
RESEARCH ARTICLE

Spatial heterogeneity enhance robustness of

large multi-species ecosystems

Susanne PetterssonID*, Martin Nilsson JacobiID

Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden

* susannep@chalmers.se

Abstract

Understanding ecosystem stability and functioning is a long-standing goal in theoretical

ecology, with one of the main tools being dynamical modelling of species abundances. With

the help of spatially unresolved (well-mixed) population models and equilibrium dynamics,

limits to stability and regions of various ecosystem robustness have been extensively

mapped in terms of diversity (number of species), types of interactions, interaction

strengths, varying interaction networks (for example plant-pollinator, food-web) and varying

structures of these networks. Although many insights have been gained, the impact of spa-

tial extension is not included in this body of knowledge. Recent studies of spatially explicit

modelling on the other hand have shown that stability limits can be crossed and diversity

increased for systems with spatial heterogeneity in species interactions and/or chaotic

dynamics. Here we show that such crossing and diversity increase can appear under less

strict conditions. We find that the mere possibility of varying species abundances at different

spatial locations make possible the preservation or increase in diversity across previous

boundaries thought to mark catastrophic transitions. In addition, we introduce and make

explicit a multitude of different dynamics a spatially extended complex system can use to

stabilise. This expanded stabilising repertoire of dynamics is largest at intermediate levels of

dispersal. Thus we find that spatially extended systems with intermediate dispersal are

more robust, in general have higher diversity and can stabilise beyond previous stability

boundaries, in contrast to well-mixed systems.

Author summary

One of the major challenges facing humanity is the fragmentation of wildlife habitats and

decline in biodiversity due to human land-use practices and need for resources. We need

to find ways to combine human prosperity with biodiversity conservation. To achieve this

a solid understanding of ecosystem stability and functioning is paramount. One way to

gain such insight is to find limits when we expect species to go extinct or ecosystems to

collapse by simulations of interacting species populations. Many such stability limits have

been found theoretically the last decades, but for simplification of modelling, studies often

exclude that ecosystems are spread out in space. Here, we explicitly include space and thus

allow for dispersal and spatial heterogeneity (local differences) in species abundances. We
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find that for an ecosystem with the possibility of local spatial heterogeneity, the repertoire

of the system’s dynamical behaviour increases dramatically. This increase in possibilities

increases system robustness, enables limits previously marking extinction or collapse to

be crossed without any remarkable change in global species abundances, and increases

biodiversity. Thus we elucidate an additional mechanism pointing to spatial heterogeneity

as crucial for ecosystem stability. We find intermediate dispersal as the most favourable

for robustness and diversity of ecosystems since they display the largest repertoire of

dynamical behaviour.

Introduction

There are many ways to think about and represent ecosystem functioning and stability, one

prominent direction in mathematical ecology is the search for limits of stability in dynamical

species population models in terms of some specified parameters or characteristics of the system.

To this end Generalised-Lotka-Volterra (GLV) dynamics and modifications, with for example

higher order interaction [1] (e.g. third species modifying how one species interacts with another)

as well as many examples of more advanced interaction functions between species have been

used. With a proliferation of stability results both confusing and enlightening, such as the role of

diversity for stabilising ecosystems [2–4] or to what extent properties such as modularity [5] or

nestedness [6] in interactions act to stabilise or destabilise or are aspects of the same property [7].

Specifically the question whether diversity (used as synonymous with species richness) and/

or strength of interaction between species act to destabilise or not, has drawn a lot of attention

since the first mathematical formulations of large ecosystem stability with May’s paper in the

1970s [2]. The conclusions are not unanimous but a majority of studies find that at a certain

level of diversity (or interaction strengths) the system will no longer have a stable equilibrium

solution [8]. This means that ecosystems cannot sustain too high diversity, variation or mean

of interaction strengths and can possibly collapse when interactions are increased if for exam-

ple an ecosystem’s available space is reduced. Studies have also located limits to feasibility

(abundance >0 for all species) where higher interaction strengths lead to extinctions (loss of

feasibility) [9, 10], and systems vulnerable to perturbations in structural features (such as

growth rates, or interaction strengths) [11, 12]. With even higher interaction strengths, abun-

dances can start oscillating or the system collapses to a significantly smaller subset of species

[9]. This latter limit is the classical limit recognised as a drastic change in system characteristics

and many times referred to as collapse.

