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   Abstract: In nature, microbes do not exist in isolation but co-exist in a variety of ecological and bio-
logical environments and on various host organisms. Due to their close proximity, these microbes in-
teract among themselves, and also with the hosts in both positive and negative manners. Moreover, 
these interactions may modulate dynamically upon external stimulus as well as internal community 
changes. This demands systematic techniques such as mathematical modeling to understand the intrin-
sic community behavior. Here, we reviewed various approaches for metabolic modeling of microbial 
communities. If detailed species-specific information is available, segregated models of individual or-
ganisms can be constructed and connected via metabolite exchanges; otherwise, the community may 
be represented as a lumped network of metabolic reactions. The constructed models can then be simu-
lated to help fill knowledge gaps, and generate testable hypotheses for designing new experiments. 
More importantly, such community models have been developed to study microbial interactions in 
various niches such as host microbiome, biogeochemical and bioremediation, waste water treatment 
and synthetic consortia. As such, the metabolic modeling efforts have allowed us to gain new insights 
into the natural and synthetic microbial communities, and design interventions to achieve specific 
goals. Finally, potential directions for future development in metabolic modeling of microbial com-
munities were also discussed. 
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1. INTRODUCTION 

 Microbes are ubiquitous across Earth’s biosphere at typi-
cal densities of 109 organisms per gram of soil [1] and 106 
organisms per milliliter of sea water [2]. They take part in 
biogeochemical cycles, playing an essential role through 
their combined metabolic activities [3]. Microbes are also 
found in different hosts including insects, animals, and 
plants, interacting among themselves as well as with their 
hosts [4-6]. In humans, they make up 1-3% of the human 
body mass, and there is growing evidence of the importance 
of human gut microbiome and relevance to human health [7, 
8]. In addition, microbial communities have been harnessed 
in diverse applications such as waste water treatment and 
food production [9, 10]. 
 Microbes can interact with each other and also with hosts 
in various ways, e.g., sensing of chemical signals, and cross-
feeding of metabolites [11-13]. More specifically, microbial 
communities can produce emergent capabilities through a 
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complex set of metabolite exchanges that no constituent spe-
cies can accomplish on isolation. For example, metabolites 
transferred among microbes link disparate pathways from 
individual species to render novel metabolic functions [14, 
15]. However, it is still difficult to understand microbial 
communities and their interactions due to the current tech-
nical limitations in measuring possible metabolite exchange 
fluxes between different species in the community [16, 17]. 
In this regard, metabolic modeling of microbial communities 
is very useful for addressing some of the questions and gaps 
left unfilled by the current state-of-the-art. Further integra-
tion of mathematical modeling with omics profiling, espe-
cially metabolomics, is also a promising avenue to be pur-
sued [18]. Hypotheses can then be derived to design new 
experiments for probing microbial communities, thereby 
enhancing our understanding in an iterative manner. In this 
review, we first summarize the existing methodologies to 
model metabolic interactions within microbial communities. 
It is followed by a discussion on their various applications to 
date. Finally, we suggest potential directions for future work 
in metabolic modeling of microbial communities. 

2. MODELING OF MICROBIAL COMMUNITIES 

 Modeling approaches for analyzing microbial communi-
ties can be classified on the basis of temporal nature 
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Fig. (1). The approaches employed to model and study microbial communities can be divided into three major categories: compartmentalized 
and lumped. A) In a compartmentalized simulation model, each species or functional guild occupies its own distinct compartment. B) In a 
lumped reaction network simulation model, all reactions are included in a single network with no segregation into distinct subsets. C) The 
graph summarizes the number of published studies on modeling microbial communities (See supplementary materials for list of collected 
studies). There is a clear trend of an increasing number of studies published until 2 years ago, where the number of studies fell dramatically. 

(static vs. dynamic) and species segregation (compartmental-
ized vs. lumped network) (Fig. 1). Large-scale static models 
can be built using the steady-state assumption, which avoids 
without kinetic parameters that are difficult to be obtained. 
Static models are typically constrained using measured in-
puts and outputs, and then solved by assuming a physiologi-
cally relevant objective function such as growth maximiza-
tion [19, 20]. Such computed metabolic flux profile can be 
used to study the metabolic states in different parts of the 
community, and examine interactions between member spe-
cies. Static metabolic networks can also be analyzed to gain 
insight into the community’s collective metabolic functions. 
On the other hand, dynamic models allow us to capture the 
dynamic behaviors such as time-dependent species abun-
dance and metabolite concentrations. They are usually 
smaller in size, due to the difficulty in obtaining associated 
kinetic parameters. As few enzymatic parameters are availa-
ble from enzyme databases, the majority need to be estimat-
ed using experimental data. 

2.1. Steady-state Metabolic Models 

 Steady-state metabolic models have been widely used to 
characterize the metabolic behavior of various microbes [19, 
21]. Within the broad classification of steady-state modeling, 
microbial community models can be compartmentalized or 
lumped on the basis of species segregation. Compartmental-
ized network models segregate microbial species or func-
tional guilds into separate compartments in a larger system, 
while lumped models consider all available enzyme func-
tions within the community as a single network. To construct 
a compartmentalized community model, metabolic models 
of member species are first reconstructed individually, and 
then integrated into a combined model. Species-specific 
metabolic models can be built typically at genome-scale us-
ing available genomic and/or gene expression data [22]. To 
do so, software pipelines including COBRA, RAVEN, and 
ModelSEED can be employed for generating an initial draft 
model, followed by further refinement such as manual cura-
tion and gap filling [23-25]. Since model reconstruction and 
curation is a laborious process, it can be avoided if high 
quality models of the species are already available on public 
databases such as BiGG and ModelSEED [25, 26]. Due to 

the need for detailed species or guild metabolic models, 
compartmentalized models are usually used to model syn-
thetic consortia or natural communities with well-studied 
dominant species. 
 Generally, it is difficult to isolate and characterize most 
microbes in natural communities [27]. Thus, most compart-
mentalized metabolic models of natural communities are 
composed of models constructed from a small number of 
well-studied individual members, especially dominant spe-
cies or taxa. On the other hand, large scale simulation mod-
els of complex communities adopt a lumped or “enzyme 
soup” approach when information on individual species is 
very limited and only meta-omics data is available to identi-
fy the community’s metabolic capabilities [28]. The lumped 
network can be constructed by mapping identified genes in 
the omics (such as metagenomic and metaproteomic) data to 
enzymatic reactions [29, 30]. Hence, the community is con-
sidered as a single integrated network. The lack of species or 
guild boundaries often results in linking pathways from dif-
ferent species, which may not reflect actual metabolite ex-
changes. This may lead to an overestimation of the commu-
nity’s overall metabolic capabilities. Therefore, it should be 
viewed as an upper bound that can be tightened as more in-
formation is integrated into the model [28]. 
 Tobalina et al. used metaproteomics data to build a static 
and lumped metabolic network model based on enzyme 
function present in the community, following a modified 
procedure of the ModelSEED pipeline [25, 31]. It consists of 
three steps: The first uses expression data to construct a min-
imal network capable of producing biomass. The second and 
third steps add alternate biomass production and non-growth 
essential reactions respectively, based on the detected pro-
teins. The procedure was used to construct two context spe-
cific microbial communities living in polyaromatic hydro-
carbon contaminated soil. Similarly, Henry et al. proposed to 
combine multiple community members into a lumped model 
after building separate initial draft models by conducting the 
curation steps on the community model instead of species 
models [32]. It was argued that by co-curating lumped mod-
els, the extraneous gap filling can be reduced as some absent 
essential metabolic functions may be fulfilled through me-
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tabolite exchanges as opposed to adding reactions that may 
not have experimental evidence. 
 Despite the different representations of microbial com-
munities as compartmentalized or lumped models, the solu-
tion technique for the underlying stoichiometric matrices is 
the same. To determine the metabolic fluxes flowing across 
the reaction network, it is assumed that the system is at 
steady state with no accumulation. Mathematically, this 
problem can be written as: 

0=Sv  
where S is the (I × J) stoichiometric matrix, and v is the vec-
tor of J reaction fluxes. In typical metabolic reaction net-
works, there are more reactions than metabolic reactions. 
This gives rise to an under-determined system of linear equa-
tions to be solved.  
 To obtain a solution to the metabolic state, the flux bal-
ance analysis (FBA) approach is commonly employed [19]. 
FBA assumes that the organism has evolved its metabolic 
functions to maximize a biological objective such as cellular 
growth during exponential growth, or ATP production dur-
ing the stationary phase, while being subjected to nutrient 
intakes [33]. For a microbial community, a weighted average 
of all the member species’ biomass equations can be used as 
the community objective [31]. Therefore, the problem be-
comes a linear programming (LP) problem in the following 
form: 

