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A B S T R A C T

Background and Purpose: Perivascular Spaces (PVS), also known as Virchow-Robin spaces, seen on structural
brain MRI, are important fluid drainage conduits and are associated with small vessel disease (SVD).
Computational quantification of visible PVS may enable efficient analyses in large datasets and increase sensi-
tivity to detect associations with brain disorders. We assessed the associations of computationally-derived PVS
parameters with vascular factors and white matter hyperintensities (WMH), a marker of SVD.
Participants: Community dwelling individuals (n = 700) from the Lothian Birth Cohort 1936 who had multi-
modal brain MRI at age 72.6 years (SD = 0.7).
Methods: We assessed PVS computationally in the centrum semiovale and deep corona radiata on T2-weighted images.
The computationally calculated measures were the total PVS volume and count per subject, and the mean individual
PVS length, width and size, per subject. We assessed WMH by volume and visual Fazekas scores. We compared PVS
visual rating to PVS computational metrics, and tested associations between each PVS measure and vascular risk factors
(hypertension, diabetes, cholesterol), vascular history (cardiovascular disease and stroke), and WMH burden, using
generalized linear models, which we compared using coefficients, confidence intervals and model fit.
Results: In 533 subjects, the computational PVS measures correlated positively with visual PVS ratings (PVS count
r = 0.59; PVS volume r = 0.61; PVS mean length r = 0.55; PVS mean width r = 0.52; PVS mean size r = 0.47). PVS
size and width were associated with hypertension (OR 1.22, 95% CI [1.03 to 1.46] and 1.20, 95% CI [1.01 to 1.43],
respectively), and stroke (OR 1.34, 95% CI [1.08 to 1.65] and 1.36, 95% CI [1.08 to 1.71], respectively). We found
no association between other PVS measures and diabetes, hypercholesterolemia or cardiovascular disease history.
Computational PVS volume, length, width and size were more strongly associated with WMH (PVS mean size versus
WMH Fazekas score β = 0.66, 95% CI [0.59 to 0.74] and versus WMH volume β = 0.43, 95% CI [0.38 to 0.48])
than computational PVS count (WMH Fazekas score β = 0.21, 95% CI [0.11 to 0.3]; WMH volume β = 0.14, 95% CI
[0.09 to 0.19]) or visual score. Individual PVS size showed the strongest association with WMH.
Conclusions: Computational measures reflecting individual PVS size, length and width were more strongly as-
sociated with WMH, stroke and hypertension than computational count or visual PVS score. Multidimensional
computational PVS metrics may increase sensitivity to detect associations of PVS with risk exposures, brain
lesions and neurological disease, provide greater anatomic detail and accelerate understanding of disorders of
brain fluid and waste clearance.
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1. Introduction

Perivascular spaces (PVS), sometimes known as Virchow–Robin
spaces, are fluid-filled compartments surrounding the small perforating
brain microvessels. They act as conduits for fluid transport, exchange
between cerebrospinal fluid (CSF) and interstitial fluid (ISF), and
clearance of waste products from the brain (Brown et al., 2018). PVS
are seen on structural brain Magnetic Resonance Imaging (MRI) as thin
linear or punctate structures (depending on scan orientation) of similar
signal to CSF (Potter et al., 2015b; Ramirez et al., 2016), defined as
having a diameter smaller than 3 mm (Valdés-Hernández et al., 2013;
Wardlaw et al., 2013).

PVS have been reported to increase in number on MRI, based on
visual scores, with age, with other brain features of small vessel disease
(SVD) (Wardlaw et al., 2013) with vascular risk factors, especially hy-
pertension, in common brain disorders including stroke, mild cognitive
impairment, and dementia including of vascular subtype (Debette et al.,
2019; Francis et al., 2019) Although many individual studies have re-
ported associations between increased numbers of PVS and WMH, a
recent meta-analysis (Francis et al., 2019) found no clear PVS-WMH
association in adjusted analysis, possibly reflecting variation in popu-
lations, SVD lesion burden or PVS assessment methods (Debette et al.,
2019; Francis et al., 2019)

To date quantification of PVS on MRI to study associations with
vascular risk factors and other imaging variables has mainly relied on
qualitative visual scores (Potter et al., 2015a). Visual scores mostly
categorise subjects into those with no, mild, moderate and abundant
numbers of PVS in characteristic regions, namely basal ganglia, mid-
brain and centrum semiovale. While robust, these ordinal scales are
inherently insensitive due to the limited number of categories, floor and
ceiling effects, and may be affected by observer bias Potter et al.
(2015a).

