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Influence of host genetics 
in shaping the rumen bacterial 
community in beef cattle
Waseem Abbas1,4, Jeremy T. Howard1,4, Henry A. Paz1,2, Kristin E. Hales3, James E. Wells3, 
Larry A. Kuehn3, Galen E. Erickson1, Matthew L. Spangler1* & Samodha C. Fernando1*

In light of recent host-microbial association studies, a consensus is evolving that species composition 
of the gastrointestinal microbiota is a polygenic trait governed by interactions between host genetic 
factors and the environment. Here, we investigated the effect of host genetic factors in shaping the 
bacterial species composition in the rumen by performing a genome-wide association study. Using 
a common set of 61,974 single-nucleotide polymorphisms found in cattle genomes (n = 586) and 
corresponding rumen bacterial community composition, we identified operational taxonomic units 
(OTUs), Families and Phyla with high heritability. The top associations (1-Mb windows) were located 
on 7 chromosomes. These regions were associated with the rumen microbiota in multiple ways; 
some (chromosome 19; position 3.0–4.0 Mb) are associated with closely related taxa (Prevotellaceae, 
Paraprevotellaceae, and RF16), some (chromosome 27; position 3.0–4.0 Mb) are associated with 
distantly related taxa (Prevotellaceae, Fibrobacteraceae, RF16, RFP12, S24-7, Lentisphaerae, and 
Tenericutes) and others (chromosome 23; position 0.0–1.0) associated with both related and unrelated 
taxa. The annotated genes associated with identified genomic regions suggest the associations 
observed are directed toward selective absorption of volatile fatty acids from the rumen to increase 
energy availability to the host. This study demonstrates that host genetics affects rumen bacterial 
community composition.

Complex and diverse microbial communities facilitate the degradation of nutrients within ruminants1. The 
composition of this complex microbial community is shaped by the highly dynamic physical, chemical, and 
predatory conditions within the rumen, and potentially by genetic factors of the host1–6. In turn, the microbial 
community contributes to the environmental conditions within the rumen and the nutrient availability to the 
host2. This complex microbial community can covert otherwise unusable organic matter into useable protein 
and energy and can provide up to 70% of the animal’s protein and energy needs7 in the form of microbial cell 
protein (MCP) or volatile fatty acids (VFAs) for host metabolism. Therefore, ruminal microbial diversity and 
abundance critically influences nutrient cycling and when inorganic nutrients and carbon are made available 
for host consumption. As such, differences in the microbial community can change the energy profiles available 
to the ruminant host and its subsequent performance.

In ruminants, the microbial population is established by successive waves where convergence of microbial 
populations are seen reaching a more stable population structure8–11. The establishment of a gut microbial 
community is influenced by multiple factors, including diet, environment, and host genotype2–6,12,13. Among 
these contributors, the influence of diet on gut microbial population structure is well established14–17. Rumen 
bacterial species’ and functional composition of the rumen microbiota is an important factor that contributes 
towards animal performance and efficiency18. Additionally, studies in small ruminants have demonstrated the 
host mucosal innate immune function to affect rumen microbial community composition19. With studies dem-
onstrating host genetics to influence host immunity20, it is tempting to speculate in ruminants, host genetics may 
directly or indirectly affect rumen microbial community composition. However, our understanding of how a 
stable rumen microbial community assembles and what factors affect rumen microbial community composition 

OPEN

1Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA. 2Department of Animal and 
Dairy Science, Mississippi State University, Starkville, MS, USA. 3Meat Animal Research Center, Clay Center, 
NE 68933, USA. 4These authors contributed equally: Waseem Abbas and Jeremy T. Howard. *email: mspangler2@
unl.edu; samodha@unl.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72011-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15101  | https://doi.org/10.1038/s41598-020-72011-9

www.nature.com/scientificreports/

and function is limited. One such process that is still largely unknown is how the ruminant host genotype effect 
rumen microbial community assembly. Recent studies have demonstrated that the rumen microbiota is influ-
enced by host genetic factors5,6,21 In mammals, Benson et al. demonstrated genome-wide linkages of bacterial 
taxa abundance in the murine gut using Quantitative Trait Locus (QTL) mapping. While breeds did not have 
broad representation, a recent study suggested that microbial phylotypes can be influenced by the sire breed and 
can impact host metabolism22.

In light of these recent host-microbial association studies, a consensus is evolving that species’ composition 
of the gastrointestinal microbiota is a polygenic trait governed by interactions between host genetic factors and 
the environment. As such, genome-wide association studies (GWAS) can be used to identify host chromosomal 
regions and a subset of single nucleotide polymorphisms (SNP) that influence microbiome composition and 
function in the rumen. Here we evaluated the effect of host genetic factors in shaping the bacterial species 
composition in the rumen and the role of such associations on host metabolism by performing a genome wide 
association study using different cohorts of beef cattle totaling 586 animals. All animals were genotyped using 
medium to high density single nucleotide polymorphisms (SNP) chips (770 K,150 K, or 80 K) and the underly-
ing SNPs were used for analysis of genome wide associations using the bacterial community composition as the 
phenotype. The rumen microbial community of all 586 animals were phenotyped by sampling and character-
izing the V4 region of the 16S rRNA gene and was used as a collection of individual traits to perform GWAS 
to identify host chromosomal regions and subset of SNP that influence bacterial community composition and 
assembly within the rumen. This study provides detailed and novel insight into how host genotype in ruminants 
can influence rumen microbial assembly. We also quantify the genomic heritability for bacterial taxonomic traits 
thus identifying the degree to which they are controlled by host genetic background. This study also demonstrates 
the potential to utilize associations between rumen microbiota and genetic markers for use in genomic selection 
and marker-assisted management that can be used to improve feed efficiency, animal health and microbiome 
manipulation mediated by selecting for favorable microbial taxa within the rumen.

Results
The bacterial populations within the cattle rumen.  The bacterial community within the rumen 
microbiome of 8 cohorts were phenotyped by sequencing the V4 region of the 16S rDNA gene. The sequencing 
resulted in 18,992,394 quality filtered reads which included 9,755,502 reads from the USMARC cattle cohorts 
and 9,236,892 reads from the UNL cohorts. The rarefaction curves and goods coverage tests displayed adequate 
sampling depth to provide a detailed and quantitative estimate of the rumen bacterial community composition 
within each animal. The taxonomic classification of normalized OTUs at phylum, family and OTU level were 
performed using Naive Bayes classifier23 using the greengenes database24. This analysis detected 439 genera, 
237 families, 131 orders, 68 classes and 32 phyla from 7,228 OTUs identified from the 586 animals sequenced. 
The distribution of taxa across all cohorts were similar with the exception of family Succinivibrionaceae which 
were greater in the USMARC cohorts (Fig. 1). The relative abundance of the major phyla included Bacteroidetes 
48.85%; Firmicutes 24.95%; Proteobacteria 13.3%; Verrucomicrobia 3.14% and Tenericutes 2.24%.

