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Abstract: The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of
SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain,
along with other functional domains that play versatile roles in cellular signaling and membrane traf-
ficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains
a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins
(GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of
G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with
phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes,
while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all
members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling
and endosomal trafficking. This review discusses the known and proposed functions of the SNX-
PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR)
and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily
of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated
with retromer or other retrieval complexes for the regulation of receptor signaling and membrane
trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily
of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.
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1. Introduction

Receptor-mediated signaling and membrane trafficking processes are intimately inter-
connected with the endosomes [1]. Internalized receptors, including G protein-coupled
receptors (GPCRs) and non-GPCRs, are sorted at endosomes, from which receptors are
either delivered to the lysosome for degradation, recycled back to the plasma membrane,
or delivered to the trans-Golgi network (TGN) and other organelles by receptor-specific
pathways [2,3]. Sorting nexins (SNXs) play critical roles in these processes [4].

The SNX family has a phox homology (PX) domain, capable of phosphoinositide
binding, which enables SNX targeting to endosomal membranes by binding to phos-
phatidylinositols, most commonly phosphatidylinositol 3-phosphate (PI(3)P) [5,6]. SNXs
are widely expressed from yeast to mammals, whose PX domain, first identified in two
subunits of the NADPH oxidase, p40phox and p47phox, actively engages in protein–lipid
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and protein–protein interactions [5,6]. To date, 10 yeast and 33 mammalian SNXs have been
identified [5–8]. Based on their domain architectures, the mammalian SNXs are divided
into five subfamilies: SNX-PXA-RGS-PXC, SNX-FERM (protein 4.1/ezrin/radixin/moesin),
SNX-BAR (Bin/Amphiphysin/Rvs), SNX-PX, and the unclassified SNX subfamilies [7,8]
(Table 1).

Table 1. Summary of mammalian sorting nexin (SNX) subfamilies [5–8].

Subfamily * Members Major Domain Architecture ** Roles in Signaling, Trafficking,
and Degradation

SNX-PXA-RGS-PXC (4) SNX13, SNX14,
SNX19, SNX25
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Table 1. Summary of mammalian sorting nexin (SNX) subfamilies [5–8]. 

Subfamily * Members Major Domain Architecture ** Roles in Signaling, 
Trafficking, and Degradation 

SNX-PXA-RGS-PXC (4) 
SNX13, SNX14, 
SNX19, SNX25 

 Plays important roles in 
receptor signaling and 

membrane trafficking, see text 
for details. 

SNX-FERM (3) 
SNX17, SNX27, 

SNX31 

 Involved in cargo loading and 
binding to membrane 

structures and endosome to 
plasma membrane trafficking 

or lysosomal degradation. 

SNX-BAR (12) 

SNX1, SNX2, 
SNX4, SNX5, 
SNX6, SNX7, 
SNX8, SNX9, 

SNX18, SNX30, 
SNX32, SNX33 

 Recognizes and targets to a 
wide range of cargoes, in 

coordination with retromers or 
other retrieval machineries to 

regulate receptor signaling and 
trafficking in 

retromer-dependent and 
-independent manners. 

SNX-PX (10) 

SNX3, SNX10, 
SNX11, SNX12, 
SNX16, SNX20, 
SNX21, SNX22, 
SNX24, SNX29 

 Forms endosome transport 
carriers in retromer-dependent 
or -independent manners on a 

diversity of cargo sorting, 
retrograde protein trafficking, 
and lysosomal degradation. 

Unclassified SNXs (4) 
SNX15, SNX23 
SNX26, SNX28 

 Binds to endosomes in 
Ca2+-dependent or 

-independent manners; 
regulates cargoes, such as 

amyloid-β precursor protein 
recycling to cell surface and 

processing for amyloid-β 
generation. 

Note: * The classification is basically dependent on SNX proteins’ domain architecture [6–8]. The 
number in the parenthesis indicates the number of the member proteins of the subfamilies. The 
unclassified SNX subfamily is comprised of unique SNX members that cannot be conveniently 
classified into the other four subfamilies. ** For simplicity and clarity, the domain structure is not 
complete for all subfamily members. For example, the unclassified SNX subfamily has 4 members 
with structures in addition to PX domain. SNX15 contains a C-terminal MIT domain; SNX23 con-
tains an N-terminal kinesin domain; and SNX26 has a C-terminal SH3 and RhoGAP domain. GAP, 
GTPase activating protein; MIT, microtubule interacting and trafficking; SH3, Src Homology 3. 

2. SNX-PXA-RGS-PXC Subfamily Domain Structure and Biochemical Properties 
The SNX-PXA-RGS-PXC subfamily is comprised of SNX13 (also known as 

RGS-PX1), SNX14, SNX19, and SNX25. This subfamily of SNXs contains two N-terminal 

Plays important roles in receptor
signaling and membrane trafficking,

see text for details.

SNX-FERM (3) SNX17, SNX27,
SNX31
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2. SNX-PXA-RGS-PXC Subfamily Domain Structure and Biochemical Properties 
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RGS-PX1), SNX14, SNX19, and SNX25. This subfamily of SNXs contains two N-terminal 

Involved in cargo loading and
binding to membrane structures and

endosome to plasma membrane
trafficking or lysosomal degradation.