Tools for computational PVS quantification have been developed
(Valdés-Hernández et al., 2013; Ramirez et al., 2015; González-
Castro et al., 2016; Wang et al., 2016; Ballerini et al., 2018;
Boespflug et al., 2018; Dubost et al., 2019a, 2019b). Whereas some
methods provide total PVS burden and/or count (Ramirez et al., 2015;
Wang et al., 2016; Dubost et al., 2019b), depending on the detection
method, it is possible to derive several additional metrics including the
total count and total volume per subject's brain, plus the size, length,
width, shape (Ballerini et al., 2018; Boespflug et al., 2018) and direc-
tion of each individual PVS (Ballerini et al., 2018), which can then be
analysed as mean or median per subject or per brain region. The de-
tailed size, shape and directionality metrics may increase sensitivity
and/or specificity to detect PVS associations with vascular risk factors,
brain disease and longitudinal change in brain lesions or structure.
Furthermore, a reliable computational method may increase the effi-
ciency and consistency of analysis in very large datasets, e.g. in popu-
lation imaging studies. The computational method developed by Bal-
lerini and colleagues (Ballerini et al., 2018) was able to assess PVS in
the centrum semiovale in two small independent older age cohorts (age
64–72 years): individuals with a clinical diagnosis of dementia
(n = 20), and patients who previously had minor stroke (n = 48), in
whom there was good agreement between PVS visual rating and com-
putational measures (Ballerini et al., 2016, 2018).

Here, we evaluate this PVS computational method in a large com-
munity-dwelling older age cohort scanned at age 73 years. We assess
the agreement between the computationally-derived PVS metrics (total
volume and count, individual size, length and width) and the ‘reference
standard’ PVS visual score. We also evaluate associations between each
of five new PVS measures and important vascular risk factors (hy-
pertension, diabetes, plasma cholesterol), vascular disease history, and
WMH burden on brain MRI.

2. Materials and methods

We analysed structural brain MRI data from 700 community-
dwelling individuals from the Lothian Birth Cohort 1936, who were
mean age 72.6 (SD = 0.7, range 71.1 to 74.2) years at time of scanning.
Written informed consent was obtained from each participant under
protocols approved by the Lothian (REC 07/MRE00/58) and Scottish
Multicentre (MREC/01/0/56) Research Ethics Committees (http://
www.lothianbirthcohort.ed.ac.uk/) (Deary et al., 2007).

All clinical and imaging acquisition methods, and the visual and
computational assessment of WMH and PVS visual scores in this cohort
have been reported previously (Deary et al., 2007; Wardlaw et al.,
2011; Taylor et al., 2018). Briefly, structural brain MRI data were ac-
quired using a 1.5-Tesla GE Signa Horizon HDx scanner (General
Electric, Milwaukee, WI), with coronal T1-weighted (T1w), and axial
T2-weighted (T2w), T2*-weighted (T2*w) and fluid-attenuated inver-
sion recovery (FLAIR)-weighted whole-brain imaging sequences (de-
tails in Wardlaw et al. (2011)). Medical history variables (medically
diagnosed hypertension, diabetes, hypercholesterolemia, cardiovas-
cular disease history (CVD) and stroke) were assessed at the same age as
brain imaging. A history of CVD included ischaemic heart disease, heart
failure, valvular heart disease and atrial fibrillation. Stroke included
clinically-diagnosed stroke and also those with any ischaemic or hae-
morrhagic stroke seen on MRI in subjects with no clinical history of
stroke. All medical history variables were coded as a binary variables,
indicating presence (1) or absence (0).