The distribution of OTUs across the cohorts displayed wide animal-to-animal variation, therefore to better 
characterize taxa that are more conserved across animals and variable in abundance, a core measurable micro-
biome (CMM) was identified from the total dataset. To ensure robust repeatability of bacterial phenotyping only 
OTUs present in at least 1% of the animals and was also part of the CMM were used for subsequent analysis. The 
CMM contained 99.94% of the total reads generated and therefore represent a major portion of the rumen bacte-
rial population. A principal coordinate analysis (PCoA) (supplementary figure S3) and PERMANOVA analysis 
were performed to identify combined effects of diet, sex, location on microbial community. As all factors (diet, 
sex, location) cannot be untangled from each other, the PERMANOVA analysis was performed using manage-
ment type to reflect the collective effect of all above factors. PERMANOVA analysis displayed a significant effect 
of management type (p < 0.001) on microbial community composition. Therefore, in the model used for GWAS 
analysis, we included contemporary group (concatenation of management type and year) as a fixed effect to adjust 
for the variation in the microbial community composition resulting from management type.

Rumen bacterial community behaves as a “polygenic trait”.  To determine the extent of and to cor-
rect for population structure, a principle component analysis (PCA) on a genomic relationship matrix (G) was 
utilized. The first two principle components annotated by location (UNL and USMARC) are illustrated in Fig. 2. 
The degree of population differentiation across the two feeding locations was minimal as the first principal com-
ponent only described 3% of the variation in population structure. We utilized genome wide association analysis 
using SNP to assess the contribution of host genotype to the variation of bacterial taxa within the rumen. Nor-
malized abundance of each OTU, family and phylum were used as traits to test for associations with 61,974 SNP.

The posterior mean heritability estimates determined using a Bayesian genomic best linear unbiased pre-
diction (GBLUP) model across classes within OTU, family, and phylum level were 0.161, 0.150, and 0.194, 
respectively. Although posterior mean heritability estimates were low, some taxonomic groups displayed high 
heritability estimates. The maximum heritability estimates of OTU, family, and phylum level were, 0.820, 0.722, 
and 0.722, respectively (Fig. 3). Taxa belonging to phyla Euryarchaeota, TM6 and Proteobacteria and families, 
Methanobacteriaceae, Sphaerochaetaceae, and Succinivibrionaceae had heritability estimates greater than 0.5. 
Additionally, 364 OTUs had heritability estimates higher than 0.5 (supplementary Tables S2, S3, and S4). The 
effective sample size and summary statistics of heritability estimates are shown in supplementary figure S1.

For genome wide association analysis, the estimated additive genetic effects across animals were decomposed 
into marker effects across OTU, family, and phylum within each group. Chromosomal regions with the larg-
est WGEBV for the selected OTU, family, and phylum are shown in Table 1. The identified SNP in the bovine 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15101  | https://doi.org/10.1038/s41598-020-72011-9

www.nature.com/scientificreports/

genome and the phylogenetic relationship of the associated taxa are shown in Fig. 4. The 1-Mb chromosomal 
regions explained 0.32–3.24% (supplementary Table S5) of the phenotypic variation, where the largest varia-
tion was associated with OTU4 and family Prevotellaceae. Genomic associations were observed across diverse 
phylogenetic groups where associations were detected across 7 different phyla including the 4 major phyla that 
represent more than 90% of the rumen bacterial population (Fig. 4). The SNP associated with bacterial taxa 
were distributed across 7 autosomal chromosomes with chromosome 9 and 27 demonstrating associations at 
phylum, family and OTU level. Additionally, some taxa at OTU, family and phylum level were associated with 2 
different SNP located on different chromosomes. As described previously21, this suggests the rumen microbiota 
is a heritable, polygenic trait. 

Different taxonomic levels are under host genetic control.  The majority of the associations were 
identified at the OTU level. However, phylum and family level associations were also detected on chromosomes 
9 and 27 in addition to OTU associations. As such, to determine if higher taxonomic level associations detected 
are a result of higher abundance of a single OTU, we performed correlation analysis between taxa on chromo-
somes 9 and 27 (Fig. 5). Correlation analysis demonstrated that some phylum level associations are driven by 
one family belonging to that phylum (phylum Fibrobacter and family Fibrobacteriaceae r = 1.0; phylum Proteo-
bacteria and family Succinivibrionaceae r = 0.999; phylum Verrucomicrobia and family RFP12 r = 0.955). How-
ever, other phyla did not show such correlations with family level associations (Firmicutes, Lentisphaerae, and 
Tenericutes). A similar trend was seen between OTU level associations and family level associations where a few 
associations were highly correlated (OTU3 and family RF16 r = 0.994, and OTU28 and family Fibrobacteriaceae 

Figure 1.   Distribution of taxa across all cohorts. The heatmap above displays the abundance and distribution 
of all taxa identified in at least 1% of the total animals (n = 586). The relative abundances of 237 families present 
within the CMM is shown above. The columns represent the samples and rows represents the relative abundance 
of each family. Top 17 families which accounts for nearly 90% abundance of all the families are labeled in the 
heatmap.
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r = 0.895) (supplementary Figure S2). However, a majority of the associations detected at OTU level were unique 
and did not have correlated families.

Host adapted bacterial species in the rumen.  Relatively large SNP associations were detected between 
genus Methanobrevibacter, Succiniclasticum, Prevotella, and Fibrobacter. Among the major genera associated 
with host genetics Prevotella was the most predominant genera. Succiniclasticum was significantly associated 
with both chromosome 1 and 2 similarly Prevotella was associated with chromosomes 2, 6, 9, 19, 23 and 27 
(Table 1 and supplementary table S6). Methanobrevibacter was associated with chromosome 1 and Fibrobacter 
was associated with chromosome 27 (Table 1 and supplementary table S6). As described previously21, pleiotropic 
effects (having multiple effects from a single gene) were observed in many taxa. Including SNP that affect closely 
related taxa such as the associations observed on chromosome 9 for family Veillonellaceae and Clostridiaceae; 
and the association between Prevotella and Paraprevotella on chromosome 23. These observations suggest that 
genes in these 1  Mb regions can independently or in unity affect bacterial distribution and structure in the 
rumen. Additionally, the associated 1 Mb region on chromosome 27 is associated with the bacterial community 
composition of very diverse bacterial communities including phylum Fibrobacteres, Lentisphaerae and Teneri-
cutes. As such, this genomic region can affect multiple diverse taxa within the rumen microbiome. Finally, we 
also detected genomic regions in multiple chromosomes that control the same bacterial genera. For example, 
OTU30 belonging to genus Prevotella was associated with 1 Mb regions in chromosomes 6, and 23. Additionally, 
OTU2337 belonging to genus Succiniclasticum was associated with 1 Mb regions in both chromosome 1 and 2. 
Similarly, OTU53 and OTU72 was associated with 1 Mb regions in chromosomes 6, 9, 23 and chromosomes 19, 
23. OTU72 was associated with two different 1 Mb regions in chromosome 23.

