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INTRODUCTION

Bladder cancer is the second most common urological 
malignancy in humans. In 2012, an estimated 73,510 new 
cases of  bladder cancer were diagnosed in the United 
States, and 14,680 deaths from bladder cancer were reported 
[1]. Likewise, in Korea, bladder cancer is the second most 
common genitourinary tumor, and is about 5 times more 
common in men than in women [2]. Nonmuscle invasive 
bladder cancer (NMIBC) is associated with better survival 
than other malignancies; however, 30%–50% of  patients 
with NMIBC will eventually experience recurrence after 
transurethral resection of the primary tumor. Moreover, 
10%–20% of  NMIBC cases progress to muscle invasive 
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bladder cancer (MIBC) [3,4], as defined by pathology and 
clinical features [5,6]. Although only 20% of bladder cancer is 
confirmed as MIBC at first diagnosis, this subtype accounts 
for the majority of  cancer-specific deaths [7]. Therefore, 
the major challenge in treating patients with NMIBC is to 
prevent recurrence and progression to MIBC. Because it is 
a heterogeneous disease, however, optimal treatment and 
follow-up strategies vary depending on initial clinical and 
histopathological characteristics.

A two-pathway model has been proposed for urothelial 
cell carcinoma pathogenesis. NMIBC recurs in about 70% of 
cases which harbor mutations in 30%–40% HRAS gene and 
less than 70% FGFR3 indicating that RTK-Ras activation 
plays an early and crucial role in this tumorigenic pathway, 
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and is thus a potential prognostic molecular marker [8-
10]. MIBC accounts for 20%–30% of urothelial tumors with 
structural and functional defects in TP53, RB, and PTEN. 
These mutations in turn cause alterations in the tumor 
microenvironment, including aberrant expression of  N- 
and E-cadherins, matrix metalloproteinases, angiogenic 
factors such as vascular endothelial growth factor, and 
antiangiogenic factors such as thrombospondin 1 and 
cyclooxygenase 2). In addition, over 50% of these tumors 
progress to local and distant metastases despite radical 
cystectomy and chemotherapy [8-13]. Although invasive 
tumors have larger burdens of mutations of all types, they 
also exhibit greater clonal diversity, and stage is not clearly 
correlated with mutation spectrum, suggesting that invasion 
is not driven by mutagen exposure or specific defects in 
DNA repair [14]. Nevertheless, a considerable amount of 
heterogeneity in clinical behavior cannot be explained by a 
single model. 

miRNAs are a class of small (~22 nucleotides) noncoding 
RNAs that function as negative regulators of gene expre
ssion at the post-transcriptional level. They act by binding 
to complementary sequences in the 3'-untranslated regions 
of specific mRNAs, resulting in the inhibition of translation 
[15]. To date, miRNAs have been implicated in the control 
of many fundamental cellular and physiological processes, 
including cellular differentiation, proliferation, apoptosis, 
metabolism, development, and cancer pathogenesis [16-18]. 
Expression of many miRNAs is altered in tumors relative 
to normal tissues, and such aberrant miRNA expression 
may be important for tumor progression. The identification 
of  target genes associated with aberrantly expressed 
miRNAs might elucidate the roles of miRNAs in cancer 
biology [19]. Earlier studies demonstrated that miRNA 
expression profiles could discriminate between malignant 
and nonmalignant tissue, as well as among various tumor 
entities [20-24].

LARGE-SCALE MICRORNAS PROFILING 
IN BLADDER CANCER

Beginning in the 1990s, microarray technology provided 
a means to simultaneously measure the expression levels 
of all genes in the genome. In each spot of a microarray, 
a high concentration of a defined DNA or oligonucleotide 
is immobilized, and these molecules can undergo specific 
hybridization with complementary sequences in a sample 
of interest. A single microarray can contain thousands or 
millions of  specific spots, enabling analysis of  the entire 
transcriptome of a cell at a given time. Microarrays have 

dramatically accelerated many types of investigation, and 
have become essential tools for transcriptome analysis. 