Maximize 
∑
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where LB and UB are vectors of the lower and upper bounds 
for reaction fluxes v, respectively. wi and vbiomass,i are the 
weight and biomass reaction flux for species i, respectively; 
N is the number of species. The bounds can also be used to 
restrict the reaction directionality. Such a LP problem can be 
easily solved using state-of-art solvers [20]. It should be 
highlighted that when employing the FBA approach in mod-
eling microbial communities, a key consideration is the 
choice of objective. The weights, wi can be obtained from 
experimentally measured microbial abundance [34], or com-
putationally derived based on the assumption of balanced 
growth in the community [35, 36]. Apart from the general 
FBA framework with a weighted sum of biomass produc-
tion, different approaches have been developed to unravel 
metabolic fluxes within microbial communities. For exam-
ple, a sophisticated multi-level and multi-objective optimiza-
tion framework is exemplified by OptCom [37]. Briefly, the 
community problem is structured as a bi-level optimization 
problem. Each species in the community has a specific opti-
mization objective (inner problem) that can be biomass max-
imization (maximum growth rate) or alternatives such as 
MOMA (minimum adjustment from the wild type state upon 
mutation). The inner problems are then linked to the overall 
community objective such as total community biomass max-
imization. The OptCom framework can be customized by 
modifying the exchange constraints to model different inter-

actions including mutualism, synergism, commensalism, and 
parasitism. This framework was used to study the different 
interactions between species in thermophilic and phototropic 
microbial mats by quantifying the impact of altruistic and 
selfish interactions on the growth of individual species and 
the community [37]. Similar to OptCom, Shoaie et al. devel-
oped a multi-level modeling framework to build compart-
mentalized community models [38]. The procedure first “ac-
tivates” the network to obtain a feasible flux profile of the 
community model. Thereafter, the community optimization 
is performed in a multi-level iterative process where the 
community objective is first optimized to obtain the optimal 
resource distribution, which is then used to solve for the or-
ganism specific optimal solutions. This procedure adopts a 
“top down” approach, as opposed to the “bottom up” ap-
proach of OptCom. A different multi-objective approach was 
proposed by Budinich and coworkers to analyze the same 
phototropic mat community [39]. Instead of computing a 
single solution, the Pareto solutions were generated from the 
biomass maximization of different community species to 
study metabolic interactions. 
 It should be noted that while maximizing for a particular 
objective, the resulting flux distribution may not be unique. 
Therefore, to explore these alternative solutions, flux varia-
bility analysis (FVA) can be employed [40]. FVA computes 
the minimum and maximum fluxes for each reaction while 
achieving the previously computed optimal objective. As an 
alternative, a set of possible solutions from the solution 
space of the metabolic network with measured exchange 
fluxes can be obtained without any bias via random Monte 
Carlo flux sampling [41]. Similar to random sampling, ele-
mentary mode analysis (EMA) is another method that can 
analyze the metabolic network in an unbiased manner [42]. 
This method computes the minimal set of feasible flux vec-
tors in which any valid flux solution is a linear combination 
of this minimal set. Therefore, this minimal set characterizes 
the organism’s entire feasible metabolic space. It can be also 
used to analyze various properties of the network such as 
metabolic capabilities and structural robustness [43]. When 
employing this method to analyze segregated community 
models, the analysis can be performed on the whole commu-
nity as single model, or in a hierarchical manner by first se-
lecting the elementary modes of each member, which are 
then pooled together for further analysis [44]. 

2.2. Dynamic Metabolic Models 

 Ordinary differential equations (ODEs) are a common 
mathematical representation to describe dynamic systems 
with enzyme kinetics in the metabolic reaction network. 
Typically, ODEs are written in the form:  

xtuxFx ),,(=  
where x is the vector of system states (nutrients, secreted 
products, and cell mass), u is the vector of model parameters, 
and F is the matrix of kinetic functions. For enzymatic reac-
tion kinetics, the popular Michaelis-Menten kinetics, and 
other forms such as Haldane kinetics, generalized mass ac-
tion (GMA), and Hill kinetics are considered. These equa-
tions contain a large number of parameters to be estimated 
by regression with time course data, which may be limited in 
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availability. Unlike steady-state models, dynamic models are 
typically much smaller, and usually cover only the core met-
abolic network, thus reducing model complexity with a re-
duced number of kinetic parameters. While large scale dy-
namic metabolic models have been constructed [45, 46], 
accurate estimation of parameters from experimental meas-
urements remains the biggest challenge in building predic-
tive kinetic models [47, 48].  
 Similar to the static approach, dynamic models are also 
built by either combining the metabolism of multiple species 
in the community into a single entity or using species specif-
ic information to construct individual models which are then 
linked via exchange reactions. Lumped dynamic models are 
commonly used to describe microbial communities, especial-
ly in the areas of synthetic consortia, wastewater treatment, 
biogeochemical communities, and gut microbiome [49-52]. 
This is due to the poor characterization of such communities 
where only meta-genomic/transcriptomic/proteomic data are 
available; detailed models of constituent microbes are rarely 
available. Reed et al. constructed a dynamic Michaelis-
Menten based reaction network that successfully mimicked 
the elemental nitrogen and sulfur cycling in the waters of the 
Red Sea. They employed a functional genes approach with 
metagenomics data to estimate the microbes present and 
their expressed genes, in order to parameterize the model 
[51]. Notably, these lumped dynamic models focus on spe-
cific aspects of microbial functionality such as biodegrada-
tion of pollutants, or biochemical production [53-55].  
 When high quality models of individual species are 
available, compartmentalized dynamic models can be con-
structed using dynamic FBA (dFBA), which combines FBA 
and kinetic modeling approaches [56]. In essence, a set of 
dynamic equations (ODEs) and a stoichiometric matrix of 
metabolic reactions are formulated to represent the overall 
system and intracellular metabolism, respectively. Initially, 
the stoichiometric model is solved at the start of each time 
step using FBA to obtain the system input and output rates. 
The resulting values are then used in the dynamic equations 
to solve for the concentrations by an explicit method such as 
Euler’s method. This requires small time steps to be taken in 
order to keep the solution error within acceptable levels. In 
the direct approach, the stoichiometric model is solved as 
part of the right hand side of the ODE system, which allows 
implicit ODE solvers to be used; the ODE solution errors can 
thus be controlled. The dFBA formulation can be easily ex-
tended to multi-species systems by various approaches that 
primarily differ in their treatment of the species-specific 
stoichiometric models [57]. Dynamic multi-species metabol-
ic modeling (DMMM) was first proposed as a multi-species 
extension of dFBA, where each species’ stoichiometric mod-
el is solved separately [58]. DMMM employs the direct ap-
proach for dFBA with a stoichiometric matrix for each 
community member. The members’ flux states are individu-
ally solved with objectives such as growth maximization, 
while the dynamic outer model computes the external me-
tabolite concentration changes. Notably, this formulation 
does not assume any community wide objective or balanced 
growth. Alternatively, the species may be integrated as com-
partments in a single large stoichiometric matrix [59], simi-
lar to the multispecies compartment approach in FBA. To 
compute the solutions of each modeled species during each 

time interval, the methods discussed above for compart-
mentalized species models can be adopted with a weighted 
sum of individual species’ growth rates as the objective 
function [60]. The dFBA approach avoids the need for a 
large number of kinetic parameters in a pure kinetic model of 
similarly scale, while being able to give snapshots of meta-
bolic fluxes across time. dFBA can also be used in conjunc-
tion with FVA to quantify alternate solutions in the fluxes 
computed, which can be used to identify potential biosyn-
thetic capabilities. Recently, d-OptCom (dynamic OptCom), 
a dynamic extension of OptCom, was proposed to solve mul-
tispecies dFBA problems in a bi-level approach, elucidating 
costly cooperation between community members [61]. Com-
pared to dFBA, the d-OptCom approach offers greater power 
and flexibility in examining different types of interactions in 
a dynamic manner. 
 Natural microbial communities are rarely homogenous; 
spatial heterogeneity exists in different communities ranging 
from biofilms to oceanic environments [62, 63]. Such spatial 
arrangements contribute to influence the interactions be-
tween different species or even sub-communities, thus giving 
rise to unique community functions. To model such structur-
al heterogeneity, the computation of microbial ecosystems in 
time and space (COMETS) framework was developed [64]. 
COMETS discretizes space by a two dimensional grid, and 
each grid box can contain different species of microbes and 
metabolites. Between different grid boxes, diffusion reac-
tions are used to describe metabolite exchanges, and even 
biomass. Each grid box is solved separately, followed by 
calculations of diffusion step using finite difference for me-
tabolite and biomass exchanges. The framework was demon-
strated on synthetic consortia of up to three species, simulat-
ing the impact of physically segregating two colonies with a 
third. 