Figure 2.   First and Second principle components of the genomic relationship matrix for USMARC and UNL 
animals demonstrating limited genomic variation in the two locations1. A genomic relationship matrix was 
constructed for all the animals sampled from USMARC and UNL using the SNP information. The principal 
component analysis (PCA) was run on genomic relationship matrix and first two principal components (PC1 
and PC2) were plotted1. USMARC refers to animals that were fed at either the U.S. Meat Animal Research 
Center and UNL refers to animals fed at the University of Nebraska-Lincoln.
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Discussion
The rumen microbiome has recently begun to be explored1,25–27. Similar to the mammalian intestinal microbiota, 
the cattle rumen microbiota is dominated by Bacteriodetes, Firmicutes, and Proteobacteria (based on type of 
diet)14,15,25,26. However, cattle rumen microbiota is distinct from intestinal microbiota of monogastric animals 
because it has a considerable proportion of members of the Phylum Fibrobacter, which are involved in fiber 
digestion, and because the microbial communities in the rumen utilize the diet before the host digestive system.

Figure 3.   Posterior heritability estimates and summary statistics across taxa for phylum, family and operational 
taxonomic unit (OTU) categories. The relative abundances of Phyla, Families and OTUs were used to estimate 
the posterior heritability by using the GBLUP model (see “Methods”). The histograms represent the number 
of Phyla, Families and OTUs that fall into a specific range of posterior heritability. The table shows the mean, 
median, standard deviation and the minimum and maximum posterior heritability for different taxonomy 
levels.

Table 1.   Chromosomal regions with the largest Window Genomic Estimated Breeding Value (WGEBV) for 
the selected OTUs, families, and phyla.

Class Chromosome Position (Mb; start–end) Names

OTU

1 132.0–133.0 41, 57, 2,337

2 2.0–3.0 21, 2,337, 43

6 3.0–4.0 27, 30, 53

9 63.0–64.0 4, 12, 53

19 3.0–4.0 2,737, 3, 72

23 0.0–1.0 12, 27, 2,737, 30, 4, 53, 72

23 51.0–52.5 21, 64, 72

27 3.0–4.0 19, 28, 3

Family

6 3.0–4.0 BS11, Ruminococcaceae, Succinivibrionaceae

9 63.0–64.0 Lachnospiraceae, RFP12, Succinivibrionaceae, 
Veillonellaceae, Clostridiaceae

23 0.0–1.0 Paraprevotellaceae, Prevotellaceae, RFP12, S24-7, 
Ruminococcaceae

27 3.0–4.0 RF16, S24-7, Fibrobacteraceae, Clostridiaceae

Phylum
9 63.0–67.0 Firmicutes, Lentisphaerae, Proteobacteria, Ver-

rucomicrobia

27 3.0–4.0 Fibrobacteres, Lentisphaerae, Tenericutes
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It is well established that diet is a major contributor of rumen microbial community composition1,14,16,17. How-
ever, in the current study cattle originated from two locations, whereby 2 of the 3 diets where only represented at 
one location. Furthermore, heifers only originated from one location and were fed a diet that differed from that 
fed to steers. This data structure, and the fact that samples were generated across multiple years, makes parsing 
these effects impossible. As such, to identify the collective effect of these factors on the rumen bacterial com-
munity, we performed PCoA analysis (supplementary figure S3) and PERMANOVA analysis using management 
type to reflect the collective effect diet, location, and sex. PERMANOVA analysis displayed a significant effect of 
management type on microbial community composition suggesting that collectively these factors affected the 
rumen microbial community composition. As the objective of this study was to identify association between host 
genetics and the rumen bacterial community composition, we fitted contemporary group, the concatenation of 
management type and year, in the model used for GWAS to adjust for the variation in the microbial community 
composition resulting from management type as described in methods. As such, the association observed in 
this study has been corrected for variations in the rumen bacterial community that can result from diet, sex, 
location and year.

Studies investigating the effect of host genetics on shaping the microbial community composition are limited. 
Recent studies in the bovine rumen have demonstrated that the rumen microbiome is influenced by host genetic 
factors5,6,21. As such, the concept of core taxa within the rumen microbiome being controlled by host genetics is 
intriguing as it lends to the potential to utilize associations between rumen microbiota and genetic markers for 

Figure 4.   SNP mapping of the rumen gut microbiota. The circular diagram depicts the 29 bovine autosomes 
drawn to scale. Each black line represents 3 Mb region of the chromosome that includes the position of the SNPs 
used for Genome Wide Association Study. Red lines represent 1 Mb regions (Table 1) that have associations with 
different bacterial taxa in the rumen. The list of identified genes when annotated in the 1 Mb window are listed 
close to the region. A representative phylogenetic tree was generated from the rumen bacterial reads using the 
Interactive tree of life (iTOL). Major phyla are color-coded and associated chromosome(s) are listed with each 
phyla. The roman numerals represent families as follows; I—Prevotellaceae, II—Paraprevotellaceae, III—S24-7, 
IV—RF16, V—BS11, VI—RFP12, VII—Succinivibrionaceae, VIII—Lachnospiraceae, IX—Ruminococcaceae, 
X—Clostridiaceae, XI—Veillonellaceae. The complete list of annotated genes and their position on each 
chromosome is listed in supplementary Table S1.
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marker-assisted selection and management to improve feed efficiency, animal health and microbiome manipula-
tion mediated by selecting for favorable microbial taxa within the rumen.

In this study, we demonstrate that the relative abundance of the most abundant taxa within the rumen micro-
biome is a “polygenic trait”12 under host genetic control. The pleiotropic effect of host genetics on the rumen 
microbiome demonstrates effects at multiple taxonomic levels. Data in this study demonstrates that the influence 
of host genetics in shaping the rumen microbiome is more effective at lower taxonomic units and in most cases 
the effect on the microbiome can be very specific. This is clearly demonstrated by the OTU level associations 
identified in this study. The association identified with the genus Methanobrevibacter on chromosome 1 is the 
first report of an association identified between an archaeal species in the rumen and the bovine host. We also 
identified family Succinovibrionaceae, which has been previously identified to be linked with methane emission28, 

Figure 5.   Correlations between OTU, Phyla and Family abundance associated with chromosome 9 (A) and 
chromosome 27 (B). A matrix was generated using log (1 + x) transformed relative abundances for OTUs, Phyla 
and Families associated with each chromosome and pairwise Pearson correlations were calculated and scatter 
plots and density plots were generated for each chromosome. The pairwise correlations among all the identified 
taxa on all chromosomes are shown in supplementary figure S3 and further taxonomic information of all 
identified OTUs can be found in Supplementary Table S1.
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associated with chromosome 9. A previous study by Wallace et al. identified Succinovibrionaceae to be heritable 
in dairy cows. Other studies have also reported host genetics and the microbiome to be associated with methane 
emission29 and this association further supports this notion. In the rumen, archaea play a critical role in recy-
cling NADH back to NAD for glycolysis2,30, so that pyruvate in the rumen is spared for VFA production which 
becomes an energy source for the host2,30. In the absence of methanogens, recycling of NADH is performed by 
conversion of pyruvate to lactate or ethanol2, as such the pyruvate available for VFA production is wasted to 
recycle NADH making the rumen ecosystem less efficient. Therefore, the association observed between the host 
and the methanogen is directed toward increased energy to the host animal.