Several miRNA microarray platforms are commercially 
available. The GeneChip miRNA 4.0 Array (Affymetrix, 
Santa Clara, CA, USA) contains spots corresponding to 
1,996 human small nucleolar RNAs (snoRNAs), small Cajal 
body-specific RNAs (scaRNAs), and all pre-miRNA hairpin 
sequences from miRBase v20. The SurePrint Human 
miRNA Microarray Slide v21.0 (Agilent, Santa Clara, CA, 
USA) contains spots corresponding to 2,549 human miRNAs. 
The 40–60-mer oligonucleotide probes were designed using 
an optimized method, and are synthesized directly on the 
array using SurePrint inkjet technology. The Human v2 
MicroRNA Expression Profiling Assay (Illumina, San Diego, 
CA, USA) microarray contains spots corresponding to 1,146 
human miRNAs, and can accurately quantitate levels of a 
diverse population of miRNAs via DASL (cDNA-Mediated 
Annealing, Selection, Extension, and Ligation) assay.

To date, microarrays remain the most popular approach 
for transcript prof iling, and are af fordable for most 
laboratories. Nonetheless, array technology has several 
limitations; in particular, it only provides a semiquantitative 
assessment of gene expression, and background hybridization 
limits the accuracy of expression measurements, particularly 
for transcripts present at low levels. Furthermore, probes 
differ considerably in their hybridization properties, and 
arrays are limited to interrogating only those genes for 
which probes can be designed [25].

By contrast, RNA sequencing (RNA-Seq) involves direct 
sequencing of transcripts by high-throughput sequencing 
technologies (also called next-generation sequencing, 
NGS) (Fig. 1). This approach has the potential to replace 
microarrays for whole-genome transcriptome profiling [26-
29]. RNA-Seq has considerable advantages for examination 
of  the fine structure of  the transcriptome, including its 
ability to detect novel transcripts, allele-specific expression, 
and splice junctions. Moreover, RNA-Seq does not depend 
on genome annotation for probe selection, and it avoids 
the associated biases introduced during hybridization 
of  microarrays. However, despite the fact that many 
computational methods have been developed for read 
alignment, quantitation of transcripts, and identification 
of differentially expressed genes [30], RNA-Seq poses novel 
algorithmic and logistical challenges for data analysis and 
storage. The available computational tools vary considerably 
in maturity. 

Several studies have compared RNA-Seq and hybridization-
based microarrays [31-33]. Most RNA-Seq is performed using 
the Illumina or Ion Torrent platform. Therefore, cross-
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Identification of differentially expressed miRNA

Statistics significance for prediction sensitivity or accuracy level considering
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(2) evolutionary conservation of miRNA target sites among species, (3) free
energy of the miRNA:mRNA duplex, (4) target site accessibility, and
(5) the contribution of multiple binding sites
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miRNA and transcription factor interaction

Integrating analysis result with disease and other meaningful information

Fig. 1. General workflow of microRNA 
(miRNA) sequencing by next-generation 
sequencing (NGS).

Table 1. Seventy-six miRNAs identified in multiple studies in bladder cancer
A. Down-regulated miRNAs

miRNA References miRNA References miRNA References
let-7c [45-48] miR-145-3p [46,47,49,51] miR-25 [43,49]
miR-1 [23,36,46-49] miR-145-5p [45-47,49,51,52] miR-26a [53,56]
miR-100 [46,49-51] miR-150 [43,50] miR-26a-5p [45,52]
miR-100-5p [47,52] miR-152 [47,50] miR-27b-3p [45,52]
miR-125b [43,46,47,49-51,53] miR-195 [47,49] miR-29a [43,53]
miR-125b-2-5p [46,47] miR-195 [43,46,50,51] miR-29c [36,53,56]
miR-125b-5p [45,52] miR-199a-3p [47,49,51,55] miR-30a-3p [50,52]
miR-126 [43,53] miR-199a-5p [47,49,50,55] miR-30a-5p [45,47,52]
miR-127-3p [47,52] miR-199b [23,43] miR-30e-5p [52,56]
miR-130a [47,49] miR-199b-3p [47,52,55] miR-320 [48,50]
miR-133a [23,46-50,54] miR-204 [20,23,48] miR-490-3p [46,47]
miR-133b [20,23,47-50,54] miR-214 [48,49,51] miR-490-5p [46,47]
miR-139-5p [47-49,51] miR-218 [48,50] miR-497 [47,49]
miR-140-3p [48,52] miR-221 [43,49] miR-638 [45,49]
miR-143 [23,36,43,47,49,51,53] miR-222 [49,51] miR-99a [49,50]
miR-143-3p [45,46,52] miR-223 [47,50] miR-99a-3p [46,47]
miR-143-5p [46,47,52] miR-23b [43,47] miR-99a-5p [46,47]
miR-145 [23,36,43,50,53] miR-23b-3p [45,52]