A prominent model indicating diversity as destabilising is the original Generalised-Lotka-

Volterra model. The GLV equations have again become widely used for studies of large eco-

logical communities to investigate generic properties of complex ecosystems using relatively

few parameters [13, 14]. Although many insights have been gained by this approach, one of

the many simplifications of the GLV model is the lack of space. This simplification leans on

the assumption that a spatial average of both the interactions among species and the species

abundances is sufficient to capture the dynamics and stability aspects of an ecosystem.

There are on the other hand studies specifically taking space into account, studying for

example pattern formation where the diversity is small [15–17], space influence on interaction

structure [18] and the spread of specific species [19]. Another type of spatial models are meta-

communities. A meta-community is a collection of ecological communities in space connected

by dispersal. Most meta-community studies find that intermediate dispersal is favourable for

high diversity and robustness [20, 21], although systems under investigation comprised of very
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few species. It is also known that high dispersal can synchronise fluctuations in population

abundances in different habitats, increasing the likelihood of extinctions [20–23]. The mecha-

nism behind both these results is the presence or absence respectively of a buffering effect

between the local communities. Other meta-community studies have found meta-communi-

ties exhibiting macro-ecological patterns at the edge of collapse [24] and investigated local sta-

bility in the feasible domain [25]. A feature that still holds in the latter spatial stability analysis

is that there is a boundary of radical shift and loss of stability.

Recent studies using the GLV equations with dispersal have found that spatial extension

enables crossing of stability boundaries and higher diversity in comparison to spatially unre-

solved systems. These features rely on chaotic dynamics [26, 27] and spatial heterogeneity in

interactions [26]. Using a spatial gradient representative of abiotic factors, [28] has shown that

the level of dispersal influences the abruptness in species composition between neighbouring

communities.

Motivated by the large literature on stability limits, structural stability (robustness) and

recent interest in spatial extension, in this paper we study a GLV model with diffusion on a lat-

tice with no differentiation between spatial locations such as spatial heterogeneity in interac-

tions, carrying capacities, or intrinsic growth rates. In contrast to spatially unresolved and

spatially differentiated models, this formulation lifts the assumption of average species abun-

dances and allows us to investigate the bare consequences of spatial extension. We re-investi-

gate stability limits, robustness and diversity for varying amounts of dispersal.

Theory and methods

The version of the classical GLV model we will use as a base is stated below

d�i

dt
¼ �iri 1 �

�i

Ki

� �

þ s�i

XN

j¼1

Aij�j; ð1Þ

where ϕi, ri and Ki are species abundances, intrinsic growth rates and carrying capacities for

species i respectively. The web of interactions between species is represented by Aij, a N × N
matrix with a density of interactions, c = 0.5, and whose non-zero entries are drawn from a nor-

mal distribution with negative mean, μ = −0.5 and variance one. This means all types of interac-

tions (trophic, mutualistic, competitive etc.) are included although there is a larger percentage

of competitive (−, −) and amensialistic (−, 0) interactions. The parameter σ becomes the stan-

dard deviation (s.d.) of the interaction strengths and is often used as a tuning parameter and

proxy for complexity. An increase in interaction strengths means an increase in complexity.

For small σ in systems governed by Eq 1 with diversity N the system will settle in a unique

stable fixed point with all N species present. Under increases in σ (increasing complexity) at a

certain threshold feasibility is lost. With continued increase beyond this threshold to stay in a

stable fixed point species will successively go extinct. Further increase in σ eventually pushes

the system across the final stability boundary and the system transitions to either oscillations,

chaos or a fixed point with a substantial loss of species. This latter limit has many times been

referred to as collapse. The region between the two boundaries is structurally unstable mean-

ing a small perturbation in parameters (ri, σ, c etc.) lead to qualitative change, in effect species

extinctions [9]. This region can also have multiple stable fixed points with differing patterns of

extant (non-extinct) species [29].

We introduce a spatial dimension into the GLV model by setting up a grid (or line) where

all grid-points have the same interaction matrix. This in effect, sets the same maximum

amount of species with the same interspecies interactions at every grid-point but allows for the

possibility of different dynamics and local population abundances. The grid-points are
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connected by diffusion, representing the dispersal of species in space. This can be seen as for

example animals colonising areas where there is a larger abundance of prey per predator or

plants dispersing to areas where there are less competitors (more available resources).

To avoid effects from the boundary of the grid we use periodic boundary conditions (shape

the grid as a torus in two-dimensional space or ring in one-dimensional space) as shown in

Fig 1.