We observed associations on chromosome 1 and 2 for genus Succiniclasticum. Only one species named Suc-
ciniclasticum ruminis has been described in this genus31. Succiniclasticum ruminis is a common inhabitant in the 
rumen specialized in its ability to convert succinate to propionate as its sole mechanism of energy production. 
In the rumen, succinate is not accumulated as it is rapidly converted to propionate, and Succiniclasticum ruminis 
is considered as the major organism that is involved in this process. As, propionate is the only gluconeogenic 
volatile fatty acid in the rumen and also provides more ATP to the host than any other VFA produced in the 
rumen, it is not surprising that the host animal would prefer selective enrichment of microbes that increase 

Figure 5.   (continued)
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energy supply to the host. As such the association between the host and the genus Succiniclasticum has important 
consequences towards host performance and well-being. The association observed for Fibrobacter succinogenes 
in chromosome 27 also provides evidence to support the notion that the host genome controls for microbes 
that help increase nutrient metabolism within the rumen. Fibrobacter succinogenes is a characterized as one of 
the key cellulolytic microbes in the rumen32, that help breakdown cellulose in the rumen. Genome sequence 
of Fibrobacter succinogenes S8533 has revealed that this organism contains 83 glycosyl hydrolases including 33 
cellulases and 24 xylanases, 7 pectate lyases and 14 carbohydrate esterases33,34. As such Fibrobacter succinogenes 
is a key microbe in cellulose digestion in the rumen and the association with host genetics suggests that this 
organism is under genetic control to ensure efficient nutrient metabolism in the rumen and that the host animal’s 
energy requirements can be met from metabolites of microbial fermentation. Wallace et al.21 also reported the 
Fibrobacter succinogenes as one of the heritable bacteria in dairy cows.

We observed several loci on different chromosomes (2, 6, 9, 19, 23 and 27) to be associated with the genus 
Prevotella. Prevotella is a dominant genus found in the rumen and has been implicated in protein and energy 
metabolism in the rumen1,14. It is possible that each of the loci may be affecting the compositional changes of dif-
ferent species of Prevotella such as P. ruminicola, P. bryanti, P. brevis, and P. albinensis which are all been reported 
to be members of the rumen microbiome35. Although, we are unable to classify the OTUs identified at species 
level resolution, the fact that different OTUs belonging to genus Prevotella are associated with different loci sug-
gests that different Prevetella species may be controlled by different loci. Recently, Li et al. reported 19 SNPs to 
be associated with 14 microbial taxa in the rumen5. This study also identified associations between Paraprevotel-
laceae and bovine chromosome 16, further supporting the notion of genus Prevotella may be controlled by many 
genetic loci. Similarly, family Prevotellaceae were reported as highly heritable among Nordic Red dairy cows21.

Describing factors that shape the rumen microbiome is important to improve animal health and performance 
and here we see a trend of the host selecting for bacterial species that help in nutrient metabolism in the rumen. 
To further investigate the associations between the taxa identified and the host, we performed “positional can-
didate gene analysis”. Positional gene candidate analysis helped identify genes located within the 1 Mb regions 
associated with rumen bacterial species (supplementary table S1 and S5). Many of the 1 Mb chromosomal 
regions identified did not contain annotated genes within the bovine genome. The only well annotated region 
in the bovine genome was in chromosome 9 (supplementary table S1). The 1 Mb regions between 63 and 67 Mb 
in chromosome 9 demonstrated association at OTU (63–64 Mb), family (63–64 Mb) and phylum (63–67 Mb) 
level controlling the abundance of both gram-positive and negative bacteria in the rumen. Positional candidate 
gene analysis in this region identified genes required for innate immunity, specifically AKIRIN2, a downstream 
effector of the Toll-like receptor (TLR), TNF and IL-1 beta signaling pathways that results in IL-6 production36. 
As such, it is possible that the association of rumen bacteria to this region of the host chromosome may result in 
cytokine secretion leading to modulation of host immunity. A similar association was observed on chromosome 
9, 66–67 Mb region with the Thymocyte-Expressed Molecule Involved In Selection (THEMIS) gene. This gene has 
been described to play a critical role in thymocyte development and maturation of T-cells37 further implicating 
the interaction between the host genetics and the rumen microbiome in immune modulation.

Additionally, the rumen epithelium is characterized as a stratified squamous epithelium, and has been 
described as an organ involved in selective absorption of nutrients in the form of volatile fatty acids (VFAs) 
from rumen bacterial fermentation38. Therefore, active and secondary active transport systems mediate nutri-
ent absorption38,39. Previous studies have demonstrated Claudin family genes to play a role in the formation of 
the permeability barrier and to help with tight junction formation in the rumen38. In our GWAS, we identified 
a significant association with claudin-18 (CLDN18) in chromosome 1 in the 132–133 Mb region. This region 
was associated with the specialized propionate producer Succiniclasticum ruminis that utilizes conversion of 
succinate to propionate as its sole energy producing reaction31. As such, it is tempting to speculate that this 
association between claudin-18 and Succiniclasticum ruminis is involved in selective VFA absorption to the host. 
In addition to the described associations above, associations with GDP-Mannose 4,6-Dehydratase (GMDS) in 
chromosome 23, Alpha-1,4-N-Acetylglucosaminyltransferase (A4GNT) in chromosome 1, and ANXA5 involved 
in endocytotic and exocytotic pathways in chromosome 6 all suggests implication of the host in modulating the 
rumen microbes to increase energy absorption. A majority of the SNPs identified by Li et al. were present in the 
non-coding region and thus they were unable to identify how the associated taxa may influence host metabolism 
or health. The few genes identified in that study suggested, the associated regions to increase nutrient absorp-
tion to the host. Results presented in this study is consistent with this notion and the associations observed 
between the host and the microbial species further suggests that the associations between the microbiota and 
host genotype is directed toward selective absorption of volatile fatty acids from the rumen to increase energy 
availability to the host animal.