The validation of the PVS rating in this cohort, have been published
previously Aribisala et al. (2014). The PVS rating scale was developed
as a pragmatic visual categorisation tool in several different healthy and
diseased populations of different ages, and following analysis of other
published rating scores. It was tested and refined, and all details in-
cluding the observer reliability have been published Potter et al.
(2015a). An experienced neuroradiologist rated the PVS on T2w images
in the whole sample, cross-checking against FLAIR and T1w to avoid
rating lacunas or WMH as PVS, following the method of Potter et al.
(Potter et al., 2015a). This rating identifies the closest category on the
scale ranging from 0 (no PVS), 1 (mild; 1–10 PVS), 2 (moderate; 11–20
PVS), 3 (frequent; 21–40 PVS) or 4 (severe; >40 PVS) based on an
estimate of the number of PVS seen in the slice considered to have more
of them in the stated brain region (i.e. centrum semiovale). Another
neuroradiologist, blind to these results, generated visual ratings from a
random 20% of scans. In this subsample, intra- and inter-rater kappa
statistics of these visual scores ranged from 0.68–0.90 as published in
Aribisala et al. (2014).

WMH were also visually rated by a neuroradiologist, primarily in
FLAIR, checking the T1- and T2w where necessary. Fazekas score was
given for periventricular (PVH, 0–3) and deep white matter hyper-
intensities (DWMH, 0–3), then summed into a total WMH burden score
(0–6) (Wardlaw et al., 2011, 2013). Another consultant neuroradiolo-
gist randomly cross-checked 20% of the WMH ratings, all scans with
stroke lesions (n = 60) and any scans where the first rater was

Fig. 1. Schematic illustration of the individual PVS metrics.
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uncertain (n = 50). The final scores were agreed after discussing the
cases where discrepancies were found (Valdés Hernández et al., 2013).

Intracranial volume (ICV) and WMH volume were measured using a
semi-automatic pipeline validated and published in full previously,
which uses a multispectral data fusion of T1w, T2w, T2*w and FLAIR
(Valdés-Hernández et al., 2010). All WMH masks were visually checked
and edited. For this study we express WMH as percentage of ICV.

The PVS computational assessment used the T2w images acquired
with: 11,320 ms repetition time, 104.9 ms echo time, 20.83 KHz
bandwidth, 2 mm slice thickness, and 256 × 256 field-of-view. The
images were reconstructed to a 256 × 256 × 80 matrix, 1 mm in-plane
resolution. The binary mask of the centrum semiovale for each subject
has been obtained by mapping the T2w MRI sequence of a re-
presentative case to the native T2w space of the subject under analysis
using affine (linear) registration, and then applying the space trans-
formation to the centrum semiovale mask of the representative case.
PVS were segmented in the centrum semiovale using the computational
method described in (Ballerini et al. (2016). Briefly, this method uses
the three-dimensional Frangi filter to enhance and capture the 3D
geometrical shape of PVS. The filter parameters were optimized using
visual scores and ordered logit models to address the measurement
uncertainty and the unequal class intervals of the rating scores. The
MRI structural volumes were resliced to 1 mm isotropic voxels using an
ad hoc interpolation that calculates the intensity of each new voxel as
the average of the voxels directly above and below. The “vesselness” of
each voxel was calculated at a given set of scales using the 3D Frangi
filter. The responses of the filters were combined and thresholded.
Details of the method, including optimized parameters (filter scales and
threshold), were described in full Ballerini et al. (2016). PVS were
identified using 3D connected component analysis as tubular structures
with lengths between 3 and 50 mm. The Frangi filter, thanks to its
optimal scales, mainly enhances structures whose width is between 0.5
and 2.5 voxels, and therefore impose a soft constraint on the PVS width.
To distinguish PVS from WMH we also imposed a constraint on the
maximum volume of each PVS of 1000 voxels, calculated as the ap-
proximate volume of a cylinder of radius 2.5 and length 50 voxels.
Segmented images were saved as binary masks in the native T2w space
for subsequent analysis.

PVS count was defined as the number of connected component
objects in the segmented images, PVS volume was the total number of

voxels classified as PVS. Individual PVS features (size, length, width)
were also measured using connected component analysis. PVS ‘size’ was
defined as the volume of each individual PVS to avoid confusion with
PVS ‘volume’ which was the total volume of all the PVS in an individual
subject. PVS ‘length’ was defined as the measure of the major axis in the
ellipsoid and ‘width’ the second longest axis, perpendicular to the
longest axis. See Fig. 1 for a schematic illustration on how these in-
dividual PVS metrics have been computed. Mean, median, standard
deviation and percentiles of these features (i.e. length, width and size)
were calculated for each subject. Prior to use in statistical analysis, the
segmented binary masks, superimposed on the T2w images, were vi-
sually checked by a trained operator, and accepted or rejected blind to
all other data. Acceptable images were those where the computational
method was able to detect a reasonable amount of visible PVS, and did
not detect too many artefacts as PVS (see Fig. 2). Other sequences
(FLAIR and T1w) were checked in case of ambiguity and cases with
WMH detected as PVS were excluded. A small amount of false positives
and negatives was considered acceptable. A repeatability test was
performed on a subset of the cases (n = 50). In this subsample, kappa
statistics was 0.696 (std error 0.107, 95%CI [0.487 to 0.905]). Reasons
for exclusions were: failed registration of the centrum semiovale (6%),
noise (26%), and misclassified WMH (8%). All PVS measurements were
calculated in the native T2w space.