SNX-BAR (12)

SNX1, SNX2, SNX4,
SNX5, SNX6, SNX7,

SNX8, SNX9, SNX18,
SNX30, SNX32,

SNX33
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Recognizes and targets to a wide
range of cargoes, in coordination with

retromers or other retrieval
machineries to regulate receptor

signaling and trafficking in
retromer-dependent and
-independent manners.

SNX-PX (10)

SNX3, SNX10,
SNX11, SNX12,
SNX16, SNX20,
SNX21, SNX22,
SNX24, SNX29
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Forms endosome transport carriers in
retromer-dependent or -independent

manners on a diversity of cargo
sorting, retrograde protein trafficking,

and lysosomal degradation.

Unclassified SNXs (4) SNX15, SNX23
SNX26, SNX28
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number in the parenthesis indicates the number of the member proteins of the subfamilies. The 
unclassified SNX subfamily is comprised of unique SNX members that cannot be conveniently 
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complete for all subfamily members. For example, the unclassified SNX subfamily has 4 members 
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tains an N-terminal kinesin domain; and SNX26 has a C-terminal SH3 and RhoGAP domain. GAP, 
GTPase activating protein; MIT, microtubule interacting and trafficking; SH3, Src Homology 3. 

2. SNX-PXA-RGS-PXC Subfamily Domain Structure and Biochemical Properties 
The SNX-PXA-RGS-PXC subfamily is comprised of SNX13 (also known as 

RGS-PX1), SNX14, SNX19, and SNX25. This subfamily of SNXs contains two N-terminal 

Binds to endosomes in
Ca2+-dependent or -independent

manners; regulates cargoes, such as
amyloid-β precursor protein
recycling to cell surface and

processing for amyloid-β generation.

Note: * The classification is basically dependent on SNX proteins’ domain architecture [6–8]. The number in the parenthesis indicates the
number of the member proteins of the subfamilies. The unclassified SNX subfamily is comprised of unique SNX members that cannot be
conveniently classified into the other four subfamilies. ** For simplicity and clarity, the domain structure is not complete for all subfamily
members. For example, the unclassified SNX subfamily has 4 members with structures in addition to PX domain. SNX15 contains a
C-terminal MIT domain; SNX23 contains an N-terminal kinesin domain; and SNX26 has a C-terminal SH3 and RhoGAP domain. GAP,
GTPase activating protein; MIT, microtubule interacting and trafficking; SH3, Src Homology 3.

2. SNX-PXA-RGS-PXC Subfamily Domain Structure and Biochemical Properties

The SNX-PXA-RGS-PXC subfamily is comprised of SNX13 (also known as RGS-PX1),
SNX14, SNX19, and SNX25. This subfamily of SNXs contains two N-terminal helical
transmembrane domains, followed by a PX-associated domain (PXA), a regulators of G
protein signaling (RGS) domain, the PX domain, and a C-terminal PX-associated (PXC)
domain [6,8].

Integrated transmembrane domains (IMDs), which are two, close short hydrophobic
sequences, are involved in membrane tethering [4,6]. RGS domain, a unique domain
compared with other subfamily SNXs, is a conserved, approximately 130 amino acid
residue-domain with a specific molecular configuration (Figure 1A). The PXA and PXC
domains are largely uncharacterized.
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Figure 1. Unique RGS domain in the structure of SNX-PXA-RGS-PXC subfamily. (A) Domain organization of SNX-PXA-
RGS-PXC subfamily. All members of this subfamily, except SNX19, have unique RGS domains, which are aligned with
RGS proteins, as shown. Asterisk denotes identical amino acid residues among all of the seven peptides, one dot indicates
the weakly conserved amino acid residues, and double dots indicate the well-conserved amino acid residues among all of
the peptides. IMD, integrated transmembrane domain. (B) RGS proteins in the G protein nucleotide cycle. Upon agonist
binding, receptors activate heterotrimeric G proteins, which induce the exchange of GDP for GTP and dissociation of
Gα from Gβγ, attenuation of Gα subunit’s activation (Gαs) or inhibition (Gαi) of its downstream effectors. The effect is
terminated by GTPase or the intrinsic GTPase activity of Gα, where RGS is separated from Gαs. RGS proteins or SNX13
facilitates the hydrolysis of GTP by Gαs, as a GTPase-activating protein. Gα, G alpha subunit; Gβ, G beta subunit; GDP,
guanosine diphosphate; Gγ, G gamma subunit; GIRK, G protein-coupled inwardly rectifying potassium; GTP, guanosine
triphosphate; Mem, intracellular membranes; PI3 kinase, phosphoinositide 3-kinase; PLC, phospholipase C; PM, plasma
membrane; Rac, Rac G protein; RGS, regulators of G protein signaling; Rho, Rho G protein; RhoGEF, guanine nucleotide
exchange factor for Rho; Scr kinase, Src family kinases.