In the ruminant animal, 50–70% of the animal’s protein needs and up to 70% of the energy needs7 are met 
through the metabolism of rumen microbes. The rumen microbiota can be viewed as an environmental factor 
that impacts animal health, nutrition and performance. Studies have demonstrated the rumen bacterial species 
composition to influence feed efficiency, Average Daily Gain (ADG) and intake40. As such demonstrating that 
heritable trait in the host genome can impact rumen bacterial species composition provides new opportunities 
to using genome selection to improve animal health and productivity. Future work evaluating the SNP identi-
fied herein and their relative effects in other populations as well as the recruitment of associated bacterial taxa 
in subsequent generations when parents are selected based on genotypes at these loci would be interesting. 
Such investigations may lead to the possibility of selection for microbiome manipulation. Additionally, similar 
associations may exist between the host genotype and the fungal, protozoal and viral populations within the 
rumen. Future studies focused on other members of the rumen microbiome may shed light into the role of host 
genetics shaping these microbial populations.
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Materials and methods
Experimental design and animals.  All animal procedures implemented in this study were approved by 
the University of Nebraska—Lincoln and U.S. Meat Animal Research Center (USMARC) Animal Care and Use 
Committee. All experiments were performed using relevant guidelines and regulations described by the Animal 
Care and Use Committee. The data presented in this study were collected between 2009 and 2015 from different 
cohorts of animals which included a cohort of heifers (n = 127) and a cohort of steers (n = 131) from USMARC 
(n = 258) and a cohort of steers (n = 328) from University of Nebraska, Lincoln (UNL) research feedlot. Animals 
within USMARC and UNL were fed in 3 (USMARC1-3) and 5 (UNL1-5) cohort groups, respectively. The num-
ber of animals within each cohort ranged from 51 to 127 for animals fed at USMARC and 51 to 111 for animals 
fed at UNL. The animals from USMARC were part of the USMARC Germplasm Evaluation project (GPE)41. The 
animals from UNL were purchased from Nebraska and surrounding states and were a cross bred population of 
unknown breed makeup.

The Heifers at USMARC were fed a growing diet at time of sample collection that included 70% corn silage 
and 30% alfalfa hay on dry matter basis40. The USMARC steers were fed a finishing diet composed of 57.6% dry-
rolled corn, 30% wet distillers grains with solubles, 8% alfalfa hay, and 4.4% vitamin and mineral supplement on a 
dry matter basis40. All UNL animals were fed a common basal diet (UNL-Diet) containing 50:50 blend of Alfalfa 
and Sweet Bran®. After adaptation to each diet for at least 21 days, rumen samples were collected via esophageal 
tubing for bacterial community analysis. The diets were formulated to meet or exceed NRC recommendations 
for growth and vitamin and mineral supplementation of growing and finishing beef cattle.

Sample collection for rumen microbiota composition analysis.  Rumen samples were collected 
after adaptation to each diet via esophageal tubing as described previously42. Briefly, the animal was restrained 
in the chute, and a stomach tube was inserted through a speculum and passed through the esophagus until it 
reached the rumen. A vacuum pump was attached to the free end of the tube and the sample was withdrawn 
from the rumen. The samples collected contained both rumen fluid and feed particles and were a representa-
tive sample of the rumen. Samples collected via esophageal tubing have been shown to represent the rumen to 
contain a similar microbial community composition to a sample collected via a rumen fistula42. The samples 
collected were snap frozen in liquid nitrogen and were stored in − 80 °C until used for DNA extraction and 
microbial community analysis.

Microbial DNA extraction.  DNA was extracted from the rumen samples using the PowerMag Soil DNA 
isolation kit (MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s protocol with a few 
modifications as described by Paz et al.40. The modified protocol also included adding RNase A to the lysis solu-
tion to ensure removal of RNA during DNA extraction. The isolated DNA was stored at − 20 °C until used for 
bacterial community analysis.

The V4 region of the 16S rRNA gene was amplified and sequenced on the MiSeq platform as described 
previously40,43. Briefly, barcoded universal primers specific for the V4 region of eubacteria were amplified using 
25 μL PCR amplification reactions43. Each 25 μL PCR reaction contained 0.75 Units Terra PCR Direct Polymerase 
Mix, 1X Terra PCR Direct Buffer, 10 μM indexed fusion primers, and 5–20 ng of DNA. The cycling conditions 
contained 98 °C for 2 min, followed by 25 cycles of 98 °C for 10 s, 55 °C for 30 s, and 68 °C for 30 s; and a final 
elongation step of 68 °C for 4 min40. Following amplification, PCR products were normalized using the Sequal-
Prep Normalization Plate Kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturers protocol. The 
normalized libraries were pooled and were further purified using the MinElute PCR Purification Kit (Qiagen, 
Valencia, CA, USA) as described by the manufacturer. The resulting pooled sample was subjected to size selec-
tion and purification using the Pippin Prep (Sage Science, Inc., Beverly, MA, USA) automated size selection 
instrument. The resulting sequence ready libraries were further analyzed using the Agilent BioAnalyzer 2100 
(Agilent Technologies, Santa Clara, CA, USA) and were subjected to 250 bp paired end sequencing using the 
Illumina Miseq System (Illumina, San Diego, CA, USA) using the V2 500 cycle sequencing kit as described by 
the manufacturer. Bridge amplification and reversible dye-terminator -based sequencing on the MiSeq was 
performed as described by the manufacturer. Raw sequences have been deposited at the NCBI Sequence Read 
Archive (SRA) under the accession no. SRP100776 and PRJNA55259.

Data processing pipelines for microbial community analysis.  Raw reads generated from Illumina 
MiSeq sequencing were processed using the quality filter and analysis pipeline described by Paz et al.40. Follow-
ing preliminary quality filtering and read processing, the resulting reads were used for microbial community 
analysis as described below. Complete information of the bioinformatics pipeline describing data analysis is 
available at https​://githu​b.com/Ferna​ndoLa​b. Briefly, forward and reverse reads were assembled to generate con-
tigs of the V4 region and further quality filtering was performed on subsequent contigs to remove sequences 
with ambiguous bases, incorrect contig length, or incorrect assembly using MOTHUR v.1.38.123. Following sec-
ondary quality filtering, subsequent reads were clustered into operational taxonomic units (OTUs) using the 
UPARSE pipeline (USEARCH v7.0.1090)44 after dereplication, discarding singletons, clustering sequences into 
OTUs at 97% similarity, and removing chimeric sequences using UCHIME45 as described previously40. Repre-
sentative OTU sequences from each OTU were aligned against the SILVA reference alignment v123 to ensure 
the OTU reads came from the V4 region of the 16S rDNA gene. The resulting representative OTU sequences 
that fail to map to the V4 region were discarded. Taxonomy was assigned to each OTU using QIIME v.1.9.146 as 
described previously23. The Greengenes database (gg_13_8_otus)24 were used as the reference database for taxo-
nomic assignment. OTUs classified as Cyanobacteria were filtered from the data set as cyanobacterial sequences 
may arise from 16S remnants present in the plant chloroplasts47. However, recent studies have reported Cyano-
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bacterial orders such as YS2, SM1D11, and mle1-12 to be a new class of Cyanobacteria to be present in gut, 
soil and plants48–50. However, these orders were not identified within the cyanobacterial sequences that were 
removed. A rarefied (7,000 reads) OTU table was used to generate a Bray Curtis dissimilarity matrix that was 
used for Principal Coordinate Analysis (PCoA) within QIIME v.1.9.1 pipeline. The R package ggplot251 was used 
to generate the PCoA plot in R by using first two components of the Bray Curtis coordinates. The Bray Curtis dis-
similarity matrix was used to perform the multivariate analysis of variance (PERMANOVA)52 within R package 
vegan53. The complete information of the bioinformatics pipeline describing data analysis is available at https​://
githu​b.com/Ferna​ndoLa​b.