B. Up-regulated miRNAs

miRNA References miRNA References miRNA References
miR-106a [43,50] miR-18a [43,46] miR-20a [43,46,51,53]
miR-106b-3p [52,55] miR-200a [43,46,49,55] miR-21 [20,53]
miR-10a [36,49] miR-200b [23,49] miR-210 [43,45,49,51]
miR-130b [50,51] miR-200b-3p [45,46,52,55] miR-224 [36,50,54]
miR-141 [46,49,51,55,57] miR-200b-5p [49,52,55] miR-429 [46,49,55,57]
miR-17-5p [21,43,46] miR-200c [43,46,49,55,57] miR-93 [20,43,55]
miR-182 [23,36,46,49,54] miR-203 [21,36,54] miR-96 [46,50]
miR-183 [36,46,49,50,54] miR-205 [21,49,51]

miRNA, microRNA.



S55Investig Clin Urol 2016;57 Suppl 1:S52-59. www.icurology.org

Aberrant miRNAs between tissue and urine

platform comparisons were conducted in which the same 
samples were studied using Illumina and Ion Torrent RNA-
Seq, as well as hybridization-based approaches. On the 
Illumina platform, the samples were processed using the 
TruSeq protocol and sequenced on a HiSeq 2500, yielding 
100 × 100-nt paired-end reads. On the Ion Torrent platform, 
the samples were processed using the Total RNA-Seq V2 
protocol, which preserves strand specificity and is capable of 
capturing non-coding RNA; these libraries were sequenced 
on an Ion Proton P1 chip, yielding up to 200-nt reads. The 
data obtained using both platforms were compared in 
regard to quality, alignment statistics, error rate, evenness 
and continuity of  coverage, RNA biotype representation, 
and accuracy of  expression profiling. The results were 
highly reproducible, with relatively little technical variation, 
and the data generated by the Illumina and Ion Torrent 
platforms were significantly correlated. The differentially 
expressed genes identified by RNA-Seq overlapped well with 
those identified by microarray. However, RNA-Seq detected 
additional transcripts whose expression levels were either 
not interrogated or not detected by microarrays.

NGS OF MICRORNA

Fig. 1 shows a brief overview of the miRNA analytical 
pipeline, divided into 4 stages (Fig. 1). The first step is 
preparation of the library to select the proper size of RNA, 
using ≥1 μg according to species. For human samples, the 
proper range of  final library size is 140–160 bp. After 
library preparation, sequencing is performed. Following 
NGS of miRNA, filtered and trimmed reads are aligned 
against the genome using SAM/BAM tools to identify novel 
and known miRNAs expressed in the sample [34]. Known 
miRNAs can be identified by comparing and considering 
major miRNA features, such as sequence conservation 
among species and structural aspects such as hairpins and 
minimum folding energy. For novel miRNAs, machine 

learning algorithms can also be applied. The most commonly 
used tools for this purpose are miRDeep/miRDeep2 [35,36]. 
These tools are useful for finding both previously known 
and novel miRNAs, and allow estimation of the accuracy 
and sensitivity of their performance. Sequencing reads are 
mapped to the reference genome using bowtie [37]. To obtain 
information regarding miRNA diversity, expression profiles, 
and target relationships, several databases are supported 
with machine learning algorithm to provide the predicted 
miRNA interaction derived from experimental evidences 
of miRNA-mRNA interaction [38-40]. To take into account 
several miRNA features and increase prediction efficiency, 
most databases provide information about significance based 
on statistical tests. TargetScan is a web-based database that 
predicts miRNA targets by searching for conserved and 
nonconserved sites [38]. miRTarBase [39] identifies binding 
sites for single miRNAs and multiple sites regulated by 
different miRNAs acting cooperatively. To identify putative 

Table 2. Twenty-four down-regulated and 4 up-regulated miRNAs from the set of 76 consistently expressed miRNAs in bladder cancer tissues

miRNA (Down) miRNA (Down) miRNA (Down) miRNA (Up)
miR-100-5p miR-144-5p miR-27b-3p miR-106b-3p
miR-125b-2-5p miR-145-3p miR-30a-3p miR-17-5p
miR-125b-5p miR-145-5p miR-30a-5p miR-200b-3p
miR-127-3p miR-199a-3p miR-30e-5p miR-200b-5p
miR-139-5p miR-199a-5p miR-490-3p
miR-140-3p miR-199b-3p miR-490-5p
miR-143-3p miR-23b-3p miR-99a-3p
miR-143-5p miR-26a-5p miR-99a-5p

miRNA, microRNA.