3. APPLICATIONS 

3.1. Host Microbiome 

 The ubiquity of microbes means that microbiota can be 
found in all multicellular host organisms. Such close proxim-
ity invariably results in a multitude of positive, negative, or 
neutral interactions. There has been growing realization on 
the microbiota’s impact on human health, especially the hu-
man gut microbiome (Fig. 2) [65]. In an early work, Green-
blum et al. constructed a lumped metabolic network using 
published metagenomic data from 124 individuals [29, 66]. 
Gene abundance data was also used to analyze topological 
differences correlated with obesity and Inflammatory Bowel 
Disease (IBD) at the gene and network levels.  
 Constructing stoichiometric models of gut microbes is a 
necessary step towards quantitative analysis of interactions 
among microbes, and with their host. In this regard, Shoaie 
et al. reconstructed genome-scale models of three gut mi-
crobes, Bacteroides thetaiotamicron, Eubacterium rectale 
and Methanobrevibacter smithii [67]. Different combinations 
of the microbes were simulated and compared with experi-
mental data.  
 This compartmentalized static model was able to capture 
the metabolite exchanges and the short-chain fatty acids (ac-
etate, propionate, and butyrate) production during fermenta-
tion of dietary fiber in the colon. In particular, butyrate is an 
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important energy source for colon lining cells (colonocytes) 
with anti-inflammatory properties and its intracellular levels 
have been found to be inversely correlated with Crohn’s dis-
ease susceptibility. El-Semman et al. further focused on gut 
microbes responsible for butyrate production by reconstruct-
ing the genome-scale models of Bifidobacterium adolescen-
tis and Faecalibacterium prausnitzii [68]. In this two mem-
bers system, B. adolescentis produces acetate, while F. 
prausnitzii consumes acetate to produce butyrate. The com-
munity model accurately simulated the ratio of acetate up-
take to butyrate production, and the reliance of F. prausnitzii 
on acetate for growth. In a more recent work, in silico simu-
lations explored dietary effects on the gut microbiome, and 
observed its contribution to the changes in free amino acid 
concentrations in the serum [36]. 
 With the availability of high quality host metabolic mod-
els such as human and mouse, host-microbe interactions can 
be analyzed. In such a pursuit, Heinken et al. developed a 
two species model containing metabolic networks of mouse 
and Bacteroides thetaiotaomicron to study their interactions 
[69]. Here, it should be highlighted that the Bacteroides phy-
lum is one of the biggest constituent in mammalian gut mi-
crobiome, with B. thetaiotaomicron being a commonly used 
representative. The model was simulated using different die-

tary regimes, thereby confirming known exchange metabo-
lites such as acetate and propionate. The simulations also 
newly hypothesized that amino acids can be supplied to the 
host by B. thetaiotaomicron. In a recent work, Heinken and 
Thiele constructed another compartmentalized static model 
composed of the human metabolic network, and different 
combinations of 11 human gut microbes [70]. Five of them 
are pathogenic while the remaining six are beneficial or 
commensal. Interestingly, simulation results of the host with 
commensal microbes support the view that the gut microbio-
ta function as an endocrine organ within the human body as 
proposed earlier [71]. 
 In addition to the human gut microbiome, the symbiosis 
between host and microbes has been studied across diverse 
host species. For example, Ankrah et al. evaluated essential 
amino acids provisioned by the microbes Portiera 
aleyrodidarum and Hamiltonella defensa to an insect host, 
the whitefly (Bemisia tabaci) [72]. The compartmentalized 
static approach was adopted with both bacteria models ex-
changing metabolites directly with the host, considering the 
production of essential amino acids as the objective function. 
The simulations confirmed known amino acid exchanges, 
and also predicted other novel metabolite exchanges. Selec-
tive disabling of either bacterium showed that H. defensa 

 
Fig. (2). The published metabolic community modeling studies are divided into different areas of application: biogeochemical, bioremedia-
tion, gut microbiome, waste water treatment, and synthetic consortia. 
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behaves as a parasite reducing the host’s growth rate, while 
P. aleyrodidarum is essential to the host’s growth by supply-
ing essential amino acids and participating in nitrogen recy-
cling. Simulation results also confirmed that H. defensa is a 
nutritional parasite, as it has the metabolic pathways to syn-
thesize essential amino acids for its own growth, but without 
any excess capacity to supply the host.  
 Besides positive or commensal host-microbe interactions, 
some bacteria are pathogenic to their host, e.g., Mycobacte-
rium tuberculosis in human lungs which is responsible for the 
tuberculosis disease. M. tuberculosis is able to survive phago-
cytosis by alveolar macrophages to reproduce and spread. To 
understand the metabolic changes during the infection, 
Bordbar et al. combined a genome-scale model of M. tubercu-
losis and a human cell-specific alveolar macrophage model 
contextualized from the generic human metabolic reconstruc-
tion Recon 1 with alveolar macrophage gene expression data 
[73]. For better accuracy, the biomass equation of the M. tu-
berculosis model was modified using gene expression data to 
reflect in vivo conditions within the phagosome. The com-
bined model was then characterized by randomized sampling, 
an approach extensively used to simulate mammalian genome-
scale metabolic models [41]. The simulation results illustrated 
different metabolic states of the M. tuberculosis model at dif-
ferent stages of infection which can be further studied and 
even exploited to identify targets for medical interventions. 
We believe that the greater use of contextualized models will 
yield more accurate simulation results, especially when ap-
plied to more complex eukaryotic host models. 

 Kinetic approaches have also been used to model micro-
biota in the human gut. Muñoz-Tamayo et al. considered 
butyrate production using Eubacterium hallii and Anaerosti-
pes coli in human colon [74]. The constructed model was 
able to satisfactorily match the experimental data. In another 
work, Muñoz-Tamayo et al. developed a kinetic model for 
carbohydrate degradation using the anaerobic digestion 
model No 1 (ADM1) framework, which was originally cre-
ated to model anaerobic digestion in waste water treatment 
[75]. Using the ADM1 framework, the lumen and mucus 
layers were modeled as a series of three well mixed tank 
reactors with mass diffusion taking place between the differ-
ent layers. Both the lumen and mucus layers have four mi-
crobial functional groups at different proportions. This ap-
proach of spatial segregation allows for more accurate mod-
eling of physically complex systems such as the human gut. 
Similarly, Kettle et al. aimed to construct a simplified model 
of the human intestinal microbiota with 10 major microbial 
functional groups [52]. Within each functional group, there 
are 10 species with traits (kinetic parameters). The model 
was then fitted to two data sets by stochastically assigning 
parameters, and then, the best fitting set was selected from 
multiple simulations. The model captured changes in the 
microbiota composition as a result of nutrient composition, 
as well as changes in metabolite concentration due to pH 
shifts. While the model reproduced experimental data suc-
cessfully, the stochastically created individual species in the 
model hardly matched with observed species, and thus it is 
difficult to derive mechanistic knowledge from the simula-
tion results. 