Genotyping the resource population.  All animals (n = 586) were genotyped with either a 770 K, 150 K, 
or 80 K SNP assay. Blood samples were collected onto blood collection cards and the collection cards were sent to 
Geneseek (Lincoln, NE) for subsequent DNA extraction and genotyping. The SNP in common across all panels 
were utilized in the analysis and included 61,974 SNP. Genotypes that were missing were replaced with the mean 
genotype at that locus across all genotyped individuals.

Identifying “positional candidate genes”.  The 1 Mb windows that account for the greatest proportion 
of the genetic variance were used to identify candidate genes using the “positional candidate gene approach” 
using the Bos taurus build UMD_3.1 assembly54 and UCSC genome (ars-ucd1.2/bos taurus) browser. Due to 
the limited understanding of the Bos taurus genome compared to Homo sapiens, human orthologs of beef cat-
tle “positional candidate genes” was identified using the BioMart data mining tool (68) and the Ensembl Genes 
(release 69). Human gene orthologs to bovine “positional candidate genes” was utilized to identify gene ontology 
terms, and pathways using the UCSC genome (ars-ucd1.2/bos taurus) browser and NCBI gene functions.

Statistical analysis.  An OTU table generated for the 586 animals was used for subsequent analysis. Rare-
faction analysis was performed using QIIME v.1.9.146 as described previously40. Prior to the analysis, operational 
taxonomic unit (OTU), family and phylum read counts were transformed into relative abundance.

The heritability of an OTU, family, or phylum class was estimated using a Bayesian genomic best linear 
unbiased prediction (GBLUP) model utilizing the BGLR package in R55. Within each OTU, family, and phylum 
the following model was fitted:

where y is the proportional abundance, b is a vector of fixed effects, u is a vector of random additive genetic 
effects, e is a vector of random residuals and X and Z are incidence matrices relating observations to the fixed and 
random additive genetic effects, respectively. To determine the extent of and to correct for population structure, 
a principle component analysis (PCA) on a genomic relationship matrix (G) was utilized. The G matrix was 
constructed as:

where M is a genotype incidence matrix that has been centered based on allele frequencies (VanRaden, 2008) 
and p is the allele frequency of the second allele at the jth SNP across all loci.

The fixed effects included the intercept, the first two PC, and contemporary group (concatenation of manage-
ment type and year).

The random additive genetic effect was assumed ~ N(0,Gσ 2
u) , where G is a genomic relationship as outlined 

previously. A chain length of 102,000 iterations was run with the first 2000 discarded as burn-in and a thinning 
rate of 10 was utilized. The default priors were utilized within BGLR, which included a flat and bounded prior 
for the fixed effects and a scaled inverse Chi-squared distribution for the additive genetic and residual variances. 
Across both random effects the degrees of freedom were set at their default value of 5 and the scale factors were 
set based on the rules described by de los Campos and Pérez-Rodríguez56 with the assumption that the model 
explains 20% of the phenotypic variance. The posterior mean ±PSD heritiability estimates for a given OTU, 
family, or phylum was calculated as the mean of σ 2

u

σ 2
u+σ 2

e
 across all samples that remained after thinning. The 

number of effective samples across models was estimated using the CODA package in R57.

Genome‑wide association study.  Across OTU, family, or phylum class the estimated additive genetic 
effects across animals were decomposed into marker effects for a subset of groups within each class58. The classes 
investigated are outlined in Table S1. The marker effects (a) were estimated by backsolving using G and the inci-
dence matrix (i.e., Z) as outlined below:

 where M is the genotype incidence matrix as outlined previously, G−1 is the inverse of G and û is the estimated 
additive genetic value of an individual which was derived from the Bayesian GBLUP model. After estimating 
marker effect solutions, the variance of 1 Mb non-overlapping window genomic estimated breeding values 
(WGEBV) was computed for each window. Within a window the WGEBV for each individual was estimated by 
multiplying the estimated SNP effects with their respective genotypes and summing across all SNP within the 

y = Xb+ Zu + e,

G =
MM

′

2
∑

pj(1− pj)
,

â =
M

′

G
−1û

2
∑

pj(1− pj)
,
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window. The WGEBV variance of a 1-Mb window was calculated as the variance in WGEBV across individuals. 
All OTUs (n = 17) with at least 40,000 reads and present in at least 95% of the animals, all families (n = 12) that 
represented greater than 1.8% total reads and were the top families (12 families were selected as families ranked 
11th and 12th had very similar read percentages to the family ranked 10th) and top 10 Phyla (n = 10) with the 
largest variance in WGEBV were investigated further. The relative abundances of the identified OTUs, families 
and phyla were transformed with natural log (log(1 + x)) and then pairwise Pearson correlation analyses were 
performed. The pairwise correlation among OTUs, families and Phyla associated with chromosome 9 and 27 
were plotted using R package GGally59 while correlation heatmap among all the identified OTUs, families and 
phyla was generated by using R package ggplot251.

Data availability
Raw sequences generated in this study have been deposited at the NCBI Sequence Read Archive (SRA) under the 
accession no. SRP100776 and PRJNA55259. The complete information of the bioinformatics pipeline describing 
data analysis is available at https​://githu​b.com/Ferna​ndoLa​b.

Received: 21 January 2020; Accepted: 19 August 2020

References
	 1.	 Anderson, C. L., Schneider, C. J., Erickson, G. E., MacDonald, J. C. & Fernando, S. C. Rumen bacterial communities can be accli-

mated faster to high concentrate diets than currently implemented feedlot programs. J. Appl. Microbiol. 120, 588–599. https​://doi.
org/10.1111/jam.13039​ (2016).

	 2.	 Church, D. C. The Ruminant Animal Digestive Physiology and Nutrition (Waveland Press Inc, Long Grove, 1993).
	 3.	 Hobson, P. N. The Rumen Microbial Ecosystem (Elsevier Applied Science, London, 1988).
	 4.	 Hungate, R. E. The Rumen and Its Microbes (Academic Press Inc, London, 1966).
	 5.	 Li, F. et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in 

cattle. Microbiome 7, 92. https​://doi.org/10.1186/s4016​8-019-0699-1 (2019).
	 6.	 Sasson, G. et al. Heritable bovine rumen bacteria are phylogenetically Related and Correlated with the Cow’s Capacity To Harvest 

Energy from Its Feed. mBio https​://doi.org/10.1128/mBio.00703​-17 (2017).
	 7.	 7Flint, H. J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Advances in Applied Micro-

biology, Vol 56 56, 89-+ (2004).
	 8.	 Jami, E., Israel, A., Kotser, A. & Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7, 

1069–1079. https​://doi.org/10.1038/ismej​.2013.2 (2013).
	 9.	 Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. 