The PX domain of the SNX-PXA-RGS-PXC subfamily is similar to the PX domains of
all other SNX subfamilies, with around 100-130 residues, comprised of three β-strands and
three α-helices [8]. The conserved sequence ΨPxxPxK (Ψ refers to any large aliphatic amino
acid V, I, L, or M) forms a shallow, positively charged proline-rich loop that is considered
to be the binding site of the negatively charged phosphate groups of phosphoinositides [4].
Phosphatidylinositol 3-phosphate (PI(3)P), primarily found in early endosome membranes,
is a common target of SNXs [9]. This was confirmed from the analysis of the crystal structure
of the SNX PX domains [4]. Although PI(3)P is the most common phosphoinositide
bound to SNX, many other phosphoinositide interactions have also been demonstrated
(Table 2) [5–27]. The PX domain acts not only as a lipid recognition module [7,11], but
also plays a key role in protein–protein interactions, such as the interaction of SNX13 and
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SNX14 with Gαs [4,6] and SNX19 with IA2 [4,6] and D1R [20]. However, the molecular
details of these interactions remain to be characterized further.

Table 2. Summary of the characteristics of SNX-PXA-RGS-PXC subfamily members.

SNX Chromosomal
Locus

Major Cellular
Distribution

Major Tissue
Distribution

Phosphoinositide
Binding

Preferences
References

SNX13 7p21(human)
12(mouse)

Endosome
ER

Pancreas
Heart
CNS

Adipose
Spleen

PI(3)P
PI(3,4)P2
PI(3,5)P2
PI(4,5)P2

PI(3,4,5)P3

[5–7,9–13]

SNX14 6q14(human)
9(mouse)

Lysosomes
ER

Lipid droplets

CNS
Adipose

Lung
Heart
Testis

PI(3,5)P2 [5–7,9–11,13–17]

SNX19
11q24.3-

q25(human)
9(mouse)

Early endosomes
Plasma membrane

Mitochondria

Kidney
CNS

Bone marrow
Heart

Pancreas

PI(3)P
PI(4,5)P2

PI(3,4,5)P3
[5–7,9–11,18–23]

SNX25 4q35(human)
8A4(mouse)

Endosomes
Lysosomes

Nucleus

Lung
Kidney

CNS

PI(3,4)P2
PI(3,5)P2
PI(4,5)P2

PI(3,4,5)P3
PI(3)P

[5–7,9–11,23–27]

Abbreviations: CNS, central nervous system; ER, endoplasmic reticulum; PI, phosphoinositide; SNX, sorting nexin; TGN, trans-
Golgi network.

The RGS domain is present in SNX13, SNX14, and SNX25, but not SNX19 [6] (Table
3). This domain is found in a number of molecules, including 20 canonical mammalian
RGS proteins and an additional 19 proteins that mediate the interaction with GPCRs or Gα

subunits [28]. G proteins are activated by the binding of GTP to Gα and separation from the
Gβγ dimer; the deactivation of G proteins occurs when GTP is hydrolyzed by the action of
the GTPase-activating proteins (GAPs) (Figure 1B). RGS proteins bind to Gα to facilitate the
GTP hydrolysis, accelerating the termination of G protein signaling [29,30]. The SNX-PXA-
RGS-PXC subfamily belongs to 19 noncanonical proteins that were previously considered
nonfunctional [31]. Recent findings demonstrated that the RGS domain in SNX proteins,
like canonical RGS proteins, is involved in the attenuation of GPCR and related G protein
signaling [13,32,33].

3. SNX-PXA-RGS-PXC Subfamily in Receptor Signaling

Similar to the canonical RGS proteins [34], the RGS domain in this subfamily functions
as a GAP module, which potentially attenuates GPCR signaling (Table 3 [13,20,23,27,33,
35,36]). SNX13 is the first identified SNX that contains the RGS domain, which regulates
signaling triggered by GPCRs [33]. Zheng et al. reported that SNX13, through its RGS
domain, interacts with the constitutively active form of Gαs, accelerating the hydrolysis of
GTP by Gαs [33]. Exogenous expression of the RGS domain of SNX13 reduces the agonist-
mediated cAMP increase in HEK293 cells and adenylate cyclase activity in rat cardiac
membranes [32,33], while no effect is observed on forskolin-induced cAMP production
and adenylate cyclase activity [33], which does not require Gαs. These studies confirm the
role of SNX13, as a GAP, in attenuating Gαs-mediated signaling, indicating that SNX13
plays a critical role in the regulation of the duration of GPCR signaling [32]. SNX13 and
D1R may interact because SNX13 105820C and DRD1 G-94 have been associated with an
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increase in albumin excretion in a twin pair study [37]. Therefore, SNX 13 may have a role
in D1R signaling.

Table 3. Examples of RGS domain in SNX-PXA-RGS-PXC subfamily members.

SNX RGS Domain Gαs
Interaction GAP Activity Gαs Signaling GPCR Cargo

Example Reference(s)

SNX13 + + + inhibition β2-AR
EGFR [33,35]

SNX14 + + - inhibition 5-HT6R [13]

SNX19 - NA NA NA D1R [20]

SNX25 + ND ND ND
D1R
D2R

TGF-β1
[23,27,36]

Abbreviations: SNX, sorting nexin; GAP, GTPase activating protein; GPCR: G protein-coupled receptor; EGFR, epithelial growth factor
receptor; AR, adrenergic receptor; 5-HT6R, serotonin receptor 6; D1R, dopamine receptor 1; D2R, dopamine receptor 2; TGF-β1, transforming
growth factor β1; +, Yes; -, No; NA, not applicable; ND, not determined.