The GLV equations in continuous space with diffusion are

@�iðx; tÞ
@t

¼ ri�iðx; tÞ 1 �
�iðx; tÞ
Ki

� �

þs�iðx; tÞ
XN

j¼1

Aij�jðx; tÞ

þDi

X2

p¼1

X2

q¼1

@
2
�iðx; tÞ
@xp@xq

;

ð2Þ

Fig 1. Schematic grid and line. The figure shows schematic pictures of how the grid is formed like a torus (to the right) and how the line is formed like

a ring (to the left). This is done to simulate an ecosystem situated in a large connected space and to minimise boundary effects.

https://doi.org/10.1371/journal.pcbi.1008899.g001
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where ϕ(x, t)i is the relative abundance of species i which now depends on both spatial loca-

tion x and time t. The diffusion rates for species i are Di, which are different for all species but

same for all grid-points for the same species. The Di are random variables drawn from uni-

form distributions with means μD = 10a with a, a parameter we varied from -5 to 1 in steps of

1. The different Di for different species is to represent that species have varying dispersal

rates, although all the Di are kept at the same order of magnitude for each run by a standard

deviation proportional to the mean σD = bμD, with 0.3 < b< 0.4, such that the diffusion inter-

vals for different means are non-overlapping. Since we wish to use a grid we discretise the

spatial dimension of Eq 2 using the a discrete Laplace operator in two or one dimension

given as

@
2
�iðx; tÞ
@xp@xq

�
�i;aþ1b þ �i;a� 1b þ �i;abþ1 þ �i;ab� 1 � 4�i;ab

h2

@
2
�iðx; tÞ
@x2

�
�i;aþ1 þ �i;a� 1 � 2�i;a

h

ð3Þ

where α and β are grid indices and the denominator h is the “distance” between patches set to

1. The resulting dynamical equation for species i in grid-point (α, β) in a two dimensional

grid is thus

@�i;ab

@t
¼ ri�i;ab 1 �

�i;ab

Ki

� �

þ s�i;ab

XN
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Aij�j;ab

þDið�i;aþ1b þ �i;a� 1b þ �i;abþ1
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The dispersal in our model is thus only between nearest neighbour grid-points.

Real ecosystems are often situated in either two- or three-dimensional space. In most of our

simulations on the other hand we used one-dimensional space to reduce the computational

load and effect of boundaries. This was acceptable since we noticed no qualitative difference in

results between two- and one-dimensional simulations.

To analyse the dynamics of the model, we screen each grid-point for fixed points and

oscillations in species abundances. If there are oscillations we measure amplitudes and the

synchronisation of local species abundance oscillations between grid-points. The synchroni-

sation of dynamics we measure with the maximum phase-shift in oscillations between the

same species in different grid-points, in effect the maximum difference between arguments

of the Fourier transform at the dominant oscillation frequency. When the mean maximum

phase shift of all extant species is zero the grid is synchronised, when π radians (180˚)

completely unsynchronised.

Results

With the addition of a connected space we add the possibility of different dynamics or solu-

tions, and timing of dynamics in different grid-points. Spatial heterogeneity (local species

abundance differences) because of different dynamics is only possible when σ is large enough

(larger than the feasibility boundary) so that different solutions of the equations are available

in the grid-points. In this case the system can end up with multiple fixed points, oscillatory

patterns, or a combination of fixed points and oscillations. The same oscillatory dynamics

can also give rise to spatial heterogeneity by phase-shifts in local species abundances between
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grid-points. The amount of spatial heterogeneity in dynamics and abundances depends on the

magnitude of the diffusion constants Di as shown in Fig 2. If diffusion constants are zero this

represents a number of identical disconnected systems with GLV dynamics, while very large

constants lead to complete synchronisation of the grid, smoothing out all local differences in

the abundances of species. All these local variations at lower diffusion magnitudes lead to a

multitude of system characteristics in terms of combinations of grid-point dynamics and

phase-shifts.

Fig 2. Spatial structure for varying diffusion rates. The figure shows three columns of local species abundances at a specific time for each grid-point

from three example runs. Diffusion rates (uniformly distributed with μD/ σD) increase from top to bottom. The trend toward synchronisation of the

grid with increasing diffusion magnitudes is clearly seen, although the three systems are seen to synchronise at different magnitudes.

https://doi.org/10.1371/journal.pcbi.1008899.g002
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Abundance oscillations and crossing stability limits

Species abundance oscillations (global or local) can appear in the entire non-feasible region.