WMH and PVS segmentations were separate procedures performed
at different times by different operators blind to each other and to
clinical variables, using MATLAB versions R2012b (WMH), and
MATLAB R2014b (PVS). PVS width, shape and length were determined
using the MATLAB function regionprops3 (version 1.3.0.0) from the
MATLAB File exchange. WMH masks were visually checked on FLAIR
and PVS masks on T2w, looking at other sequences as needed. The
visual checking of segmented masks was performed separately and in-
dependently from visual rating. Examples of PVS and WMH segmen-
tations are shown in Fig. 3.

2.1. Statistical analyses

First, we compared the proportion of the sample for which PVS
computational measures were available to those who underwent MRI
but did not have PVS data using Welch two sample t-tests and chi-
squared tests.

Next, univariate associations between each of the computational
PVS measures and the visual rating scale were calculated. We also
tested for differences between males and females in the computational
PVS measures and visual ratings using Welch two sample t-tests and chi-
squared tests respectively.

Finally, we investigated the relationships between visually rated
and computational PVS measures (volume, count, mean width, mean
length & mean size) and a variety of outcome variables using general-
ized linear models. Specifically, we looked at the relation of each PVS
measure with total WMH Fazekas visual rating scores, WMH volume as
a percent of ICV, hypertension, hypercholesterolemia, diabetes, CVD
history, previous stroke, and age.

For each outcome, we modelled the association with each PVS
measure, controlling for key covariates, including age, sex, and hy-
pertension (excluded from models where these were outcomes of in-
terest). Given the measurement and observed distribution of the out-
comes of interest, three different generalised linear models were
applied. For Fazekas visual rating scores and age, a standard linear
model was applied. For models with hypertension, hypercholester-
olemia, diabetes CVD and stroke as outcomes, we fitted binary logistic
regressions.

For WMH volume as a percent of ICV, which is both a proportion
and heavily positively skewed, we applied beta regression with a logit
link. The standard beta regression model does not allow values to be
exactly zero or one. No values in the current data approached one, but
several zero values were converted to small positive values using the

Fig. 2. Examples of acceptable and not acceptable images. On the top row, blue
arrows indicate missed PVS, probably due to a non-perfect registration of the
centrum semiovale template; yellow arrows indicate possible false positive due
to background texture and interface between white matter and grey matter. On
the bottom row, images on the left and middle are rejected due to noise, right
image due to small WMH identified as PVS.
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following transform as per (Ferrari and Cribari-Neto, 2004):

= +WMH WMH n
n

* ( * 1) 0.5

where n is the sample size.
In order to compare the magnitude of the associations between each

PVS measure and each outcome, we present point estimates and con-
fidence intervals, and evaluate the models using the Akaike and
Bayesian Information Criterion (AIC and BIC respectively). Each of the
WMH measures was z-transformed prior to running of the models to
ensure comparability of effects. Non-overlapping confidence intervals
were taken as indicative evidence of significant difference in effects.
Stronger effects were taken as evidence for the criterion validity of a
particular WMH measure. Differences of approximately 10 for BIC, and
smaller AIC values, between the visual rating models and any of the
computational variables were taken as indicative of a practical im-
provement in the model (Raftery, 1995; Burnham and Anderson, 2002).
We dealt with multiple comparisons as recommended by
Perneger (1998). We transparently report all results, including those

with borderline significance, the effect of adding or reducing covariates
to the regression models, and discuss them.