Nat. Commun. 11, 13 (2020).
	10.	 Rey, M. et al. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J. Appl. Microbiol. 

116, 245–257. https​://doi.org/10.1111/jam.12405​ (2014).
	11.	 Wang, L. et al. Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Sci. Rep. https​://doi.org/10.1038/

s4159​8-019-56206​-3 (2019).
	12.	 Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental 

and host genetic factors. Proc. Natl. Acad. Sci. USA. 107, 18933–18938. https​://doi.org/10.1073/pnas.10070​28107​ (2010).
	13.	 Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. 

Microbiol. 9, 279–290. https​://doi.org/10.1038/nrmic​ro254​0 (2011).
	14.	 Fernando, S. C. et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76, 

7482–7490. https​://doi.org/10.1128/Aem.00388​-10 (2010).
	15.	 Fernando, S. C. et al. Meta-functional genomics of the rumen biome. J. Anim. Sci. 85, 569–569 (2007).
	16.	 Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across 

a wide geographical range. Sci. Rep. https​://doi.org/10.1038/srep1​4567 (2015).
	17.	 Huws, S. A. et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, 

and future. Front. Microbiol. https​://doi.org/10.3389/fmicb​.2018.02161​ (2018).
	18.	 Mizrahi, I. & Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and 

methane emission. Anim. Int. J. Anim. Biosci. 12, s220–s232. https​://doi.org/10.1017/S1751​73111​80019​57 (2018).
	19.	 Jiao, J. Z. et al. Shifts in host mucosal innate immune function are associated with ruminal microbial succession in supplemental 

feeding and grazing goats at different ages. Front. Microbiol. https​://doi.org/10.3389/fmicb​.2017.01655​ (2017).
	20.	 Glass, E. J., Baxter, R., Leach, R. J. & Jann, O. C. Genes controlling vaccine responses and disease resistance to respiratory viral 

pathogens in cattle. Vet. Immunol. Immunopathol. 148, 90–99. https​://doi.org/10.1016/j.vetim​m.2011.05.009 (2012).
	21.	 Wallace, R. J. et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. https​

://doi.org/10.1126/sciad​v.aav83​91 (2019).
	22.	 Hernandez-Sanabria, E. et al. Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen 

liquid of the progeny in beef cattle. PLoS ONE 8, e58461. https​://doi.org/10.1371/journ​al.pone.00584​61 (2013).
	23.	 Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and 

comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. https​://doi.org/10.1128/Aem.01541​-09 (2009).
	24.	 McDonald, D. et al. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria 

and archaea. ISME J 6, 610–618. https​://doi.org/10.1038/ismej​.2011.139 (2012).
	25.	 Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside 

hydrolases. Proc. Natl. Acad. Sci. USA. 106, 1948–1953. https​://doi.org/10.1073/Pnas.08061​91105​ (2009).
	26.	 Kim, M., McSweeney, C. S., Morrison, M. & Yu, Z. An in silico generated census of the rumen bacterial microbiome. Microb. Ecol. 

57, 574–574 (2009).
	27.	 Anderson, C. L., Sullivan, M. B. & Fernando, S. C. Dietary energy drives the dynamic response of bovine rumen viral communities. 

Microbiome https​://doi.org/10.1186/s4016​8-017-0374-3 (2017).
	28.	 Wallace, R. J. et al. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 16, 839. 

https​://doi.org/10.1186/s1286​4-015-2032-0 (2015).
	29.	 Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 

14, e1007580. https​://doi.org/10.1371/journ​al.pgen.10075​80 (2018).
	30.	 Geier, R. R., Kwon, I. H., Cann, I. K. & Mackie, R. I. Interspecies hydrogen transfer and Its effects on global transcript abundance 

in Ruminococcus albus, a predominant fiber-degrading species in the rumen. FASEB J. 30, 1102 (2016).

https://github.com/FernandoLab
https://doi.org/10.1111/jam.13039
https://doi.org/10.1111/jam.13039
https://doi.org/10.1186/s40168-019-0699-1
https://doi.org/10.1128/mBio.00703-17
https://doi.org/10.1038/ismej.2013.2
https://doi.org/10.1111/jam.12405
https://doi.org/10.1038/s41598-019-56206-3
https://doi.org/10.1038/s41598-019-56206-3
https://doi.org/10.1073/pnas.1007028107
https://doi.org/10.1038/nrmicro2540
https://doi.org/10.1128/Aem.00388-10
https://doi.org/10.1038/srep14567
https://doi.org/10.3389/fmicb.2018.02161
https://doi.org/10.1017/S1751731118001957
https://doi.org/10.3389/fmicb.2017.01655
https://doi.org/10.1016/j.vetimm.2011.05.009
https://doi.org/10.1126/sciadv.aav8391
https://doi.org/10.1126/sciadv.aav8391
https://doi.org/10.1371/journal.pone.0058461
https://doi.org/10.1128/Aem.01541-09
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1073/Pnas.0806191105
https://doi.org/10.1186/s40168-017-0374-3
https://doi.org/10.1186/s12864-015-2032-0
https://doi.org/10.1371/journal.pgen.1007580


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15101  | https://doi.org/10.1038/s41598-020-72011-9

www.nature.com/scientificreports/

	31.	 van Gylswyk, N. O. Succiniclasticum ruminis gen. nov., sp. Nov., a ruminal bacterium converting succinate to propionate as the 
sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 45, 297–300. https​://doi.org/10.1099/00207​713-45-2-297 (1995).

	32.	 Wu, C. W. et al. Generation and characterization of acid tolerant Fibrobacter succinogenes S85. Sci. Rep. 7, 2277. https​://doi.
org/10.1038/s4159​8-017-02628​-w (2017).

	33.	 Suen, G. et al. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS 
ONE 6, e18814. https​://doi.org/10.1371/journ​al.pone.00188​14 (2011).

	34.	 Jun, H. S., Qi, M., Ha, J. K. & Forsberg, C. W. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: Transition to the 
post genomic era. Asian Austral. J. Anim. 20, 802–810. https​://doi.org/10.5713/ajas.2007.802 (2007).

	35.	 Avgustin, G., Ramsak, A. & Peterka, M. Systematics and evolution of ruminal species of the genus Prevotella. Folia Microbiol. 46, 
40–44 (2001).

	36.	 Stelzer, G. et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr. Protocols Bioinform. 54, 
1–30. https​://doi.org/10.1002/cpbi.5 (2016).

	37.	 Leavy, O. Thymocyte development: The identification of THEMIS. Nat. Rev. Immunol. 9, 604–604. https​://doi.org/10.1038/nri26​
24 (2009).

	38.	 Graham, C. & Simmons, N. L. Functional organization of the bovine rumen epithelium. Am. J. Physiol. Regul. Integr. Comp. Physiol. 
288, R173-181. https​://doi.org/10.1152/ajpre​gu.00425​.2004 (2005).