3.2. Biogeochemical Systems and Bioremediation Com-
munities 

 Microbial communities play an important role in the 
earth’s biogeochemical cycles [76, 77]. They are integral in 
the cycling of carbon, nitrogen, oxygen, and sulfur across the 
Earth’s surface. With increasing human impact on the envi-
ronment, a deeper understanding of natural microbial com-
munities is necessary to predict their responses to disturb-
ances, and develop effective methods to manage them. In 
order to understand the interactions among microbes in-
volved in geochemical cycle, various quantitative models 
have been developed and analyzed (Fig. 2). 
 The first static metabolic model of a microbial communi-
ty was constructed by Stolyar et al., elucidating the interac-
tion between two methanogenic syntrophy microbes (Desul-
fovibrio vulgaris and Methanococcus maripaludi) which are 
commonly found in soil, water, and animal digestive systems 
[34]. Hamilton et al. studied another syntrophy methanogen-
ic co-culture of Syntrophobacter fumaroxidans and Methan-
ospirillum hungatei using their respective genome-scale 
metabolic models as compartments of the co-culture [78]. It 
should be highlighted that thermodynamic constraints are 
added with a modified objective function to correctly eluci-
date experimental observations of formate and hydrogen 
exchanges. A similar approach was utilized to model the 
oxidation process of sulfite minerals by constructing a com-
bined metabolic model of Leptospirillum ferriphilum and 
Ferroplasma acidiphilum [79]. 
 One important rationale for modeling microbial commu-
nities is to study the metabolite exchanges among its mem-
bers. In this regard, Hunt et al. examined nutrient and energy 
transfers across different trophic levels [80]. While most 
studies focus on transfers of low molecular weight metabo-
lite, biomass derived dissolved organic carbon (DOC) was 
modeled as one of the sources of carbon and energy for het-
erotrophic consumption. Inclusion of DOC in modeling envi-
ronmental communities is important since it is a large source 
of organic carbon [81]. 
 As an alternative to steady state stoichiometric models, 
Decker et al. constructed a Monod kinetics based dynamic 
model of oxygen, carbon, and sulfur movement in a hyper-
saline microbial mat system containing cyanobacteria, purple 
sulfur bacteria, colorless sulfur bacteria, and sulfate-reducing 
bacteria [53]. The microbial guilds were connected by the 
diffusion of selected metabolites. Environmental light and 
temperature were also included in the model. The simulation 
results compared favorably with experimental observations, 
but also highlighted deficiencies in the model that encourage 
further refinement. 
 Environmental bioremediation is an area closely related 
to biogeochemical systems. The system modeled can en-
compass a large geographic area such as a marine ecosystem. 
In this regard, Taffi et al. modeled polychlorinated biphenyls 
(PCB) degradation in the Adriatic Sea by combining both 
bioaccumulation and PCB degradation pathways [82]. The 
bioaccumulation model simulated the tropic flux flows 
through the food web while biodegradation of PCBs was 
modeled by adding a Pseudomonas putida metabolic model 
modified with the aerobic PCB degradation pathway. This 
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multi-scale approach based on a bi-level extension of FBA 
was used to formulate successful bioremediation strategies, 
and analyze the impact on PCB bioaccumulation in the food 
web.  
 Interestingly, Zhuang et al. used a dynamic FBA ap-
proach for modeling in situ bioremediation of uranium con-
taminated ground water [58, 83]. In the first study, a two 
species community model was constructed with Geobacter 
sulfurreducens and Rhodoferax ferrireducens. Unlike most 
works described previously, this study explored microbial 
competition instead of microbial cooperation. The microbes 
compete for acetate to grow; ammonium is required by R. 
ferrireducens but not necessary with G. sulfurreducens. G. 
sulfurreducens is capable of reducing uranium (VI) to urani-
um (IV) and precipitate it out of water. Hence, encouraging 
G. sulfurreducens growth is the ultimate goal for the biore-
mediation. The microbes showed different growth character-
istics, and conditions of high acetate and low ammonium 
were identified to allow G. sulfurreducens to outcompete R. 
ferrireducens. In a subsequent work, they examined the 
problem of G. sulfurreducens population decay following the 
initial bloom. This population decay was accompanied by 
the growth of sulfate-reducing bacteria (SRBs) which are 
poor uranium reducers. This phenomenon was attributed to 
the depletion of bio-accessible Fe(III), and it was found that 
the G. sulfurreducens population could be revived by subse-
quent Fe(III) addition. In this study, the community model 
was modified to contain an updated metabolic model of G. 
sulfurreducens, and the core metabolic pathways of SRBs. 
Dynamic optimization was then applied to the updated 
community model to solve for the optimal acetate and Fe(III) 
addition strategy for maximum uranium reduction.  
 Zomorrodi et al. developed the d-OptCom framework, 
and used it to simulate a soil community composed of Geo-
bacter sulfurreducens, Rhodoferax ferrireducens, and She-
wanella oneidensis [61]. As studied by Zhuang et al. [58], G. 
sulfurreducens and R. ferrireducens have the abilities of re-
ducing Fe(III) to Fe(II), and U(VI) to U(IV), while S. onei-
densis can consume lactate during the acetate production, 
and reduce U(VI) to U(IV). Both OptCom and d-OptCom 
were tested to simulate the system, and the newer d-OptCom 
framework was able to show long term behavior which was 
not possible with the OptCom methodology.  

3.3. Wastewater Treatment 

 Simplified lumped community models with Monod ki-
netics is commonly used in the metabolic modeling of 
wastewater treatment systems. Such an approach assumes 
specific metabolite flows across organisms based on experi-
mental observations, and thus the community is assumed to 
be represented by a combined reaction network [84]. Lan-
ham et al. modeled the removal of biological phosphorus 
removal by an activated sludge process with two main func-
tional guilds, polyphosphate accumulating organisms, and 
glycogen accumulating organisms [50]. Palatsi et al. used a 
modified ADM1 model to study the effect of long-chain fat-
ty acids (LCFA) on the anaerobic digestion process in waste 
water treatment [85]. A new LCFA inhibition kinetics ex-
pression was proposed and added to the basic ADM1 to de-
scribe experimental results effectively. Such lumped kinetic 

models are usually constructed based on known metabolic 
capabilities of the community, and thus rarely offer novel 
insights into metabolic interactions between microbes. 
 González-Cabaleiro et al. postulated that bioenergetics 
maximization was the selection pressure behind the choice of 
metabolic pathways, and thus influenced the interactions 
between microbes [86]. They constructed an energy based 
model that encompasses catabolic activities for energy har-
vesting, and anabolic activities for biomass growth. The 
model comprises Monod based kinetics for growth computa-
tion with a stoichiometric matrix for bioenergetics calcula-
tions. Two microbial communities were modeled, anaerobic 
fermentation of glucose to methane, and oxidation and re-
duction of nitrogen (nitrification). When maximizing bioen-
ergetics harvesting, the active pathways and syntrophic rela-
tionships corresponded to experimental observations in the 
glucose to methane fermentation, and both the nitrification 
and denitrification processes. This study demonstrated how 
bioenergetics can be used to explain the choice of metabolic 
pathways and hence microbial interactions within a commu-
nity. 

3.4. Synthetic Consortia 

 Synthetic consortia are designed to harness the metabolic 
capabilities of different microbial species for accomplishing 
complex tasks and balancing the metabolic loads of single 
species (Fig. 2). These species are often well studied organ-
isms, including engineered strains. A common application of 
synthetic consortia is to produce desired products from 
available raw materials. In this regard, Henson and cowork-
ers constructed dynamic FBA models of two synthetic co-
culture systems, the first composed of Saccharomyces cere-
visiae and engineered Escherichia coli, and the second, S. 
cerevisiae and Scheffersomyces stipitis [59, 60]. Both co-
cultures are constructed to produce ethanol from glucose-
xylose mixtures, reflecting lignocellulosic biomass. The lat-
ter model was employed to enhance the production of etha-
nol by identifying optimum concentrations of inoculums and 
aeration level. Similarly, Ye et al. used a compartmentalized 
static model to study a synthetic co-culture of Ketogulonic-
igenium vulgare and Bacillus megaterium employed in vita-
min C production [87]. K. vulgare converts the L-sorbose 
into the vitamin C precursor 2-keto-l-gulonic acid (2-KLG), 
while the B. megaterium supports growth of K. vulgare and 
2-KLG production in co-culture. By fixing the growth rate of 
one species at experimentally observed rates, the co-culture 
simulation showed that the other species achieved higher 
growth rate compared to its mono-culture. These results con-
firmed the mutualistic relationship observed in experiments. 
The list of necessary metabolites responsible for enhancing 
K. vulgare growth was obtained by selective deletion and re-
computation of maximal growth rates. 
 Synthetic consortia are also useful in constructing the 
theoretical foundation for testing hypotheses of interactions 
within community behavior. Wintermute and Silver used a 
set of 46 Escherichia coli auxotrophs to evaluate cross-
feeding behavior among different pairs while growing in 
minimal media [88]. About 17% of the 1,035 pairs were able 
to show >50 fold greater growth than the monoculture con-
trols by cross-feeding metabolites. These interactions occur 
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spontaneously, defined as synthetic mutualism in trans 
(SMIT) which is different from the mutualism resulting from 
adaptive evolution [89]. The SMIT pairs were then modeled 
mathematically by integrating the contextualized genome-
scale models of the auxotrophic E. coli as compartments in a 
combined model, and solved using MOMA. 
 As mentioned earlier, quantifying metabolite exchanges, 
even when the metabolite identities are known, is one of the 
key challenges in characterizing the behavior of microbial 
communities. In this respect, Hanemaaijer et al. demonstrat-
ed the use of dFBA modeling with experimental data to infer 
metabolic exchange fluxes between a synthetic co-culture of 
Clostridium acetobutylicum and Wolinella succinogenes 
[16].  
 Metabolic modeling approaches can also be exploited to 
design synthetic consortia with specific goals by predicting 
potential interactions and emergent capabilities. Klitgord and 
Segrè developed an algorithm to predict mutualistic or com-
mensal interactions between pairs of microbes by designing 
media that did not allow for standalone growth but growth in 
co-cultures [90]. The method was able to reproduce known 
co-operations, and predict new interactions. Freilich et al. 
combined stoichiometric metabolic models with experi-
mental data to quantify the maximal potential for competi-
tion and cooperation between microbial pairs under different 
media conditions [91]. Chiu et al. developed a framework to 
test ability of newly designed synthetic consortia for emer-
gent biosynthesis capabilities using existing metabolic mod-
els [15]. Interestingly, such emergent capabilities in two spe-
cies communities are more likely to be maximized when the 
species are at an intermediate functional distance, i.e. neither 
too close nor too far. This is presumably due to functional 
close species replicating much of each other’s metabolic 
functionalities, while functionally distant species share only 
a few metabolites that can link disparate metabolic path-
ways. A similar result was observed in another study report-
ing that metabolic pathway dissimilarities among community 
members are strongly coupled with metabolite exchanges 
[92].  