Table 3. KEGG pathway analysis of 28 miRNAs

KEGG pathway p-value
Axon guidance (hsa04360) 1.67E-06
Proteoglycans in cancer (hsa05205) 1.67E-06
ErbB signaling pathway (hsa04012) 1.67E-06
TGF-beta signaling pathway (hsa04350) 7.93E-06
Prion diseases (hsa05020) 3.57E-05
Renal cell carcinoma (hsa05211) 4.11E-05
Mucin type O-Glycan biosynthesis (hsa00512) 2.51E-04
MAPK signaling pathway (hsa04010) 2.51E-04
Lysine degradation (hsa00310) 3.37E-04
Focal adhesion (hsa04510) 5.95E-04
Thyroid hormone signaling pathway (hsa04919) 5.95E-04
PI3K-Akt signaling pathway (hsa04151) 7.10E-04
Adrenergic signaling in cardiomyocytes (hsa04261) 7.30E-04
ECM-receptor interaction (hsa04512) 9.27E-04

KEGG, Kyoto Encyclopedia of Genes and Genomes; miRNA, microRNA; 
TGF, transforming growth factor; MAPK, mitogen-activated protein 
kinases; ECM, extracellular matrix.
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miRNA-binding sites even when the targeting miRNA 
is unknown, RNAhybrid [41] predicts multiple potential 
miRNA-binding sites in large target RNAs by looking at the 
most energetically favorable hybridization sites between two 
separate RNA sequences. DIANA-miRPath can be accessed 
on the web (http://www.microrna.gr/miRPathv3). This 
system uses predicted interactions derived from DIANA-
microT-CDS [42] and TargetScan6.2, as well as more than 
60,000 experimentally supported interactions from DIANA-
TarBase-v7.0 [40]. 

LARGE-SCALE MICRORNA PROFILING 
ANALYSIS

An early miRNA profiling analysis using 27 human 

bladder specimens comprising 25 urothelial carcinomas 
and two normal mucosa [21] revealed that ten miRNAs 
are significantly up-regulated in bladder cancer relative to 
normal bladder tissue. No down-regulated miRNAs were 
detected in that study. The miRNAs down-regulated in 
bladder cancer were first identified using a hybridization-
based miRNA array: 14 down-regulated miRNAs were 
detected, of  which four (miR-143, miR-145, miR-125b, and 
miR-199b) were significantly down-regulated in the same 
samples [43]. Subsequent studies identified many more 
miRNAs up- or down-regulated in bladder cancer.

To detection or clarifying early event in tumorigenesis, 
miRNA expression pattern has been reliable cancer 
biomarkers and treatment-response predictors for clinical 
trials since miRNA expression signatures were correlate 

Table 4. Deregulated 50 miRNAs in urine

miRNA Reference miRNA Reference miRNA Reference
let-7b [52] miR-182 [61] miR-377 [62]
let-7i [62] miR-191 [52] miR-451a [52]
miR-100 [63] miR-192 [60] miR-483 [62]
miR-101 [62] miR-200a [60,64] miR-505 [62]
miR-10b [52] miR-200b [60] miR-509 [62]
miR-1224 [63] miR-200c [60] miR-515 [62]
miR-1255b [59] miR-203 [63] miR-545 [62]
miR-125a [52] miR-205 [60] miR-556 [62]
miR-125b [65] miR-212 [63] miR-589 [62]
miR-126 [61,65] miR-214 [2] miR-616 [62]
miR-134 [62] miR-223 [52,62] miR-618 [59]
miR-135b [63] miR-24-1 [63] miR-873 [62]
miR-145 [64] miR-27b [63] miR-890 [62]
miR-152 [61] miR-302d [62] miR-892a [62]
miR-155 [60] miR-325 [62] miR-923 [62]
miR-15a [63] miR-328 [63] miR-99a [52]
miR-15b [63] miR-335 [62]

miRNA, microRNA.