3. Results

In total, PVS segmentation was classed as acceptable for 540/700
(77%) participants. The cases that could not be processed were mainly
due to noise and to motion artefacts that appeared in the MRI data as
parallel lines similar to PVS. See example of accepted and rejected
images in Fig. 2. Whereas it is common to edit WMH masks, PVS are
tiny and numerous making the masks nearly impossible to edit.
Therefore we excluded 160 (23%) of the original sample in which ar-
tefacts were wrongly segmented as PVS. The participants with
(n = 540) and without (n = 160) computational measures did not
differ in the proportion of males (χ2(1) = 0.055, 95% CI [−0.076 to
0.055], p = 0.815), or with hypertension (χ2(1) = 0.410, 95% CI
[−0.088 to 0.042], p = 0.522), hypercholesterolemia (χ2(1) = 3.484,
95% CI [−0.130 to 0.004], p = 0.062), diabetes (χ2(1) = 1.987, 95%
CI [−0.193 to 0.036], p = 0.159), CVD (χ2(1) = 1.548, 95% CI

Fig. 3. Bottom row: Examples of PVS (yellow) and WMH (cyan) segmentations. The middle and left images show WMH clearly separate from PVS. The right image
shows some WMH and PVS overlap, however WMH are around PVS (the method did not segment all the WMH as PVS). Top and middle rows: Corresponding T2w and
FLAIR source images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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[−0.023 to 0.119], p = 0.213) or stroke (χ2(1) = 0.214, 95% CI
[−0.061 to 0.111], p = 0.644). There were also no differences between
the groups with respect to WMH volume (Welch t(210.09) = −0.623,
95% CI [−0.002 to 0.001], p = 0.534) nor Fazekas total score (Welch t
(223.98) = −1.398, 95% CI [−0.366 to 0.062], p = 0.164). However,
the group with successful computational PVS segmentation data were
younger by average 51 days (with PVS data = 72.51 years; without PVS
data = 72.66 years, Welch t(244.4) = 2.14, 95% CI [0.011 to 0.273],
p = 0.034).

All other data required for analyses were available for 533/540
participants. Therefore 533 was the final sample size for all subsequent
analyses.

Table 1 shows the descriptive statistics for each variable. WMH is
shown as percentage of ICV. PVS volume is measured in voxels. Age is
re-scaled to years. Of the 533, 249 (48%) were female, 254 (35%) had
hypertension, 209 (39%) were hypercholesterolaemic, 51 (9.5%) had
diabetes, 151 (28%) had CVD history and 94 (18%) had stroke.

The correlations between the visual rating and all computational
PVS measures are provided in Table 2. The visual rating correlated
positively with all computational PVS measures (r range = 0.47 to
0.61), with the highest correlation being with computational PVS vo-
lume (r = 0.61). Scatter plots of the agreements between visual rating
and PVS count in one slice are shown in Fig. 4. The frequency of the
visual scores and the computational PVS count in the axial slice having
the highest number of PVS for each subject are shown in Fig. 5.

Segmented images are shown in Fig. 6. Distribution of PVS metrics are
shown in Fig. 7.

There were no differences between males and females in computa-
tional PVS mean length (Welch t(528.62) = −0.345, 95% CI [−0.109
to 0.076], p = 0.73), width (Welch t(523.24) = −0.727, 95% CI
[−0.084 to 0.039], p = 0.468), size (Welch t(500.26) = −1.230, 95%
CI [−1.385 to 0.283], p = 0.195), or in visual rating (χ2(3) = 0.087,
p = 0.993). However, there were significant differences in computa-
tional PVS total count (Welch t(529.49) = 3.673, 95% CI [13.741 to
45.333], p<0.05; male mean = 271.87; female mean = 242.33) and
total volume (Welch t(530.81) = 2.125, 95% CI [20.178 to 513.21],
p = 0.034; male mean = 3399.37 mm3; female
mean = 3132.68 mm3).

Fig. 8 displays the odds ratios (OR) and 95% confidence intervals
(CI) for associations between each PVS measure and vascular risk fac-
tors, CVD and stroke. Larger PVS mean size and width were associated
with hypertension (PVS size mean = 1.22, 95% CI [1.03 to 1.46]; PVS
width mean = 1.20, 95% CI [1.01 to 1.43]), and stroke (PVS size
mean = 1.34, 95% CI [1.08 to 1.65]; PVS width mean = 1.36, 95% CI
[1.08 to 1.71]). For both hypertension and stroke, although the other
PVS measures showed consistent direction of effect (OR's ≥ 1.0), the
95% CI overlapped the line of no effect. There were no associations
between PVS measures and cholesterol, diabetes or CVD. Further, there
were no differences in AIC or BIC for any index beyond the noted
threshold, a pattern that indicates no difference in the estimates across
PVS measures. (See supplementary Table S1).