4. FUTURE DIRECTIONS OF MICROBIAL COM-
MUNITY METABOLIC MODELING 

 Overall, static and dynamic metabolic modeling ap-
proaches have been used to describe various microbial com-
munities and the interactions within. It can be further ex-
tended to account for other types of signaling interactions, 
e.g., quorum sensing. For example, microbes such as Pseu-
domonas sp. produce quorum sensing molecules through 
which they modulate their growth, motility, and biofilm for-
mation, dynamically interacting with other organisms. In this 
regard, it may be recommended to use a hybrid approach of 
combining metabolic and regulatory network models of in-
dividual species [93]. Alternatively, metabolic modeling 
approaches may be combined with other modeling tech-
niques such as game theory or agent based modeling to more 
comprehensively analyze the dynamic interactions between 
microbes within a community [94]. Finally, most metabolic 
models to date do not capture the spatial dimensions that can 
limit nutrient and growth space availability for a microbial 
community [64]. 

 As discussed earlier, microbial communities exist in sev-
eral environmental niches. In addition, several other im-
portant processes where microbial communities co-exist can 
be mathematically modeled to understand their community 
behavior. These include the human skin microbiome, food 
fermentation such as yoghurt, cheese, bread, beer, wine, 
kimchi and sauces, and plant interactions with rhizosphere 
bacteria and leaf microbiota [95, 96].  
 The human skin is typically colonized with various mi-
crobes including bacteria, fungi and viruses. Similar to the 
gut microbiome, these microbes also interact among them-
selves as well as with the host, in both positive and negative 
ways. However, the role of microbial interactions is crucial 
under certain disease states such as acne and psoriasis [97, 
98]. Therefore, similar to the human gut microbiome, it will 
be useful to model their interactions for potential health or 
cosmetic applications. 
 Using a mixed microbial culture to ferment foods is a 
common practice employed to achieve the desired flavor, 
texture, and taste. Typically, the microbial population dy-
namics, characterized by the dominance of certain microbes 
during a particular phase, plays a critical role in determining 
the final food quality. As such, several studies have attempt-
ed to link the population dynamics in fermentation culture to 
product attributes in a mechanistic manner [10]. In this re-
gard, the metabolic modeling approach can be applied to 
unravel the molecular interactions between different mi-
crobes in the consortia, thus elucidating the optimal process 
conditions to achieve better food quality. 
 Plant-microbe interactions are quintessential to a plant’s 
environmental adaptation and growth [96]. Among them, the 
plant rhizosphere microbial community plays an important 
role in plant nutrient uptake, and processing the organic mat-
ter in soil [99]. Rhizosphere bacteria often grow at high den-
sities near the plant roots, which provide ample access to 
nutrients and also help plants by fixing atmospheric nitrogen, 
reduce toxic compounds, and also stimulate phytohormone 
synthesis, thus enhancing plant growth [100]. Moreover, it 
has been recently discovered that the composition of rhizo-
sphere microbial community varies between plants, even 
among its different cultivators, highlighting that soil rhizo-
sphere indeed affects the plant growth and morphogenesis 
[101]. Therefore, it is important to study the microbial inter-
actions in soil rhizosphere within the microbial community 
and with plants to develop new strategies for enhancing plant 
quality and yield in agro-biotechnology. 

CONCLUSION 

 The use of metabolic modeling to study microbial com-
munities only began in the last decade. There are currently 
two major approaches, large scale lumped models, and com-
partmentalized models composed of a small number of well 
characterized species. In the former approach, individual 
species are not distinguished from one another, and instead, 
the focus is more on the community metabolic behaviors and 
functions, often determined by available meta-omics data. In 
the latter approach, detailed models of community members 
are constructed, but this requires a significant amount of in-
formation of each individual species (e.g., annotated ge-
nomes). With advancements in high-throughput omics tech-
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nologies and computational capability, we can expect the 
number of high quality species models to grow [102]. Even-
tually, both the approaches will merge to result in high quali-
ty large scale models. Such high quality models of the hu-
man microbiome can be crucial in studying their impact on 
human health, and the rational design of medical interven-
tions in future [103, 104]. Additionally, more efficient algo-
rithms can be developed to design larger consortia for more 
sophisticated biosynthetic capabilities that can benefit man-
kind. 

LIST OF ABBREVIATIONS 

ADM1 = Anaerobic Digestion Model No. 1 
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Time and Space 
dFBA = Dynamic Flux Balance Analysis 
DMMM = Dynamic Multi-species Metabolic Modeling 
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SRB = Sulfate-reducing Bacteria 
U = Uranium 

CONSENT FOR PUBLICATION 

 Not applicable. 

CONFLICT OF INTEREST 

 The authors declare no conflict of interest, financial or 
otherwise. 

ACKNOWLEDGEMENTS 

 This work was supported by the Biomedical Research 
Council of A*STAR (Agency for Science, Technology and 
Research), Singapore, and a grant from the Next-Generation 
BioGreen 21 Program (SSAC, No. PJ01334605), Rural De-
velopment Administration, Republic of Korea. 

SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publisher’s 
website along with the published article. 

REFERENCES 
[1] Torsvik, V.; Ovreas, L. Microbial diversity and function in soil: 

From genes to ecosystems. Curr. Opin. Microbiol., 2002, 5(3), 
240-245. 

[2] Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The 
unseen majority. Proc. Natl. Acad. Sci. U.S.A., 1998, 95(12), 6578-

6583. 
[3] Rousk, J.; Bengtson, P. Microbial regulation of global biogeochem-

ical cycles. Front. Microbiol., 2014, 5, 103. 
[4] Walter, J.; Britton, R.A.; Roos, S. Host-microbial symbiosis in the 

vertebrate gastrointestinal tract and the Lactobacillus reuteri para-
digm. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(Suppl 1), 4645-
4652. 

[5] Yun, J.H.; Roh, S.W.; Whon, T.W.; Jung, M.J.; Kim, M.S.; Park, 
D.S.; Yoon, C.; Nam, Y.D.; Kim, Y.J.; Choi, J.H.; Kim, J.Y.; Shin, 
N.R.; Kim, S.H.; Lee, W.J.; Bae, J.W. Insect gut bacterial diversity 
determined by environmental habitat, diet, developmental stage, 
and phylogeny of host. Appl. Environ. Microbiol., 2014, 80(17), 
5254-5264. 

[6] Badri, D.V.; Weir, T.L.; van der Lelie, D.; Vivanco, J.M. Rhizo-
sphere chemical dialogues: Plant-microbe interactions. Curr. Opin. 
Biotechnol., 2009, 20(6), 642-650. 

[7] Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbi-
ota in health and disease. Physiol. Rev., 2010, 90(3), 859-904. 

[8] Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; 
Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large ef-
fects of gut microflora on mammalian blood metabolites. Proc. 
Natl. Acad. Sci. U.S.A., 2009, 106(10), 3698-3703. 