The RGS domain does not have to function as a GAP to regulate GPCR signaling in all
cases. For example, the RGS domain of SNX14 does not have GAP activity, but specifically
binds to and sequesters Gαs, inhibiting the downstream cAMP production caused by the
activation of serotonin receptor 6 (5-HT6R) [13]. The binding affinity of SNX14 for Gαs is
markedly attenuated by the phosphorylation of the RGS domain [13]. This suggests that
SNX14 negatively regulates 5-HT6R signaling by sequestering Gαs.

As discussed above, the RGS domain facilitates the SNX-PXA-RGS-PXC subfamily
in the regulation of GPCR signaling by sequestering Gαs with [33] or without [13] GAP
function. To confirm further that RGS domain is not always required for SNX regulation of
GPCR signaling, it is critical to study SNX19, a member of this family without RGS domain.
SNX19 is essential for the lipid raft residence of D1R, cAMP production, and promotion of
effective D1R signaling [20]. SNX19 also regulates the signaling of histamine receptor H4
(HRH4), a GPCR that is important in the initiation and maintenance of inflammation in
mouse lung, following ammonia exposure [38].

In addition to GPCRs, the SNX-PXA-RGS-PXC subfamily also regulates the signaling
of non-GPCRs. In mouse insulinoma cells exposed to high glucose concentration, SNX19
inhibits the conversion of PI(4,5)P2 to PI(3,4,5)P3 and suppresses the phosphorylation
of Akt/protein kinase B (PKB), playing critical roles in insulin receptor signaling [22].
In NIH3T3 fibroblasts, SNX25 negatively interacts with transforming growth factor-β
receptor 1 (TGF-β1) and downregulates its signaling by increasing the degradation of its
receptor [23]. Of note, RGS domain is not necessarily responsible for the regulation of
signaling [20,23]. Deletion of either PX or PXA domain abolishes the interaction of SNX25
with TGF-β1 and inhibits TGF-β1 signaling [23]. However, the RGS domain is not critical
for the regulation of receptor signaling in this context [23]. SNX25 may also be involved in
the circadian rhythmic regulation of vasopressin secretion in the mouse suprachiasmatic
nucleus [24].

4. SNX-PXA-RGS-PXC Subfamily in Membrane Trafficking

Upon endocytosis, receptors (GPCR or non-GPCR) are trafficked to early endosomes,
and then sorted to distinct destinations: lysosomal-mediated degradation or recycling
to the plasma membrane or other organelle compartments for reuse [39]. As discussed
previously, the SNX-PXA-RGS-PXC subfamily has a conserved PX domain, which enables
the SNX to be targeted effectively to endosomal membranes, most frequently by binding
to PI(3)P [6]. Therefore, the SNX-PXA-RGS-PXC subfamily represents a core regulator for
mediating receptor-endocytic membrane trafficking.
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4.1. SNX-PXA-RGS-PXC Subfamily in Lysosomal-Mediated Degradation

Endolysosomal trafficking is the major pathway by which transmembrane receptors
are downregulated. Membrane contact sites (MCS) between lysosomes and endosomes,
as well as mitochondria and endoplasmic reticulum (ER), are regions of phospholipid ex-
change, which regulate the sorting of receptors at late endosomes for degradation [40,41]. In
yeast, Mdm1 (mitochondrial distribution and morphology 1), equivalent to the mammalian
SNX-PXA-RGS-PXC subfamily, is a tethering protein that localizes to ER-vacuole/lysosome
MCS [42]. Mdm1 PX domain is required and sufficient for its association with the vac-
uole/lysosome surface [42]. Overexpression of Mdm1 induces ER-vacuole/lysosome teth-
ering and truncation of Mdm1, which removes the PXA domain, disrupts the ER-vacuole
tethering, and suppresses lipid exchange and endolysosomal sorting [42].

SNX13 binds to a wide range of phosphoinositides (Table 2) and plays an important
role in receptor-endosome-lysosomal degradation. In zebrafish cardiomyocytes, a reduction
in SNX13 expression promotes the endolysosomal sorting of apoptosis repressor with
caspase recruitment domain (ARC) for its lysosomal degradation [12]. SNX13 interacts
with ARC and regulates the interaction between ARC and caspase-8. The increase in the
lysosomal degradation of ARC results in the removal of ARC-mediated inhibition and the
activation of caspase-8, leading to the activation of the extrinsic apoptotic pathway and
subsequent apoptotic cardiomyocyte death [12]. In HEK293 cells, overexpression of SNX13
delays the ligand-dependent EGFR lysosomal targeting, trafficking, and degradation [33],
similar to the knockdown of Gαs by RNA interference [35]. SNX13 colocalizes with Gαs
and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) [35], a critical
component of the endosomal sorting machinery for sequestration into multivesicular
bodies and subsequent degradation in lysosomes [43]. Henceforth, SNX13 effectively
promotes EGFR lysosomal degradation.

Morphological evidence also demonstrated the critical role of SNX13 in lysosomal
degradation. Two distinct endosome morphologies, vesicular and tubular, are involved in
receptor degradation and recycling pathways, respectively [44]. An unusually abundant
amount of tubular endosome structures was observed in the visceral yolk sac endoderm
cells of systemic Snx13-null mice [45]. This indicates that the receptor is rerouted from
endosomes to recycling or TGN pathways due to the defect in the sorting of the lysosomal
pathway from early endosomes caused by the knockout of SNX13.