We find that in many systems for the spatial GLV, increasing σ can make a fixed point transi-

tion to a oscillatory pattern with the same diversity. This behaviour is not as prevalent in the

non-spatial GLV, which instead commonly switches to another fixed point with a lower spe-

cies richness, in effect species go extinct if the system is perturbed or pressured. The connected

space enables the system to keep its species richness unchanged if perturbed with either global

species abundances (species abundances for the meta-populations) oscillating if the grid-

points are synchronised or “stay” in a global fixed point by local unsynchronised abundance

oscillations. The spatial systems are therefore more robust in terms of extinctions and in the

latter case also in global abundances.

If diffusion constants are small so that synchronisation does not take place, and systems are

at interaction strengths nearing previous collapse boundaries this means averaging over local

species abundances results in global average abundances in accordance with fixed points that

are unstable in the non-spatial GLV. Thus, this robustness of the spatial GLV makes it possible

for ecosystems with internal heterogeneity to stay stable in parameter regions beyond stability

limits of the non-spatial GLV.

In Fig 3 is an example of a system of N = 20 maximum biodiversity for a range of σ larger

than the feasibility limit, and diffusion magnitudes leading to unsynchronised oscillations

(μD = 10−2, σD = 0.4μD). We see that the unsynchronised local species abundance oscillations

lead to stable global species abundances at an interaction strength where there is no fixed point

in the non-spatial GLV. Thus the previous stability boundary is crossed by the spatial GLV

without chaotic dynamics and almost without any change of the global species abundances.

Lower variability in abundances

There are different ways the inclusion of a connected space acts to stabilise global and local

species abundance oscillations making them less variable (lower amplitudes and/or lower fre-

quencies). The oscillations in the spatial GLV usually reflect a pattern found in the non-spatial

GLV, but with the addition of diffusion local abundance oscillations become less violent with

lower amplitudes.

Other systems with oscillations might have different “preferred” oscillations for the non-

spatial and spatial GLV respectively. In these cases the non-spatial oscillation patterns are

higher in amplitudes and sometimes with higher frequencies than in the spatial GLV, see for

example the non-spatial GLV oscillations in Fig 3 for one version of such an oscillation pat-

tern. Yet another possibility is that diffusion makes possible a different lower amplitude oscil-

lation pattern not present in the non-spatial GLV, an example of this is shown in Fig 4.

Many of these violent oscillations in the non-spatial system lead to periodic species extinc-

tions, an unrealistic scenario. The spatial GLV on the other hand can avoid global extinctions

both by less violent local oscillations leading to less local extinctions as well as recolonisation-

extinction dynamics between local areas. Significant lowering of the variability in local species

abundances we find when systems are unsynchronised at low to medium diffusion rates.

Although such systems commonly have a large spread in local oscillation amplitudes, all grid-

points have dampened oscillation amplitudes compared to the non-spatial system and the

global abundances are almost constant. When the diffusion rates in systems like these are

increased, engendering synchronised oscillations, they usually reflect oscillation patterns pres-

ent in the non-spatial GLV but again with reduced amplitudes.

In the limit of large diffusion (μD> 1 and σD = bμD, 0.3< b< 0.4) the ecosystems again

retrieve the high amplitudes of the non-spatial GLV oscillations synchronised in all grid-points.
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Thus when diffusion is increased first oscillations start to synchronise leading to global abun-

dance oscillations and with continued increase in diffusion the species oscillations increase in

amplitude until they mimic that of the non-spatial GLV. It is therefore in the middle range of

diffusion rates we find the most stabilising effects as seen in Fig 4.

Fig 3. Unsynchronised local oscillations stabilise. The figure shows an example of a system of N = 20 maximum number of species with out-of-phase

oscillations when σ is larger than the feasibility limit and diffusion rates are small (μD = 10−2, σD = 0.4μD). On the left side on top we show global average

fixed point or oscillation species abundances for a system with small diffusion. On the bottom we show fixed point abundances for a system with the

same interaction matrix but with no spatial dimension (non-spatial GLV). Both the global average abundances for the spatial system and the non-spatial

are shown for σ ranging from zero to collapse values with an enlargement of the latter part in the red box. The Green shading in the plots indicate a

region where the only stable fixed point for the non-spatial GLV is with 3 species going extinct. On the other hand the global average abundances show

no change at all (green area in top left plots). With higher σ in the orange region of the non-spatial GLV (bottom left plot) the system is seen to be

structurally unstable, while the spatial system on top shows little if any structural instability. These systems behave almost the same with and without a

connected space until σ is large enough approaching collapse values. To the right on the green background are shown example dynamics for σ in the

green marked area in the left plots, in different grid-points for the spatial system (top) and for a oscillatory solution for the non-spatial system (bottom).