Fig. 9 displays the standardized regression coefficients and 95% CIs
for the models of PVS associations with age, Fazekas total WMH score
and WMH volume. For age, within the very narrow age range of the
cohort, all PVS measures had effects close to zero, with most CIs in-
cluding zero except for a marginal association between PVS total vo-
lume and age (0.08, 0.02–0.14). For the associations between PVS with
Fazekas total scores and WMH volume models, firstly there were clear
associations for all PVS measures and WMH, with standardised betas
ranging from 0.21 to 0.66 (Fazekas WMH score) and 0.14 to 0.43
(WMH volume). Secondly, the computational PVS total volume, mean
length, mean width and mean size all showed significantly stronger
associations with WMH Fazekas score (range β = 0.44, 95% CI [0.36 to
0.53] to β = 0.66, 95% CI [0.59 to 0.74]) and WMH volume (range
β = 0.28, 95% CI [0.21 to 0.33] to β = 0.43, 95% CI [0.38 to 0.48])
than the corresponding associations with PVS total count (WMH Fa-
zekas score β = 0.21, 95% CI [0.11 to 0.3]; WMH volume β = 0.14,
95% CI [0.09 to 0.19]) and PVS visual score (WMH Fazekas score
β = 0.26, 95% CI [0.17 to 0.35]; WMH volume β = 0.15, 95% CI [0.09
to 0.20]). This difference is supported by differences in AIC and BIC
(>10; see Supplementary Table S1). The PVS measure with the stron-
gest association with WMH Fazekas score and WMH volume was PVS
mean size (Fazekas β = 0.66, 95% CI [0.59 to 0.74]; WMH β = 0.43,
95% CI [0.38 to 0.48]).

4. Discussion

To our knowledge, this is the first study to compare multiple

Table 1
Sample descriptive statistics for complete cases (n = 533).

Mean SD Median Min Max Skew

Age 72.51 0.69 72.51 70.98 74.16 0.08
WMH volume%ICV 0.01 0.01 0.01 0.00 0.07 2.64
Fazekas total WMH

score
2.47 1.14 2.00 0.00 6.00 0.88

PVS visual rating 2.16 0.71 2.00 1.00 4.00 0.18
PVS Count 258.07 94.81 251.00 23.00 536.00 0.34
PVS volume(mm3) 3274.78 1464.42 3098.00 245.00 8282.00 0.58
PVS mean length

(voxels)
3.94 0.54 3.90 2.61 5.93 0.07

PVS mean width
(voxels)

2.01 0.36 1.99 1.21 3.36 0.26

PVS mean size(mm3) 13.76 4.85 12.59 6.27 34.80 1.05

Binary Variables Male Female

Sex 284(53.28%) 249(47.72%)

No Yes

Hypertension 279(52.35%) 254(47.65%)
Diabetes 482(90.43%) 51(9.57%)
Cholesterol 324(60.79%) 209(39.21%)
Cardiovascular disease 382(71.67%) 151(28.33%)
Stroke 439(82.36%) 94(17.64%)

Note: PVS: perivascular spaces, WMH: white matter hyperintensities, ICV: in-
tracranial volume, WMH volume is expressed as percentage of ICV.

Table 2
Correlation coefficients (lower diagonal) and 95% confidence intervals (upper diagonal) between the computational PVS measures and visual ratings (n = 533).

1 2 3 4 5 6

1. PVS visual rating – 0.52–0.64 0.56–0.67 0.49–0.61 0.45–0.58 0.40–0.54
2. PVS Count 0.59 – 0.91–0.93 0.67–0.75 0.62–0.71 0.48–0.60
3. PVS volume 0.61 0.92 – 0.83–0.87 0.82–0.87 0.77–0.83
4. PVS mean length 0.55 0.71 0.85 – 0.94–0.95 0.87–0.90
5. PVS mean width 0.52 0.66 0.84 0.94 – 0.93–0.95
6. PVS mean size 0.47 0.54 0.80 0.88 0.94 –