	39.	 Sehested, J., Diernaes, L., Moller, P. D. & Skadhauge, E. Transport of sodium across the isolated bovine rumen epithelium: Interac-
tion with short-chain fatty acids, chloride and bicarbonate. Exp. Physiol. 81, 79–94 (1996).

	40.	 Paz, H. A. et al. Rumen bacterial community structure impacts feed efficiency in beef cattle. J. Anim. Sci. 96, 1045–1058. https​://
doi.org/10.1093/jas/skx08​1 (2018).

	41.	 Schiermiester, L. N., Thallman, R. M., Kuehn, L. A., Kachman, S. D. & Spangler, M. L. Estimation of breed-specific heterosis effects 
for birth, weaning, and yearling weight in cattle. J. Anim. Sci. 93, 46–52. https​://doi.org/10.2527/jas.2014-8493 (2015).

	42.	 Paz, H. A., Anderson, C. L., Muller, M. J., Kononoff, P. J. & Fernando, S. C. Rumen bacterial community composition in holstein 
and jersey cows is different under same dietary condition and is not affected by sampling method. Front. Microbiol. 7, 1206. https​
://doi.org/10.3389/fmicb​.2016.01206​ (2016).

	43.	 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and 
curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 
5112–5120. https​://doi.org/10.1128/AEM.01043​-13 (2013).

	44.	 Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https​://doi.
org/10.1038/nmeth​.2604 (2013).

	45.	 Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. 
Bioinformatics 27, 2194–2200. https​://doi.org/10.1093/bioin​forma​tics/btr38​1 (2011).

	46.	 Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https​://
doi.org/10.1038/Nmeth​.F.303 (2010).

	47.	 Giovannoni, S. J. et al. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584–3592. https​
://doi.org/10.1128/jb.170.8.3584-3592.1988 (1988).

	48.	 Soo, R. M. et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6, 1031–1045. https​://doi.
org/10.1093/gbe/evu07​3 (2014).

	49.	 Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum 
sibling to Cyanobacteria. Elife https​://doi.org/10.7554/eLife​.01102​ (2013).

	50.	 McGorum, B. C. et al. Grazing livestock are exposed to terrestrial cyanobacteria. Vet. Res. https​://doi.org/10.1186/s1356​7-015-
0143-x (2015).

	51.	 Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).
	52.	 Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What 

null hypothesis are you testing?. Ecol. Monogr. 83, 557–574. https​://doi.org/10.1890/12-2010.1 (2013).
	53.	 Oksanen, J. et al. vegan: Community Ecology Package v. R package version 2.5–3. (2018).
	54.	 Zimin, A. V. et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10, R42. https​://doi.org/10.1186/gb-

2009-10-4-r42 (2009).
	55.	 Pérez, P. & de los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 198, 483–495 

(2014).
	56.	 de los Campos, G. & Perez-Rodriguez, P. Bayesian Generalized Linear Regression v. R package version 1.0.4. (2014).
	57.	 Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 

(2006).
	58.	 Wang, H., Misztal, I., Aguilar, I., Legarra, A. & Muir, W. M. Genome-wide association mapping including phenotypes from rela-

tives without genotypes. Genet. Res. 94, 73–83. https​://doi.org/10.1017/S0016​67231​20002​74 (2012).
	59.	 Schloerke, B.C.J. et al. GGally: Extension to ’ggplot2’ v. R package version 1.4.0. (2018).

Acknowledgements
Mention of trade names or commercial products in this article is solely for the purpose of providing specific 
information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity 
provider and employer.

Author contributions
J.W., L.K., M.S. and S.F. designed the research project. K.H., H.P. and G.E. helped collect data for the study. H.P. 
performed laboratory analysis. H.P., W.A. and J.H. performed bioinformatic and GWAS analysis. W.A., M.S., 
J.H. and S.F. prepared the manuscript. M.S. and S.F. are co-corresponding authors of this manuscript and J.W. 
and W.A. are co-first authors of this manuscript.

Funding
This work is supported by Animal Nutrition, Growth and Lactation grant no. 2018-67015-27496, Effective 
Mitigation Srategies for Antimicrobial Resistance grant no. 2018-68003-27545, and Multi-state research project 
accession no. 1000579 from the USDA National Institute of Food and Agriculture awarded to SCF.

Competing interests 
Samodha C. Fernando, author of this publication has disclosed a significant financial interest in NuGUT LLC. 
In accordance with its Conflict of Interest policy, the University of Nebraska-Lincoln’s Conflict of Interest in 
Research Committee has determined that this must be disclosed. The rest of the authors have nothing to disclose.

https://doi.org/10.1099/00207713-45-2-297
https://doi.org/10.1038/s41598-017-02628-w
https://doi.org/10.1038/s41598-017-02628-w
https://doi.org/10.1371/journal.pone.0018814
https://doi.org/10.5713/ajas.2007.802
https://doi.org/10.1002/cpbi.5
https://doi.org/10.1038/nri2624
https://doi.org/10.1038/nri2624
https://doi.org/10.1152/ajpregu.00425.2004
https://doi.org/10.1093/jas/skx081
https://doi.org/10.1093/jas/skx081
https://doi.org/10.2527/jas.2014-8493
https://doi.org/10.3389/fmicb.2016.01206
https://doi.org/10.3389/fmicb.2016.01206
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1038/Nmeth.F.303
https://doi.org/10.1038/Nmeth.F.303
https://doi.org/10.1128/jb.170.8.3584-3592.1988
https://doi.org/10.1128/jb.170.8.3584-3592.1988
https://doi.org/10.1093/gbe/evu073
https://doi.org/10.1093/gbe/evu073
https://doi.org/10.7554/eLife.01102
https://doi.org/10.1186/s13567-015-0143-x
https://doi.org/10.1186/s13567-015-0143-x
https://doi.org/10.1890/12-2010.1
https://doi.org/10.1186/gb-2009-10-4-r42
https://doi.org/10.1186/gb-2009-10-4-r42
https://doi.org/10.1017/S0016672312000274


14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15101  | https://doi.org/10.1038/s41598-020-72011-9

www.nature.com/scientificreports/

Additional information
Supplementary information  is available for this paper at https​://doi.org/10.1038/s4159​8-020-72011​-9.

Correspondence and requests for materials should be addressed to M.L.S. or S.C.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-72011-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Influence of host genetics in shaping the rumen bacterial community in beef cattle
	Anchor 2
	Anchor 3
	Results
	The bacterial populations within the cattle rumen. 
	Rumen bacterial community behaves as a “polygenic trait”. 
	Different taxonomic levels are under host genetic control. 
	Host adapted bacterial species in the rumen. 

	Discussion
	Materials and methods
	Experimental design and animals. 
	Sample collection for rumen microbiota composition analysis. 
	Microbial DNA extraction. 
	Data processing pipelines for microbial community analysis. 
	Genotyping the resource population. 
	Identifying “positional candidate genes”. 
	Statistical analysis. 
	Genome-wide association study. 

	References
	Acknowledgements