[9] Daims, H.; Taylor, M.W.; Wagner, M. Wastewater treatment: A 
model system for microbial ecology. Trends Biotechnol., 2006, 
24(11), 483-489. 

[10] Sieuwerts, S.; de Bok, F.A.; Hugenholtz, J.; van Hylckama Vlieg, 
J.E. Unraveling microbial interactions in food fermentations: From 
classical to genomics approaches. Appl. Environ. Microbiol., 2008, 
74(16), 4997-5007. 

[11] Ryan, R.P.; Dow, J.M. Diffusible signals and interspecies commu-
nication in bacteria. Microbiology, 2008, 154(Pt 7), 1845-1858. 

[12] Faust, K.; Raes, J. Microbial interactions: From networks to mod-
els. Nat. Rev. Microbiol., 2012, 10(8), 538-550. 

[13] Kuramitsu, H.K.; He, X.; Lux, R.; Anderson, M.H.; Shi, W. Inter-
species interactions within oral microbial communities. Microbiol. 
Mol. Biol. Rev., 2007, 71(4), 653-670. 

[14] Ponomarova, O.; Patil, K.R. Metabolic interactions in microbial 
communities: Untangling the Gordian knot. Curr. Opin. Microbiol., 
2015, 27, 37-44. 

[15] Chiu, H.C.; Levy, R.; Borenstein, E. Emergent biosynthetic capaci-
ty in simple microbial communities. PLoS Comput. Biol., 2014, 
10(7), e1003695. 

[16] Hanemaaijer, M.; Olivier, B.G.; Roling, W.F.; Bruggeman, F.J.; 
Teusink, B. Model-based quantification of metabolic interactions 
from dynamic microbial-community data. PLoS One, 2017, 12(3), 
e0173183. 

[17] Hanemaaijer, M.; Roling, W.F.; Olivier, B.G.; Khandelwal, R.A.; 
Teusink, B.; Bruggeman, F.J. Systems modeling approaches for 
microbial community studies: From metagenomics to inference of 
the community structure. Front. Microbiol., 2015, 6, 213. 

[18] Erbilgin, O.; Bowen, B.P.; Kosina, S.M.; Jenkins, S.; Lau, R.K.; 
Northen, T.R. Dynamic substrate preferences predict metabolic 
properties of a simple microbial consortium. BMC Bioinformatics, 
2017, 18(1), 57. 

[19] Orth, J.D.; Thiele, I.; Palsson, B.O. What is flux balance analysis? 
Nat. Biotechnol., 2010, 28(3), 245-248. 

[20] Lakshmanan, M.; Koh, G.; Chung, B.K.; Lee, D.Y. Software appli-
cations for flux balance analysis. Brief Bioinform., 2014, 15(1), 
108-122. 

[21] Maarleveld, T.R.; Khandelwal, R.A.; Olivier, B.G.; Teusink, B.; 
Bruggeman, F.J. Basic concepts and principles of stoichiometric 
modeling of metabolic networks. Biotechnol. J., 2013, 8(9), 997-
1008. 

[22] Thiele, I.; Palsson, B.O. A protocol for generating a high-quality 
genome-scale metabolic reconstruction. Nat. Protoc., 2010, 5(1), 
93-121. 

[23] Schellenberger, J.; Que, R.; Fleming, R.M.; Thiele, I.; Orth, J.D.; 
Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, 
S.; Kang, J.; Hyduke, D.R.; Palsson, B.O. Quantitative prediction 
of cellular metabolism with constraint-based models: The COBRA 
Toolbox v2.0. Nat. Protoc., 2011, 6(9), 1290-1307. 

[24] Agren, R.; Liu, L.; Shoaie, S.; Vongsangnak, W.; Nookaew, I.; 
Nielsen, J. The RAVEN toolbox and its use for generating a ge-
nome-scale metabolic model for Penicillium chrysogenum. PLoS 
Comput. Biol., 2013, 9(3), e1002980. 

[25] Henry, C.S.; DeJongh, M.; Best, A.A.; Frybarger, P.M.; Linsay, B.; 



Metabolic Modeling of Microbial Community Interactions Current Genomics, 2018, Vol. 19, No. 8    721 

Stevens, R.L. High-throughput generation, optimization and analy-
sis of genome-scale metabolic models. Nat. Biotechnol., 2010, 
28(9), 977-982. 

[26] King, Z.A.; Lu, J.; Drager, A.; Miller, P.; Federowicz, S.; Lerman, 
J.A.; Ebrahim, A.; Palsson, B.O.; Lewis, N.E. BiGG models: A 
platform for integrating, standardizing and sharing genome-scale 
models. Nucleic Acids Res., 2016, 44(D1), D515-D522. 

[27] Kaeberlein, T.; Lewis, K.; Epstein, S.S. Isolating "uncultivable" 
microorganisms in pure culture in a simulated natural environment. 
Science, 2002, 296(5570), 1127-1129. 

[28] Biggs, M.B.; Medlock, G.L.; Kolling, G.L.; Papin, J.A. Metabolic 
network modeling of microbial communities. Wiley Interdiscip. 
Rev. Syst. Biol. Med., 2015, 7(5), 317-334. 

[29] Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Mani-
chanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, 
D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; 
Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; 
Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, 
E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; 
Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, 
H.; Wang, J.; Brunak, S.; Dore, J.; Guarner, F.; Kristiansen, K.; 
Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; 
Wang, J. A human gut microbial gene catalogue established by 
metagenomic sequencing. Nature, 2010, 464(7285), 59-65. 

[30] Wilmes, P.; Heintz-Buschart, A.; Bond, P.L. A decade of metapro-
teomics: Where we stand and what the future holds. Proteomics, 
2015, 15(20), 3409-3417. 

[31] Tobalina, L.; Bargiela, R.; Pey, J.; Herbst, F.A.; Lores, I.; Rojo, D.; 
Barbas, C.; Pelaez, A.I.; Sanchez, J.; von Bergen, M.; Seifert, J.; 
Ferrer, M.; Planes, F.J. Context-specific metabolic network recon-
struction of a naphthalene-degrading bacterial community guided 
by metaproteomic data. Bioinformatics, 2015, 31(11), 1771-1779. 

[32] Henry, C.S.; Bernstein, H.C.; Weisenhorn, P.; Taylor, R.C.; Lee, 
J.Y.; Zucker, J.; Song, H.S. Microbial community metabolic mod-
eling: A community data-driven network reconstruction. J. Cell. 
Physiol., 2016, 231(11), 2339-2345. 

[33] Schuetz, R.; Kuepfer, L.; Sauer, U. Systematic evaluation of objec-
tive functions for predicting intracellular fluxes in Escherichia coli. 
Mol. Syst. Biol., 2007, 3, 119. 

[34] Stolyar, S.; Van Dien, S.; Hillesland, K.L.; Pinel, N.; Lie, T.J.; 
Leigh, J. A.; Stahl, D.A. Metabolic modeling of a mutualistic mi-
crobial community. Mol. Syst. Biol., 2007, 3, 92. 

[35] Khandelwal, R.A.; Olivier, B.G.; Roling, W.F.; Teusink, B.; Brug-
geman, F.J. Community flux balance analysis for microbial consor-
tia at balanced growth. PLoS One, 2013, 8(5), e64567. 

[36] Chan, S.H.J.; Simons, M.N.; Maranas, C.D. SteadyCom: Predicting 
microbial abundances while ensuring community stability. PLoS 
Comput. Biol., 2017, 13(5), e1005539. 

[37] Zomorrodi, A.R.; Maranas, C.D. OptCom: A multi-level optimiza-
tion framework for the metabolic modeling and analysis of micro-
bial communities. PLoS Comput. Biol., 2012, 8(2), e1002363. 

[38] Shoaie, S.; Ghaffari, P.; Kovatcheva-Datchary, P.; Mardinoglu, A.; 
Sen, P.; Pujos-Guillot, E.; de Wouters, T.; Juste, C.; Rizkalla, S.; 
Chilloux, J.; Hoyles, L.; Nicholson, J.K.; Consortium, M.I.-O.; 
Dore, J.; Dumas, M.E.; Clement, K.; Backhed, F.; Nielsen, J. 
Quantifying diet-induced metabolic changes of the human gut mi-
crobiome. Cell Metab., 2015, 22(2), 320-331. 

[39] Budinich, M.; Bourdon, J.; Larhlimi, A.; Eveillard, D. A multi-
objective constraint-based approach for modeling genome-scale 
microbial ecosystems. PLoS One, 2017, 12(2), e0171744. 