The SNX14 PX domain preferentially binds to PI(3,5)P2 [16], a key component of late
endosomes/lysosomes [9,10], implicating its role in lysosomal degradation [16]. Similar
to the yeast homologue of SNX14, Mdm1, which mediates the formation of ER-vacuole
contact sites [42], SNX14 tethers for ER localization through its N-terminal transmembrane
helices [14]. Knockdown of SNX14 causes accumulation of aberrant cytoplasmic vacuoles,
suggesting defects in endolysosomal homeostasis [14]. SNX14 localizes at the interface
between the ER and lipid droplets (LDs); SNX14, overexpressed in human bone osteosar-
coma epithelial cells (U2OS), mediates LD budding and growth from the ER surface, after
which the LDs are released following its maturation [15]. SNX14 also interacts with 5-HT6R,
facilitating its endolysosomal degradation [13]. In yeast, Mdm1 not only tethers ER and
LDs together, but also generates a high concentration of activated lipids proximal to the
vacuole that may facilitate LDs’ autophagic lysosomal degradation [46].

Knockdown of Snx19 decreases the transmembrane protein, insulinoma-associated
protein 2 (IA-2), and the number of dense core vesicles (DCV) in MIN6 cells, a mouse
pancreatic β-cell line. The decrease in the IA-2 protein expression and the amount of DCV
correlate with the increase in autophagic lysosomal activity [47], which is rescued with the
re-introduction of SNX19, indicating a critical role of SNX19 in DCV autophagic lysosomal
degradation in MIN6 cells [47].

SNX25 interacts with tropomyosin receptor kinase B (TrkB) in early endosomes, late
endosomes, and lysosomes in hippocampal neurons and HEK293T cells [48]. SNX25
overexpression remarkedly reduces the expression of ligand dependent TrkB protein in
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HEK293T cells [48]. These findings suggest that SNX25 is important in the endolysosomal
degradation of TrkB.

4.2. SNX-PXA-RGS-PXC Subfamily in Membrane Recycling

Besides mediating endolysosomal degradation, as described above [49], the SNX-PXA-
RGS-PXC subfamily, like other SNXs, also regulates receptor membrane recycling. SNX19
plays an important role in D1R plasma membrane recycling [20]. In renal proximal tubule
cells, SNX19 interacts and colocalizes with D1R at the plasma membrane, specifically in
lipid rafts. This colocalization is increased by treatment with fenoldopam, a D1-like receptor
agonist [20]. The increase in their colocalization starts within a few minutes and returns to
the basal level after one hour [20]. Depletion of SNX19 by its specific siRNA decreases D1R
lipid raft localization, plasma membrane expression, and signaling [20]. All of these results
indicate the critical role of SNX19 in D1R recycling, probably via palmitoylation and lipid
raft targeting.

SNX25 interacts with D1R and D2R in HEK293 cells, and overexpression of SNX25
perturbs the endocytosis of D1R and D2R and recycling of the D2R. Moreover, knockdown
of SNX25 causes a subsequent decrease in D2R plasma membrane expression, suggesting
that SNX25 plays a role in D2R membrane recycling [27].

5. Comparison of SNX-PXA-RGS-PXC Subfamily with SNX-BAR Subfamily in
Receptor Signaling and Membrane Trafficking

SNX-BAR, another subfamily of SNXs, is known to regulate receptor signaling and
orchestrate membrane trafficking through distinct mechanisms. Although there are few
overlaps with the SNX-PXA-RGS-PXC subfamily, the SNX-BAR sorting nexin subfamily
regulates different types of receptor cargoes. For example, SNX1 is important for D5R
signaling [50], while the SNX5 regulates the signaling and trafficking of D1R [51], insulin
receptors [52], and insulin-degrading enzyme [53] in renal proximal tubule cells. Like-
wise, SNX1, SNX2, and SNX6 have been found to regulate the membrane trafficking of
cation-independent mannose phosphate receptor (CI-MPR) [54,55], cell surface receptor
CED-1 [56], TGN38 [57], vacuolar sorting receptor [58], β-site amyloid precursor protein-
cleaving enzyme 1 (BACE1) [59], PIN1 [60], and PIN2 [60]. SNX4 regulates the transferrin
receptor [61], BACE1 [62], and E-cadherin recycling [63]. SNX18 regulates the transfer of
LC3 from the recycling endosome to the autophagosome [64].

Distinct from the SNX-PXA-RGS-PXC subfamily, the SNX-BAR subfamily shares a
close relationship with retromers and other retrieval machineries. SNX-BAR subfamily
contains a dimeric Bin-Amphiphysin-Rvs (BAR) domain with a positively charged curved
surface that binds to membranes [65]. The BAR domain confers targeting to the tubular
domain of the endosome, and the endosome aids the transition from a spherical vacuole to
a tubule membrane through the interaction of the BAR domains with endosomes, forming
a tubular transport carrier [7]. In yeast, the SNX-BAR dimer forms a stable complex
with the retromer, a heterotrimer of Vps26-Vps29-Vps35 [65]. In mammalian cells, the
association of SNX-BAR dimer with the retromer is relatively weak, but SNX-BAR still
relies on the retromer to orchestrate the recognition and capture of specific cargoes [2,3].
The weak association of SNX-BAR with the retromer in mammalian cells may reflect
the large diversity of cargoes and the need for other proteins, such as Rab GTPases [66,
67], ubiquitin [68], actin filaments [67], and WASH complex [69], to coordinate in the
regulation of receptor signaling and trafficking [3,7]. The retromer is also critical for SNX-
BAR regulation of receptor endocytic trafficking, retromer-independent receptor plasma
membrane recycling, and endosome-to-TGN retrograde trafficking [61,70,71]. Because the
SNX-PXA-RGS-PXC subfamily lacks the BAR domain, it does not depend on the retromer
or other retrieval machineries to regulate receptor cargo signaling and trafficking.