Note: Associations between PVS visual rating and the computational PVS measures are polyserial correlations given the ordered categorical nature of the visual
ratings. All other associations are Pearson's correlations. Consideration of the 95% confidence intervals suggests all coefficients differ from zero.
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measures of PVS enlargement, derived using a computational segmen-
tation method on 1.5T MRI data, with vascular risk factors and WMH
burden. The ability to derive multidimensional measures of PVS from
conventional brain MRI represents a major advance for research in
ageing, SVDs, and cognitive impacts. In this Scottish cohort of com-
munity-dwelling individuals at the beginning of their 8th decade of life,
computational PVS measures and visual rating scores were moderately
to highly correlated, but measures of individual PVS size were more
strongly associated with stroke and WMH than number of PVS, with
marginal to no associations with hypertension, diabetes, hypercholes-
terolemia or CVD. The cross-sectional association of increasing in-
dividual PVS mean width and size with more severe WMH is consistent
with the hypothesis that PVS widening reflects small vessel endothelial
dysfunction and impaired interstitial fluid drainage (Rasmussen et al.,
2018) contributing to accumulating brain damage during ageing and in
SVD (Brown et al., 2018), although further longitudinal studies are
required to determine the direction of effect. The exact mechanisms of
PVS enlargement are still unknown. Some hypotheses on the dysfunc-
tion of the interstitial fluid clearance and inflammation have already
been presented, summarised in Brown et al. (2018);
Rasmussen et al. (2018). Importantly, the detailed metrics provided by
this computational PVS method facilitate analysis of large scale popu-
lation studies as well as detailed focused interventional studies, both of
which increase the scope for determining, in humans in vivo, how PVS
and glymphatic system dysfunction contribute to age-related brain
changes and common neurological disorders including stroke, SVD and

dementia.
We found few to no associations between PVS metrics derived

mainly in the centrum semiovale and several common vascular risk
factors except very marginal associations of PVS width and size with
hypertension. A systematic review (Francis et al., 2019), found asso-
ciations between basal ganglia PVS rated visually and hypertension, but
with significant between–study heterogeneity; in contrast, PVS in the
centrum semiovale were not associated with hypertension (although
the direction of effect was similar) Our findings, using computational
PVS, agree with these findings, consistent with the observation that risk
factors for PVS may differ by brain region. This could be due to regional
variations in vessel and PVS anatomy with variations in fibrohyaline
thickening, lipohyalinosis and cerebral amyloid angiopathy
(Wardlaw et al., 2003), which in turn may affect vessel-brain fluid
exchange and PVS morphology (Wardlaw et al., 2003; Hurford et al.,
2014; Zhang et al., 2014).

Older age has been associated with increased PVS visual rating
scores (Francis et al., 2019) but the narrow age range of the current
community dwelling individuals may have restricted our ability to
identify associations between PVS parameters and age.

The positive associations between increasing PVS metrics and WMH
burden are in agreement with some previous studies (Doubal et al.,
2010; Zhu et al., 2010; Aribisala et al., 2014; Potter et al., 2015b;
Ramirez et al., 2015; Arba et al., 2016; Laveskog et al., 2018), although
the association of PVS and WMH did not reach significance in the small
subset of studies that could be included in a meta-analysis

Fig. 4. (a) Agreement between the number of PVS in one slice of the left and right hemisphere and the PVS visual rating scores, (b) Agreement between compu-
tational and visual score.
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(Francis et al., 2019). Contrary to the Rotterdam scan study
(Dubost et al., 2019b) which found associations of PVS in basal ganglia
and hippocampi, but not in the centrum semiovale, with WMH, we
found positive associations in centrum semiovale. However, it is note-
worthy that they used a visual and an automatic score whereas our
computational measures include count but not a score. Indeed, the
stronger PVS associations in our work were the measures that differ
most from scores in that they reflect PVS geometry rather than count.

The study suggests that computational and visual rating methods
both have strengths since they largely agree on rank order of PVS
burden and thus the choice of PVS assessment method to use in future
studies could be determined by the imaging characteristics. For in-
stance, the computational method requires quasi isotropic T2w images,
whereas the visual rating approach is more flexible and can be per-
formed on 2D T2w imaging data acquired at low magnetic field
strengths and with fewer slices. The computational method is less rater
dependent and in principle should be more reproducible. Despite dif-
ferences in computational methods and visual rating scales attempting
to assess PVS, our results replicate the positive association between

visual scores and computational methods found by other studies
(Ramirez et al., 2015; Boespflug et al., 2018). This further supports the
use of these methods in larger studies and provides an opportunity to
quantify small changes in longitudinal studies.