[40] Mahadevan, R.; Schilling, C.H. The effects of alternate optimal 
solutions in constraint-based genome-scale metabolic models. 
Metab. Eng. 2003, 5(4), 264-276. 

[41] Schellenberger, J.; Palsson, B.O. Use of randomized sampling for 
analysis of metabolic networks. J. Biol. Chem., 2009, 284(9), 5457-
5461. 

[42] Trinh, C.T.; Wlaschin, A.; Srienc, F. Elementary mode analysis: A 
useful metabolic pathway analysis tool for characterizing cellular 
metabolism. Appl. Microbiol. Biotechnol., 2009, 81(5), 813-826. 

[43] Wilhelm, T.; Behre, J.; Schuster, S. Analysis of structural robust-
ness of metabolic networks. Syst. Biol., 2004, 1(1), 114-120. 

[44] Taffs, R.; Aston, J.E.; Brileya, K.; Jay, Z.; Klatt, C.G.; McGlynn, 
S.; Mallette, N.; Montross, S.; Gerlach, R.; Inskeep, W.P.; Ward, 
D.M.; Carlson, R.P. In silico approaches to study mass and energy 
flows in microbial consortia: A syntrophic case study. BMC Syst. 
Biol., 2009, 3, 114. 

[45] Khodayari, A.; Maranas, C.D. A genome-scale Escherichia coli 
kinetic metabolic model k-ecoli457 satisfying flux data for multiple 
mutant strains. Nat. Commun., 2016, 7, 13806. 

[46] Adiamah, D.A.; Schwartz, J.M. Construction of a genome-scale 
kinetic model of mycobacterium tuberculosis using generic rate 
equations. Metabolites, 2012, 2(3), 382-397. 

[47] Sidoli, F.R.; Mantalaris, A.; Asprey, S.P. Toward global parametric 
estimability of a large-scale kinetic single-cell model for mammali-
an cell cultures. Ind. Eng. Chem. Res., 2005, 44(4), 868-878. 

[48] Karr, J.R.; Williams, A.H.; Zucker, J.D.; Raue, A.; Steiert, B.; 
Timmer, J.; Kreutz, C.; Wilkinson, S.; Allgood, B.A.; Bot, B.M.; 
Hoff, B.R.; Kellen, M.R.; Covert, M.W.; Stolovitzky, G.A.; Meyer, 
P. Summary of the DREAM8 parameter estimation challenge: To-
ward parameter identification for whole-cell models. PLoS Com-
put. Biol., 2015, 11(5), e1004096. 

[49] Minty, J.J.; Singer, M.E.; Scholz, S.A.; Bae, C.H.; Ahn, J.H.; Fos-
ter, C.E.; Liao, J.C.; Lin, X.N. Design and characterization of syn-
thetic fungal-bacterial consortia for direct production of isobutanol 
from cellulosic biomass. Proc. Natl. Acad. Sci. U.S.A., 2013, 
110(36), 14592-14597. 

[50] Lanham, A.B.; Oehmen, A.; Saunders, A.M.; Carvalho, G.; Niel-
sen, P.H.; Reis, M.A. Metabolic modelling of full-scale enhanced 
biological phosphorus removal sludge. Water Res., 2014, 66, 283-
295. 

[51] Reed, D.C.; Algar, C.K.; Huber, J.A.; Dick, G.J. Gene-centric 
approach to integrating environmental genomics and biogeochemi-
cal models. Proc. Natl. Acad. Sci. U.S.A., 2014, 111(5), 1879-1884. 

[52] Kettle, H.; Louis, P.; Holtrop, G.; Duncan, S.H.; Flint, H.J. Model-
ling the emergent dynamics and major metabolites of the human 
colonic microbiota. Environ. Microbiol., 2015, 17(5), 1615-1630. 

[53] Decker, K.L.; Potter, C.S.; Bebout, B.M.; Marais, D.J.; Carpenter, 
S.; Discipulo, M.; Hoehler, T.M.; Miller, S.R.; Thamdrup, B.; 
Turk, K.A.; Visscher, P.T. Mathematical simulation of the diel O, 
S, and C biogeochemistry of a hypersaline microbial mat. FEMS 
Microbiol. Ecol., 2005, 52(3), 377-395. 

[54] Oberoi, A.S.; Philip, L.; Bhallamudi, S.M. Biodegradation of vari-
ous aromatic compounds by enriched bacterial cultures: Part A-
monocyclic and polycyclic aromatic hydrocarbons. Appl. Biochem. 
Biotechnol., 2015, 176(7), 1870-1888. 

[55] Moorhead, D.; Lashermes, G.; Recous, S.; Bertrand, I. Interacting 
microbe and litter quality controls on litter decomposition: A mod-
eling analysis. PLoS One, 2014, 9(9), e108769. 

[56] Mahadevan, R.; Edwards, J.S.; Doyle, F.J., 3rd. Dynamic flux bal-
ance analysis of diauxic growth in Escherichia coli. Biophys. J., 
2002, 83(3), 1331-1340. 

[57] Henson, M.A.; Hanly, T.J. Dynamic flux balance analysis for syn-
thetic microbial communities. IET Syst. Biol., 2014, 8(5), 214-229. 

[58] Zhuang, K.; Izallalen, M.; Mouser, P.; Richter, H.; Risso, C.; Ma-
hadevan, R.; Lovley, D.R. Genome-scale dynamic modeling of the 
competition between Rhodoferax and Geobacter in anoxic subsur-
face environments. ISME J., 2011, 5(2), 305-316. 

[59] Hanly, T.J.; Urello, M.; Henson, M.A. Dynamic flux balance mod-
eling of S. cerevisiae and E. coli co-cultures for efficient consump-
tion of glucose/xylose mixtures. Appl. Microbiol. Biotechnol., 
2012, 93(6), 2529-2541. 

[60] Hanly, T.J.; Henson, M.A. Dynamic metabolic modeling of a mi-
croaerobic yeast co-culture: Predicting and optimizing ethanol pro-
duction from glucose/xylose mixtures. Biotechnol. Biofuels, 2013, 
6(1), 44. 

[61] Zomorrodi, A.R.; Islam, M.M.; Maranas, C.D. d-OptCom: Dynam-
ic multi-level and multi-objective metabolic modeling of microbial 
communities. ACS Synth. Biol., 2014, 3(4), 247-257. 

[62] Nadell, C.D.; Drescher, K.; Foster, K.R. Spatial structure, coopera-
tion and competition in biofilms. Nat. Rev. Microbiol., 2016, 14(9), 
589-600. 

[63] Brown, M.V.; Philip, G.K.; Bunge, J.A.; Smith, M.C.; Bissett, A.; 
Lauro, F.M.; Fuhrman, J.A.; Donachie, S.P. Microbial community 
structure in the North Pacific ocean. ISME J., 2009, 3(12), 1374-
1386. 

[64] Granger, B.R.; Chang, Y.C.; Wang, Y.; DeLisi, C.; Segre, D.; Hu, 
Z. Visualization of metabolic interaction networks in microbial 
communities using VisANT 5.0. PLoS Comput. Biol., 2016, 12(4), 
e1004875. 

[65] Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, 
G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, 
K.M.; Thomas, L.V.; Zoetendal, E.G.; Hart, A. The gut microbiota 



722    Current Genomics, 2018, Vol. 19, No. 8 Ang et al. 

and host health: A new clinical frontier. Gut, 2016, 65(2), 330-339. 
[66] Greenblum, S.; Turnbaugh, P.J.; Borenstein, E. Metagenomic sys-

tems biology of the human gut microbiome reveals topological 
shifts associated with obesity and inflammatory bowel disease. 
Proc. Natl. Acad. Sci. U.S.A., 2012, 109(2), 594-599. 

[67] Shoaie, S.; Karlsson, F.; Mardinoglu, A.; Nookaew, I.; Bordel, S.; 
Nielsen, J. Understanding the interactions between bacteria in the 
human gut through metabolic modeling. Sci. Rep., 2013, 3, 2532. 

[68] El-Semman, I.E.; Karlsson, F.H.; Shoaie, S.; Nookaew, I.; Soliman, 
T.H.; Nielsen, J. Genome-scale metabolic reconstructions of 
Bifidobacterium adolescentis L2-32 and Faecalibacterium 
prausnitzii A2-165 and their interaction. BMC Syst. Biol., 2014, 
8(1), 41. 