Different from SNX-BAR, the SNX-PXA-RGS-PXC subfamily (except SNX19) plays
some roles similar to RGS proteins. Canonical RGS proteins regulate the signaling of
their GPCR cargo, by binding directly to Gαs, and function as a GAP [72]. SNX13, like
canonical RGS proteins, can function as a GAP [34], but more studies are needed to
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determine if this function extends to all members of this subfamily of SNXs, i.e., SNX-
PXA-RGS-PXC. As aforementioned, D1R signaling is regulated by SNX5, a member of
SNX-BAR without the RGS domain. Both SNX5 and SNX19 regulate D1R internalization in
early endosomes [20,51]. It is unknown whether the two SNXs regulate D1R subsequent
trafficking and lysosomal degradation. SNX5 and SNX19 differently regulate D1R recycling
(Figure 2).
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Figure 2. Regulation of D1R signaling and membrane trafficking by SNX5 and SNX19 in human renal proximal tubule
cells. D1R is stimulated by dopamine or D1R agonists, resulting in the activation of Gαs and increase in CAMP production
(not shown). Both SNX5 and SNX19 interact to internalize D1R in early endosomes (EE). It is not clear if SNX5 and SNX19
participate in the subsequent trafficking of D1R in late endosomes (LE) and lysosomes. SNX5 and SNX19 differently
regulate D1R recycling; SNX5 may regulate D1R recycling through phosphorylation (not shown), while SNX19 regulates
D1R recycling through palmitoylation and targeting D1R to lipid rafts (dark green). Red dots, dopamine, fenoldopam, or
other D1R agonists.

SNX5 regulates D1R signaling, probably through G protein-coupled receptor kinase
(GRK) 4-mediated phosphorylation and desensitization of D1R, but not by targeting D1R
to lipid rafts [51]. As previously stated, SNX19, a member of the SNX-PXA-RGS-PXC sub-
family without the RGS domain, is required for the D1R-stimulated cAMP production [20].
Therefore, the RGS domain and its GAP function are not essential for the regulation of
GPCR signaling by SNX19. SNX19 interacts with the Golgi-associated DHHC-type zinc fin-
ger enzyme for D1R palmitoylation and targeting into lipid rafts, where adenylate cyclase
6 is located [8], to regulate D1R signaling [20]. How SNX5 and SNX19, individually or syn-
ergistically regulate D1R signaling and internalization and if they regulate the degradation
of D1R in lysosomes remains to be determined.

In contrast to the SNX-BAR subfamily, the SNX-PXA-RGS-PXC subfamily has a dif-
ferent preference for trafficking routes for its receptor cargoes. Based on recent limited
studies, the SNX-PXA-RGS-PXC subfamily mainly transports receptor cargoes, via the
endolysosomal pathway for degradation [12,16,35,42,43,45], while the SNX-BAR family
mainly retrieves cargoes away from lysosomal degradation, via recycling pathways from
the endosome to the plasma membrane, or retrograde pathways from the endosome-
to-TGN [2–8,73–75]. The different trafficking pathways could be due to the distinct mi-
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crodomain localization of retrieval machineries (e.g., retromers) for retrieval of receptor
cargoes from ESCRT (endosomal sorting complex required for transport proteins) for degra-
dation, as demonstrated in the Caenorhabditis elegans coelomocyte [76,77]. Whether a partic-
ular receptor cargo is sorted for recycling or endosomal degradation is governed largely by
the SNX associated with retrieval complexes or the ESCRT machinery [2,3,5]. It is plausible
for SNX-BAR family to regulate plasma membrane recycling or retrograde trafficking
from endosomes to TGN through the retromer-dependent or retromer-independent (e.g.,:
ESCPE-1, endosomal SNX-BAR sorting complex for promoting exit-1) protein machiner-
ies [69,78]. Ubiquitination [79,80] and palmitoylation [81,82] are important mechanisms for
receptor cargo sorting into the ESCRT-mediated degradation. The D1R is regulated by ubiq-
uitination [83] and palmitoylation [20], and as aforementioned, SNX5 [51] and SNX19 [20]
regulate D1R signaling and trafficking. Therefore, it is possible that ubiquitin-tagged or
palmitoylated D1R is sequestered by different ESCRT-subunits, using distinct mechanisms
for its lysosomal degradation [84].