We see in the spatial system oscillatory dynamics in each grid-point example with the same Fourier spectra, but differing phases (the panels to the

right). Together the different phases and amplitudes but same frequencies of the local abundance oscillations average to the values corresponding to an

unstable fixed point of the non-spatial GLV. For the non-spatial system there is a oscillatory pattern, note however the increase in sharpness in both

frequency and amplitude as well as some species going extinct and reappearing, which is not a biologically realistic or stable solution for a ecological

system.

https://doi.org/10.1371/journal.pcbi.1008899.g003

PLOS COMPUTATIONAL BIOLOGY Robustness of ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008899 October 27, 2021 8 / 16

https://doi.org/10.1371/journal.pcbi.1008899.g003
https://doi.org/10.1371/journal.pcbi.1008899


Parameter-space

We have shown examples of dynamics of the spatial GLV and also pointed out the multitude

of ecosystem dynamics in a connected space. We can bring some order to this multitude and

substantiate our claim that moderate diffusion rates lead to increased stability by gathering sta-

tistics on measures that contribute to stability, while varying σ and the diffusion rate. The mea-

sures we chose for each run are A) Number of grid-points with oscillatory patterns (potentially

Fig 4. Local and global species abundances in spatial extended system. The figure shows an example of a system with varying rates of diffusion from

top to bottom μD = 2.5σD = 10−5, 10−3, 10−1, 1 (the green shading increases with increasing diffusion rates). The left column shows the system’s

dynamics at arbitrary grid-points from high amplitude with low diffusion as the amplitudes are dampened with increasing diffusion and then back to

high amplitudes as the diffusion rate is high enough for synchronisation over the grid. If there are two panels in the left column this shows two

unsynchronised grid-point dynamics. If there is only one panel the system is synchronised. The right column shows the spatial mean for all grid-points

(global average abundances). Note that the unsynchronised oscillations lead to almost constant global species abundances while the synchronised

system on the bottom shows violent global oscillations.

https://doi.org/10.1371/journal.pcbi.1008899.g004
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different patterns), B) Average maximum phase shift for a species between grid-points if oscil-

lations (degree of synchronisation), C) Average amplitude if oscillations, and D) Average

diversity (n). The measures are both in combination and one-by-one the basis for different

aspects of stability. Statistics over these measures in the non-feasible region for varying magni-

tude of diffusion rates are shown in Fig 5.

An example of the measures contributing to stability is, the oscillations appearing in almost

the entire non-feasible region, although most prominently for higher interaction strengths

(panel A), while the average diversity for systems with diffusion is higher than without

Fig 5. Parameter-space—Diffusion magnitude vs. s.d. of interaction strength σ. The figure shows statistics for 70 systems in diffusion magnitude vs.

standard deviation parameter-space for panel A) Number of grid-points with oscillatory patterns, panel B) Average maximum phase shift for a species

between grid-points if oscillations (degree of synchronisation), panel C) Average amplitude if oscillations, and panel D) Average diversity (n). The

lowest diffusion in the diagrams is zero, corresponding to completely disconnected space (non-spatial GLV) and the largest Di* 1 (μD = 1, σD = bμD,

0.3< b< 0.4). Worthy of noting is the lower degree of oscillations and the lower diversity in the non-spatial systems. It is also clear that oscillations are

present in almost the entire non-feasible region.

https://doi.org/10.1371/journal.pcbi.1008899.g005
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diffusion (panel D). This shows the increase in robustness across the entire span of interaction

strengths, σ. Systems can react with local oscillations instead of extinctions if pressured or per-

turbed. Another example, the lesser fraction of stable fixed points for large σ together with less

oscillations at Di = 0 for all i (bottom right panel A), show where systems without a connected

space start collapsing. Adding moderate rates of diffusion so that the system has a connected

space gives rise to unsynchronised oscillations and the ability for systems to stay stable across

previous stability limits. Panel C shows the decrease in local species abundance variability

(oscillation amplitudes) for the middle range of diffusion magnitudes, where both discon-

nected and high diffusion lead to violent oscillations. This feature is connected to the degree of

synchronisation shown in panel B, where we can see the increase in synchronisation as the dif-

fusion constants are increased in magnitude.

