity [93]. Perovskite NCs with high
optoelectronic properties were also applied for biosensing applications. For example, Wang
et al. prepared monolithic superhydrophobic polystyrene fiber membranes encapsulated
with CsPbBr3 quantums (CPBQD) by one-step electrospinning [94]. The fiber membrane
composite coupled CPBQD with a polystyrene (PS) matrix and showed high quantum
yield (~91%), narrow half-peak width (~16 nm) and ~100% fluorescence retention after
10 days of exposure to water. Thanks to the excellent optical properties of CPBQD, an
ultra-low detection limit of 0.01 ppm was obtained for Rhodamine 6G (R6G) detection and
the HRTEM (FRET) efficiency was calculated as 18.80% at 1 ppm R6G in aqueous solution.

Hybrid materials composed of polymer nanofibers and plasmonic noble metal NCs
have also developed significantly in recent years for biosensing. For example, as shown
in Figure 9, Yang et al. designed a plasma-independent substrate consisting of Ag NPs
supported on PAN electrospun nanofiber membranes as a bacterial-detection sensor [95].
The substrate exhibited highly sensitive SERS performance for bacterial identification in the
absence of specific bacterial-aptamer coupling. The substrate exhibited good homogeneity
of SERS response to bacterial organelles. The antimicrobial properties were also evaluated,
which indicated that Ag@PAN nanofiber mats have good antimicrobial properties against
both Escherichia coli and Staphylococcus aureus. Anitha et al. synthesized a composite
nanofiber membrane loaded with Au NPs by a simple direct mixing method for the
detection of H2O2 [96]. By virtue of the uniform distribution and large surface area of
the Au NPs in the nanofibers, the Au NP-composite electrodes enabled greatly improved
electrochemical properties, compared to Au NP-free composite electrodes. When they were
employed as reservoirs for immobilizing horseradish peroxidase, reliable and sensitive
electrochemical detection by the enzyme reaction was achieved. Their experimental results
demonstrated that the detection sensitivity to H2O2 could be an order of magnitude higher
than other previously reported electrochemical sensors.

Figure 9. A simple electrostatic spinning technique to prepare Ag@PAN nanofiber membranes for
bacterial detection [95]. Copyright 2020 American Chemical Society.
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4.3. Other Applications

In addition to antimicrobial applications and biosensing, NC-loaded electrospun
fiber membranes were also applied in other biomedical fields. For example, Ming et al.
synthesized an electrospun fiber membrane loaded with Au NRs for photothermal treat-
ment of cancer [97]. This strategy not only utilizes the excellent photothermal properties
of Au NRs to selectively kill cancer cells, but also utilizes widely used biodegradable
electrospinning membranes as Au NRs carriers and surgical recovery materials. Polyethy-
lene glycol (PEG)-modified Au NRs are embedded in an electrospun fiber membrane
consisting of PLGA and PLA-b-PEG. After incubation with the cells in the cell culture
medium, the PEG-Au NRs were released from the membrane and taken up by cancer
cells, allowing the generation of heat upon NIR irradiation to induce cancer cell death (as
shown in Figure 10). For another example, biomaterial-based scaffolds fabricated using
the electrospinning technique are promising platforms for bone tissue engineering. In the
study of Huang et al., citrate-stabilized Au NPs were encapsulated into polyvinylpyrroli-
done/ethylcellulose (P/E) scaffolds fabricated by the coaxial electrospinning technique [98].
The results showed that Au NPs were successfully wrapped in electrospinning brackets
and the addition hardly affected fiber morphology, but improved porosity and mechanical
properties. In vitro studies revealed that Au NP-incorporated electrospun scaffolds showed
excellent biocompatibility and osteogenic bioactivities, wherein the alkaline phosphatase
activity, mineralized nodule formation and the osteogenic-related genes expression were
enhanced in Ag NP-incorporated electrospun scaffolds compared to the neat P/E elec-
trospun nanofibers. Then, the Ag NP-incorporated electrospun scaffolds were surgically
implanted into the defect area of the rat skull bone to test their in vivo bone repairing effect.
It was observed that Ag NP-incorporated scaffolds rapidly accelerated bone regeneration
in vivo.

Figure 10. Schematic illustration depicting the strategy of using PEG-GNRs membrane for the
photothermal therapy of cancer cells in vitro [97]. Copyright 2014 American Chemical Society.

5. Conclusions

Considering the huge requirements in applications of flexible electronic devices,
biomedicine and energy harvesting and conversion, etc., the organization of inorganic
NCs as building blocks coordinated into hierarchical cross-dimensional and cross-size
micro/nano matrix with maintained high performances would be attractive. In this review,
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taking advantage of electrostatic spinning technologies induced polymer fibers, the research
progress of inorganic NCs/polymer fibers synthesis and biomedical applications were
reviewed. As mentioned above, electrostatic spinning, as a kind of simple but effective
fiber production technology, has been widely used in medical releasing, biosensing and
other fields. However, inorganic NC/polymer fiber composites still have many challenges
to explore, even in biomedical fields, as illustrated in Figure 11.

Figure 11. The outlook of metal-based NC functionalization in electrostatic spun nanofibers for
extended applications.

(1) Though NC-modified nanofibers have exhibited high potential in many applica-
tions, how to modulate the depositing position of NCs is still challenging. Based on the
reported strategies, a portion of NCs could be located inside the nanofibers, which could
restrain their access to reactive molecules for efficient catalysis or biomedical applications.
Hence, efficient strategies to precisely modulate the depositing sites of NCs on nanofibers
could be helpful to further explore their applications [99,100].

(2) Compared to single-component modified nanofibers, composites consisting of
an electrospun fiber membrane with multicomponent NCs could be developed for more
biomedical applications, such as wound dressing applications [101]. Though there are
several related papers, the mechanism of synergistic and potential coupling effects between
the different introduced NCs within the electrospun fibers on the catalytic, optical and
biocompatible properties should be further investigated, which could play an important
role in designing reasonable multi-functional NCs/electrospun composite fiber membranes.

(3) Functional NC-modified electrospun fibers, incorporated with sensing and ther-
apeutic capabilities, could be a potential approach in the development of personalized
healthcare [102]. For example, "Electronic skin" has become a hotspot in the field of flexible
and wearable electronics. Functional NC-modified electrospun composite fibers could be
candidates to realize electronic devices and systems with skin-like properties and func-
tions [103,104].

(4) Hybrid NCs, such as Au/semiconductors hetero-NCs with plasmon enhancement,
could also exhibit unique biomedical applications when coupled with nanofibers, such as
multi-level enhanced chemodynamic, sonodynamic and therapy applications, based on
their sonosensitizers and photodynamic functionalities [49–52,105–109]. It is believed that
with the further development of multi-functional inorganic NC/polymer fibers, electro-
static spinning technology will become one of the most widely used technologies in the
medical field.
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FRET Fluorescence resonance energy transfer
HRTEM High-resolution transmission electron microscope
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NIR Near infrared
NPs Nanoparticles
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