Comparing our results to those obtained with previous computa-
tional methods, the overall PVS burden (total volume and count) of our
cohort is higher than those reported by Boespflug et al.
Boespflug et al. (2018) in an older population and by Ramirez et al.
Ramirez et al. (2015) in individuals with a clinical diagnosis of de-
mentia. However, subject-wise PVS mean width is comparable with that
reported in a previous study Boespflug et al. (2018). Differences in
reporting results prevents a full comparison and highlights the need for
harmonization.

This study has some limitations. The visual rating puts the PVS
burden in the region into one of five categories rather than providing a
total count of PVS, while PVS detection by automated methods, al-
though having the potential to turn categories into absolute total
numbers, is still a relatively new technique which is far from perfect
and subject to ongoing improvements, as are WMH detection methods.

Fig. 5. Bar plots showing the frequency of the visual scores in the sample (left) and results of the computational PVS count in one hemisphere in the axial slice
identified as having the highest PVS number for each subject (right).

Fig. 6. Examples of segmented images, for each of the 4 visual rating scale categories from low (left) to high burden (right). PVS in yellow superimposed on T2w.
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For instance, the segmentation of PVS in the centrum semiovale is not
always accurate due to variation in gyral patterns that occasionally
cause misclassification of PVS outside the centrum semiovale mask. The
PVS segmentation method used works on the hemispheric white matter
superior to the basal ganglia, and therefore the results only reflect as-
sociations with PVS in this major brain region but not the basal ganglia.
Future extension of this method to other brain regions, such as the basal
ganglia, may be possible. The second limitation was that it was only
possible to obtain valid quantitative PVS measures in 77% of this
sample of subjects, the main reasons for failure in the other 23% being
image degradation due to movement artefact, a resulting small bias
through loss of data from older subjects (on average subjects who did
not contribute data were 51 days older) may have influenced the ana-
lysis of PVS morphology with age. The PVS method also could provide a
measure of PVS shape and directionality, which we did not use in the
present analysis in view of potential difficulties in interpretation. Also,
for accuracy, measurements were done in native space. The non-iso-
tropic nature of our images is also a limitation to the accuracy of the
width and length measurements. While for bigger brain structures is
common to convert from voxels to mm based on the voxel size, in the
case of tiny structures as PVS such conversion to true measures would
be an approximation. The resampling to isotropic images required to
apply the Frangi filter could affect the reliability of the output. Different
interpolation methods would have yielded different results, and would
have perhaps produced different output, and the calculation of the
volume occupied by PVS would have varied depending on the ap-
proach. The results, therefore, must be interpreted with caution. These
limitations are partially due to the use of retrospective data, which were
not optimized for PVS segmentation. A recommendation for future
studies would be to acquire isotropic images to overcome these lim-
itations. The region of interest selected also deserves reflection: al-
though visual rating scales refer to the centrum semiovale

(Francis et al., 2019), the clinical literature partly refers to the “white
matter”, which covers a more extensive region of deep white matter
(Ramirez et al., 2016). More efforts in harmonising and validating a
unified approach and its variations depending on the acquisition pro-
tocol to ensure reproducibility and consistency is needed. We used di-
agnosis of vascular risk factors rather than measures of blood pressure,
blood glucose or lipids; it is possible that PVS metrics might show
stronger associations with blood pressure and plasma measures in fu-
ture analyses. The strengths include the large sample, the careful
blinding of image analysis, the use of visual scores and computational
metrics, and the robustness of the analyses of associations between
imaging variables, accounting for relevant risk factors and vascular
disease.

In conclusion, the metrics derived from this computational PVS
segmentation could advance understanding the role of PVS. However,
given limitations in the acquisition protocol, the PVS measurements
used are only proxies of the PVS burden and characteristics in the
centrum semiovale. Widening of PVS is thought to indicate stagnation
of interstitial fluid drainage, deposition of cell and protein debris and
increased blood brain barrier leakage, all contributors to white matter
damage in SVD including amyloid angiopathy, and to secondary neu-
rodegeneration. Knowledge of PVS is relevant in understanding the
brain fluid dynamics underpinning dementia and stroke through the
common denominator of SVD (Ramirez et al., 2016; Brown et al., 2018;
Rasmussen et al., 2018).
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