Fig. 2. Venn diagram of single and multiple 
reported microRNAs (miRNAs) from blad-
der cancer tissues, and urine. A 28 miRNAs 
were shared between bladder cancer tis-
sues and urine which included 14 miRNAs 
of two or more than groups which com-
parison of 190 miRNAs from bladder cancer 
tissues including 76 miRNAs of two or more 
than groups, and 50 miRNAs from urine. (A) 
miRNAs from bladder cancer tissues, urine 
and also multiple reports. (B) miRNAs from 
bladder cancer tissues and urine. (C) miRNA 
in urine.
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with tumor classif ication and were proven useful in 
determining the primary site of  cancers of  unknown 
origin [44]. Pignot [23] demonstrated that expression of 
three miRNAs (miR-9, miR-182, and miR-200b) is associated 
with both recurrence-free and overall survival in MIBC. 
Therefore, these miRNAs can discriminate MIBC tumors in 
terms of their aggressiveness and potential for recurrence. 

To date, 19 research groups have reported 261 miRNAs 
differentially expressed in bladder cancer, of which 83 were 
identified in multiple studies. Ultimately, 76 miRNAs (Table 
1) were confirmed as consistently deregulated by two or 
more groups; 7 of the original 83 miRNAs (miR-106b-3p, miR-
141-3p, miR-193a-3p, miR-198, miR-200a-3p, miR-31, and miR-
370) were excluded due to inconsistent expression patterns 
between studies (data not shown). The remaining miRNAs 
were classified as down-regulated (52) or up-regulated (24) 
in bladder cancer relative to normal bladder tissue (Table 
1). NGS data suggest that both the 5p-arm and 3p-arm of 
mature miRNAs could be generated from a single miRNA 
hairpin precursor; however, current miRNA databases do not 
provide comprehensive arm annotation features, potentially 
resulting in ambiguous and incomplete analyses. There is no 
bias in the expression pattern of 5p-miRNA vs 3p-miRNA, 
although miRNAs from -5p and -3p have variable nucleotide 
compositions. However, -3p expression in diseased samples 
tends to show a larger degree of dispersion. Therefore, we 
performed pathway analysis of aberrantly expressed -5p and 
-3p miRNAs (specifically, 24 down-regulated miRNAs and 
four up-regulated miRNAs) (Table 2). The functions of these 
28 miRNAs were mainly related to axon guidance, cancer-
associated proteoglycans, and the ErbB and transforming 
growth factor-beta signaling pathways (Table 3). 

PROFILING ANALYSIS BETWEEN BLAD-
DER CANCER TISSUE AND URINE

Aberrant miRNA expression in urinary sediment or 
supernatant reflects the states of  urothelial cancer cells, 
based on the inclusion of  miRNAs in various protein 
complexes or membranous particles such as exosomes or 
microvesicles [58-60]. Therefore, previous reports of  the 
miRNA profiling in urine is a attractive information 
for cancer biomarkers discovery. Comparison of  miRNA 
profiling between 50 miRNAs derived from urine (Table 
4) and 190 miRNAs derived from bladder tissue which 
included 76 multiple reported miRNAs. A Venn diagram 
revealed that the multiply reported miRNAs expressed in 
bladder tissues and the miRNAs detected in urine shared 14 
miRNAs in common. Therefore, these 14 miRNAs represent 

promising biomarkers for diagnostic applications (Fig. 2). 
Furthermore, the 190 miRNAs from bladder cancer tissue 
and the 50 miRNAs from urine also shared 14 miRNAs in 
common, providing further support for the idea that these 
molecules have potential as novel diagnostic and prognostic 
biomarkers. Finally, 22 miRNAs required further validation 
to determine whether they were derived from any cells 
including urothelial carcinoma that may be shed into the 
urine. 

To summarize, we provide evidence that miRNA pro
filing data could provide important insights into bladder 
tumorigenesis, and that miRNAs in urine may originate 
in urothelial cancer cells. Future studies should focus on 
the mechanisms of association and explore the potential of 
miRNAs from cancer tissue and urine as valid biomarkers 
for the diagnosis, classification, and prognosis of bladder 
cancer.
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