[69] Heinken, A.; Sahoo, S.; Fleming, R.M.; Thiele, I. Systems-level 
characterization of a host-microbe metabolic symbiosis in the 
mammalian gut. Gut Microbes, 2013, 4(1), 28-40. 

[70] Heinken, A.; Thiele, I. Systematic prediction of health-relevant 
human-microbial co-metabolism through a computational frame-
work. Gut Microbes, 2015, 6(2), 120-130. 

[71] Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; 
Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine 
organ. Mol. Endocrinol., 2014, 28(8), 1221-1238. 

[72] Ankrah, N.Y.D.; Luan, J.; Douglas, A.E. Cooperative metabolism 
in a three-partner insect-bacterial symbiosis revealed by metabolic 
modeling. J. Bacteriol., 2017, 199(15), e00872. 

[73] Bordbar, A.; Lewis, N.E.; Schellenberger, J.; Palsson, B.O.; Jam-
shidi, N. Insight into human alveolar macrophage and M. tubercu-
losis interactions via metabolic reconstructions. Mol. Syst. Biol., 
2010, 6, 422. 

[74] Munoz-Tamayo, R.; Laroche, B.; Walter, E.; Dore, J.; Duncan, 
S.H.; Flint, H.J.; Leclerc, M. Kinetic modelling of lactate utiliza-
tion and butyrate production by key human colonic bacterial spe-
cies. FEMS Microbiol. Ecol., 2011, 76(3), 615-624. 

[75] Munoz-Tamayo, R.; Laroche, B.; Walter, E.; Dore, J.; Leclerc, M. 
Mathematical modelling of carbohydrate degradation by human co-
lonic microbiota. J. Theor. Biol., 2010, 266(1), 189-201. 

[76] Madsen, E.L. Microorganisms and their roles in fundamental bio-
geochemical cycles. Curr. Opin. Biotechnol., 2011, 22(3), 456-464. 

[77] Nazaries, L.; Murrell, J.C.; Millard, P.; Baggs, L.; Singh, B.K. 
Methane, microbes and models: Fundamental understanding of the 
soil methane cycle for future predictions. Environ. Microbiol., 
2013, 15(9), 2395-2417. 

[78] Hamilton, J.J.; Contreras, M.C.; Reed, J.L. Thermodynamics and 
H2 transfer in a methanogenic, syntrophic community. PLoS Com-
put. Biol., 2015, 11(7), e1004364. 

[79] Merino, M.P.; Andrews, B.A.; Asenjo, J.A. Stoichiometric model 
and flux balance analysis for a mixed culture of Leptospirillum fer-
riphilum and Ferroplasma acidiphilum. Biotechnol. Prog., 2015, 
31(2), 307-315. 

[80] Hunt, K.A.; Jennings, R.D.; Inskeep, W.P.; Carlson, R.P. Stoichi-
ometric modelling of assimilatory and dissimilatory biomass utili-
sation in a microbial community. Environ. Microbiol., 2016, 
18(12), 4946-4960. 

[81] Gruber, D.F.; Simjouw, J.P.; Seitzinger, S.P.; Taghon, G.L. Dy-
namics and characterization of refractory dissolved organic matter 
produced by a pure bacterial culture in an experimental predator-
prey system. Appl. Environ. Microbiol., 2006, 72(6), 4184-4191. 

[82] Taffi, M.; Paoletti, N.; Angione, C.; Pucciarelli, S.; Marini, M.; 
Lio, P. Bioremediation in marine ecosystems: A computational 
study combining ecological modeling and flux balance analysis. 
Front. Genet., 2014, 5, 319. 

[83] Zhuang, K.; Ma, E.; Lovley, D.R.; Mahadevan, R. The design of 
long-term effective uranium bioremediation strategy using a com-
munity metabolic model. Biotechnol. Bioeng., 2012, 109(10), 
2475-2483. 

[84] Reichert, P. Aquasim - A tool for simulation and data analysis of 

aquatic systems. Water Sci. Technol., 1994, 30(2), 21-30. 
[85] Palatsi, J.; Illa, J.; Prenafeta-Boldu, F.X.; Laureni, M.; Fernandez, 

B.; Angelidaki, I.; Flotats, X. Long-chain fatty acids inhibition and 
adaptation process in anaerobic thermophilic digestion: Batch tests, 
microbial community structure and mathematical modelling. Biore-
sour Technol., 2010, 101(7), 2243-2251. 

[86] Gonzalez-Cabaleiro, R.; Ofiteru, I.D.; Lema, J.M.; Rodriguez, J. 
Microbial catabolic activities are naturally selected by metabolic 
energy harvest rate. ISME J., 2015, 9(12), 2630-2641. 

[87] Ye, C.; Zou, W.; Xu, N.; Liu, L. Metabolic model reconstruction 
and analysis of an artificial microbial ecosystem for vitamin C pro-
duction. J. Biotechnol., 2014, 182-183, 61-67. 

[88] Wintermute, E.H.; Silver, P.A. Emergent cooperation in microbial 
metabolism. Mol. Syst. Biol., 2010, 6, 407. 

[89] Zhang, X.; Reed, J.L. Adaptive evolution of synthetic cooperating 
communities improves growth performance. PLoS One, 2014, 
9(10), e108297. 

[90] Klitgord, N.; Segre, D. Environments that induce synthetic micro-
bial ecosystems. PLoS Comput. Biol., 2010, 6(11), e1001002. 

[91] Freilich, S.; Zarecki, R.; Eilam, O.; Segal, E.S.; Henry, C.S.; 
Kupiec, M.; Gophna, U.; Sharan, R.; Ruppin, E. Competitive and 
cooperative metabolic interactions in bacterial communities. Nat. 
Commun., 2011, 2, 589. 

[92] Zelezniak, A.; Andrejev, S.; Ponomarova, O.; Mende, D.R.; Bork, 
P.; Patil, K.R. Metabolic dependencies drive species co-occurrence 
in diverse microbial communities. Proc. Natl. Acad. Sci. U.S.A., 
2015, 112(20), 6449-6454. 

[93] Lewis, N.E.; Nagarajan, H.; Palsson, B.O. Constraining the meta-
bolic genotype-phenotype relationship using a phylogeny of in sili-
co methods. Nat. Rev. Microbiol., 2012, 10(4), 291-305. 

[94] Song, H.-S.; Cannon, W.; Beliaev, A.; Konopka, A. Mathematical 
modeling of microbial community dynamics: A methodological re-
view. Processes, 2014, 2(4), 711. 

[95] Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of 
microorganisms in global fermented foods and beverages. Front 
Microbiol., 2016, 7, 377. 

[96] Berg, G.; Rybakova, D.; Grube, M.; Koberl, M. The plant microbi-
ome explored: Implications for experimental botany. J. Exp. Bot., 
2016, 67(4), 995-1002. 

[97] Schommer, N.N.; Gallo, R.L. Structure and function of the human 
skin microbiome. Trends Microbiol., 2013, 21(12), 660-668. 

[98] Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbi-
ol., 2011, 9(4), 244-253. 

[99] Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere 
microbiome and plant health. Trends Plant Sci., 2012, 17(8), 478-
486. 

[100] Bloemberg, G.V.; Lugtenberg, B.J. Molecular basis of plant growth 
promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol., 
2001, 4(4), 343-350. 

[101] Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Ge-
nome Biol., 2013, 14(6), 209. 

[102] Magnusdottir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, 
E.; Noronha, A.; Greenhalgh, K.; Jager, C.; Baginska, J.; Wilmes, 
P.; Fleming, R.M.; Thiele, I. Generation of genome-scale metabolic 
reconstructions for 773 members of the human gut microbiota. Nat. 
Biotechnol., 2017, 35(1), 81-89. 

[103] Vieira, A.T.; Fukumori, C.; Ferreira, C.M. New insights into thera-
peutic strategies for gut microbiota modulation in inflammatory 
diseases. Clin. Transl. Immunology, 2016, 5(6), e87. 

[104] Buffie, C.G.; Bucci, V.; Stein, R.R.; McKenney, P.T.; Ling, L.; 
Gobourne, A.; No, D.; Liu, H.; Kinnebrew, M.; Viale, A.; 
Littmann, E.; van den Brink, M.R.; Jenq, R.R.; Taur, Y.; Sander, 
C.; Cross, J.R.; Toussaint, N.C.; Xavier, J.B.; Pamer, E.G. Preci-
sion microbiome reconstitution restores bile acid mediated re-
sistance to Clostridium difficile. Nature, 2015, 517(7533), 205-208. 

 
 
 