6. Comparison of SNX-PXA-RGS-PXC Subfamily with Other SNX Subfamilies

The SNX-PXA-RGS-PXC subfamily has differences from the other SNX subfamilies
in its role in receptor signaling and trafficking. For example, SNX3, a member of the
SNX-PX subfamily, interacts with the retromer complex to regulate cargoes, such as the
divalent metal transporter 1-II (DMT1-II) recycling from the endosome to TGN [85]. SNX17,
a member of the SNX-FERM subfamily, interacts via its FERM domain with cargoes,
such as integrins, for endosomal recycling to the plasma membrane [86]. During this
process, SNX17 is associated with the Commander complex, an assembly comprised of at
least fifteen proteins, including the retriever, a retromer-like structure, consisting of three
proteins VPS35L, VPS26C, and VPS29 [87]. SNX27, another member of the SNX-FERM
subfamily, interacts simultaneously, via its unique PDZ domain, with retromer subunit and
cargo receptors, such as the β2AR, to regulate their recycling [88].

7. SNX-PXA-RGS-PXC Subfamily in Physiology and Pathophysiology

As aforementioned, the SNX-PXA-RGS-PXC subfamily regulates the signaling and
trafficking of internalized cargoes, including GPCRs and non-GPCRs, mainly leading
them to endolysosomal degradation [10,13,42]. There is a dynamic coordinated interaction
among the recycling, retrograde, and degradative pathways, which maintains normal
cellular functions [2,3]. However, if the SNX-PXA-RGS-PXC subfamily, like all other
SNX subfamilies, is dysfunctional and disabled to transport receptor cargoes to their
appropriate cellular destinations, there will be the impairment of the above-mentioned
pathways, which will negatively affect cellular functions, causing disorders, such as those
listed in Table 4 [17–20,23,27,33,38,89–98].

SNX13 forms a heterotrimeric complex with Gαs and Hrs in endosomes, critical in
targeting ubiquitinated membrane cargoes, such as EGFR, for sequestration into multivesic-
ular bodies and subsequent degradation in lysosomes [35,42]. Germline deletion of Snx13
in mice is embryonically lethal, indicating that SNX13-regulated endocytosis dynamics is
essential in mouse development [45]. SNX13 plays a crucial role in preserving cardiomy-
ocyte survival by targeting ARC endolysosomal degradation [12]. SNX13 is associated
with skin pigmentation variation in humans [89,99], indicating that SNX13 plays a role in
melanin cellular transport and trafficking.

SNX14 is important in normal neuronal excitability and synaptic transmission [90].
SNX14, localized in the lysosome [16], functions as a negative regulator of the signaling
and trafficking of 5-HT6R [13] and probably other receptor cargoes, as well. SNX14 is
also localized at the membrane contact site of ER-lipid droplets in yeast, drosophila, and
mammals [14,42,91,100], indicating important roles of SNX14 in lipid drop biogenesis and
trafficking of lipid transfer proteins [101].
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Table 4. SNX-PXA-RGS-PXC subfamily in cellular physiology and implications in diseases.

Subfamily Signaling Trafficking Function Disease Links References

SNX13 Gαs inhibition Lysosomal degradation
Saethre-Chotzen syndrome phenotype

Type 2 diabetes
Skin pigmentation

[33,35,89,95,96]

SNX14 cAMP/PKA
inhibition Lysosomal degradation

SCAR20
Neuron development and

differentiation
Microcephaly

Down syndrome
Cerebellar ataxia

Intellectual disability
Congenital disorders of autophagy

Squamous cell carcinoma

[17,90,91,97]

SNX19 Palmitoylation
Akt/PKB

Lipid raft targeting
Lysosomal degradation

Recycling

Hypertension
Type I diabetes
Atherosclerosis
Schizophrenia

[18–20,23,92,98]

SNX25 TGFβ-SMAD
phosphorylation? Lysosomal degradation

Temporal lobe epilepsy
dHMN
LOAD
EOAD

Hypertension

[25–27,94]

Abbreviations: SNX, sorting nexin; Akt/PKB, protein kinase B; cAMP/PKA, cyclic adenosine monophosphate/Protein Kinase A; TGFβ-
SMAD, transforming growth factor beta-ALK5-Sma- and Mad-related protein; dHMN, distal hereditary motor neuropathy; EOAD,
early-onset Alzheimer’s Disease; LOAD, late-onset Alzheimer’s Disease; SCAR20, Autosomal Recessive Spinocerebellar Ataxia 20.

SNX19 interacts with D1R and Golgi-associated DHHC-type zinc finger [20], a palmi-
toyltransferase in Golgi [102] and, as previously stated, facilitates D1R palmitoylation,
trafficking from anterograde trafficking, and recycling [20]. This promotes the residence of
D1R in the lipid rafts [20], where other D1R signaling complex components are localized,
including GRK4, G proteins, adenylyl cyclases, and effector proteins, such as NADPH oxi-
dase, Na+-K+-ATPase, and Na+-H+ exchanger (NHE) 3, for appropriate cellular responses
and functions [103–106]. The PX domain of SNX19 is required for D1R targeting to lipid
rafts because the deletion of the PX domain results in the D1R mistargeting to non-lipid
rafts [20]. Moreover, SNX19 knockdown not only decreases the D1R-induced increase
in cAMP production, but also abrogates the ability of the D1R to inhibit renal tubular
sodium reabsorption [20]. Importantly, renal Snx19 knockdown increases the systolic
blood pressure of C57BL/6J mice [20], indicating critical roles of SNX19 on the regulation
of blood pressure. SNX19 also interacts with Islet antigen-2 [92], a major autoantigen
in type 1 diabetes, and is located in dense-core secretory vesicles that regulate insulin
secretion [23]. SNX19 may function as a protective factor against cartilage degradation [21].
A single nucleotide polymorphism of SNX19, rs2298566, increases the risk of coronary
heart disease [18].

SNX25 is involved in the lysosomal degradation of the TGF-β receptor [23] and
the development of temporal lobe epilepsy [25]. SNX25 interacts with and accelerates
tropomyosin-related kinase B degradation [48]. SNX25 may also be involved in the regu-
lation of genes associated with mesothelioma [93]. SNX25 is a potential candidate gene
for distal hereditary motor neuropathies [94] and a genetic modifier of the age of onset of
familial Alzheimer’s disease [26].

8. Conclusions and Perspectives

Emerging evidence has demonstrated that the SNX-PXA-RGS-PXC subfamily and
their interacting partners are critical regulators for receptor signaling and membrane traf-
ficking. The receptor cargoes can be GPCRs and non-GPCRs through which cells respond to
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both extracellular and intracellular stimulation. The complex interaction between cellular
signaling and endosomal-based membrane trafficking plays an essential role in maintain-
ing cellular homeostasis and versatile functions. SNX13, 14, and 25 have a unique RGS
domain, which presumably serves as GAP, attenuating signals associated with GPCR. It is
important to examine the molecular mechanisms of GAP both in vitro and in vivo for all
three SNXs of the above subfamily. Current evidence suggests that SNX 19 lacks an RGS
domain, indicating that it is unable to serve as a GAP. However, SNX19 has emerged to
regulate GPCR in other ways, for example, facilitating D1R signaling through palmitoyla-
tion. Further studies are needed to determine the precise molecular mechanisms by which
SNX19 regulates palmitoylation in the Golgi and the plasma membrane.

Different from retromer-dependent SNXs, which retrieve their cargoes through re-
cycling to plasma membrane, TGN or other organelles in retromer-dependent and -
independent mechanisms, the SNX-PXA-RGS-PXC subfamily mainly regulates their cargo
receptors for endolysosomal degradation. The SNX-PXA-RGS-PXC subfamily regulates
receptor recycling for certain cargoes as well, but the molecular switch that controls the
different post-endocytic trafficking routes remains to be identified.

While cellular signaling directs the distinct receptor cargo trafficking routes, cargo
trafficking actively shapes the cellular signaling response as well, by altering the location
and time of specific signaling events. The incomplete understanding of the role that RGS-
PXC SNX plays in cell polarity warrants further research. For example, it is important
to understand the exact function of the SNX-PXA-RGS-PXC subfamily in the sorting of
D1R and renal sodium transporters to different cell surface domains. We need to study
how such processes can control polarized apical and basolateral locations and cellular
function for sodium transport in the renal proximal tubule and other nephron segments.
It is expected that the SNX-PXA-RGS-PXC subfamily, as with other SNXs, plays diverse
roles on the regulation of the intricately linked signaling and trafficking for precise cellular
functional outputs. Studies in appropriate conditional or non-conditional global knockout
and transgenic or gene rescue animal models will advance our understanding of the
physiological functions in vivo of the SNX-PXA-RGS-PXC subfamily and their associated
pathophysiological disorders, which could lead to potential novel therapies targeting this
SNX subfamily.
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Akt/PKB protein kinase B
AR adrenergic receptor
ARC apoptosis receptor with caspase recruitment domain
BACE 1 β-site amyloid precursor protein-cleaving enzyme 1
BAR Bin-Amphiphysin-Rvs
cAMP/PKA cyclic adenosine monophosphate/protein kinase A
CED-1 cell death abnormality protein-1
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CI-MPR cation-independent mannose 6-phosphate receptor
CNS central nervous system
DCV dense core vesicles
dHMN distal hereditary motor neuropathies
DMT1-II divalent metal transporter 1-II
D1R dopamine receptor 1
D2R dopamine receptor 2
EGFR epithelial growth factor receptor
EOAD early-onset Alzheimer’s Disease
ER endoplasmic reticulum
ESCPE-1 endosomal SNX-BAR sorting complex for promoting exit-1
ESCRT endosomal sorting complex required for transport proteins
FERM protein 4.1/ezrin/radixin/ moesin
GAP GTPase-activating proteins
Gαs G protein alpha stimulatory subunit
GPCR G protein-coupled receptor
Hrs hepatocyte growth factor-regulated tyrosine kinase substrate
5HT6R serotonin receptor 6
IMD integrated transmembrane domain
LC3 microtubule-associated proteins 1A/1B light chain 3B
LD lipid droplet
LOAD late-onset Alzheimer’s Disease
MCS membrane contact sites
Mdm1 mitochondrial distribution and morphology 1
NHE3 sodium hydrogen exchanger 3
PI phosphoinositide
PI(3)P phosphatidylinositol 3-phosphate
PLC phospholipase C
PM plasma membrane
PX Phox-homology domain
PXA PX-associated domain
PXC C-terminal PX-associated domain
RGS regulators of G protein signaling
GEF guanine nucleotide exchange factor
SCAR20 autosomal recessive spinocerebellar ataxia 20
SXN sorting nexin
TGF transforming growth factor
TGN trans-Golgi network
TrkB tropomyosin receptor kinase B
U2OS human bone osteosarcoma epithelial cells
WASH Wiskott Aldrich Syndrome protein and scar homologue
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