In Fig 6 we summarise the results from the parameter-space in terms of behaviour and sta-

bility. The table shows that the middle range of diffusion, in effect systems which allow for a

certain amount of dispersal of species between local areas, are the more robust systems over a

larger range of interaction strengths.

The diffusion magnitude, as we have shown, we found to have a large impact on dynamics,

the variation of diffusion rates between species however had little impact. Different random

draws of species diffusion constants with the same magnitude could phase-shift oscillations

between runs and introduced a very slight nudge towards asynchronisation, but otherwise

introduced no qualitative change in oscillatory patterns or fixed point solutions in the

grid-points. The slight nudging towards unsynchronised dynamics could point towards a sta-

bilising effect from large variation in dispersal rates between species, but this was not further

investigated.

Discussion

Ever since May’s mathematical argument for the instability of large complex systems [2] chal-

lenging the previous view of ‘complexity begets stability’ advocated by MacArthur [30], it has

been an open question if the biodiversity, multitude of interactions between species and the

amount of interactions (in effect complexity) of an ecosystem makes it more or less stable.

Since then a limit to the complexity an ecosystem can sustain, derived in May’s paper and later

extended, has persisted. Ecosystems at the edge of this limit or externally pushed so that their

complexity exceeds it are predicted to radically change, lose species or collapse. Crucial aspects

of such models are that the ecosystems are modelled as isolated homogeneous systems. A reso-

lution to the long standing question of the limit of complexity might not be primarily the

structure of interactions but that real ecosystems are both internally heterogeneous and exter-

nally connected. Connected ecosystems might gain their capacity of sustaining previously

thought to be unstable patterns of cohabitation using the flexibility of local variations and

buffer of surrounding ecosystems.

Our model represents an ecosystem or high diversity meta-community for which the abi-

otic conditions are constant, reflected by our choice of identical interaction strengths, carrying

capacities and intrinsic growth rates throughout the connected space. Large ecosystems might

include many different types of habitats connected by dispersal, which is mostly found to be

positive for biodiversity and robustness [25, 26, 31]. But even in ecosystems with only one type

of habitat, the area could be large enough such that external perturbations are not equal, there

might be boundaries artificial or natural, or aggregation of species due to conspecific attraction

[32, 33], leading to patches with equal species interactions connected by dispersal. As we have

shown, in such ecosystems the mere possibility of differential species abundances at different

locations enhances stability and diversity.
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The classical stability boundaries have long been known to be a transition from a stable

equilibrium fixed point to some qualitatively different dynamics in terms of abundance oscilla-

tions, chaos or drop to substantially smaller community [2, 9, 34]. Thus oscillations have been

known to be a possible dynamics resulting from crossing the stability boundary. In a con-

nected space the amplitudes of such oscillations are dampened. In addition, if the dispersal

rates between patches are low enough, oscillations in local species abundances can be out of

phase leading to global abundances remaining largely unchanged. This result is a spatial exten-

sion of the time-average effect, which is that time-averages of fluctuating species abundances

Fig 6. Stability of spatial GLV. The table shows in text the type of dynamics present for low, medium and high diffusion rates and s.d of interaction

strength. Green indicates stable robust systems and the darker the colour the more robust. Red on the other hand are collapsed or unstable volatile

systems. Note that the middle range is green for all s.d of interaction strengths.

https://doi.org/10.1371/journal.pcbi.1008899.g006
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in an ecosystem are nearly constant [35, 36]. We can then speculate that the “Portfolio effect”,

keeping ecosystem properties by unsynchronised oscillations of functionally equal species, is

an additional aspect of robustness gained with spatial extension.

The effect of local stabilising oscillations is as we have shown not only present when nearing

collapse, but can also prevent extinctions when the system is perturbed. The non-spatial GLV

is structurally unstable in the non-feasible region, meaning small structural changes (small

increase in σ) can lead to species extinctions. The connected space, on the other hand can sta-

bilise by local oscillations, thus avoiding the irreversible event of an extinction. With real eco-

systems more alike the spatial GLV, we can expect ecosystem to be more robust than many

models might suggest [37, 38].

One of the reported mechanisms for high diversity in spatial GLV models with spatial het-

erogeneity in interactions is that some local habitats function as sources thereby preventing

some species from extinction [26]. In our study, this is not a possible mechanism for high

diversity, instead we find that spatial connectivity both promotes oscillatory patterns with

higher diversity than fixed points as well as allowing for a larger spectrum of the possible

dynamics some of which suffer less extinction and thus contribute to higher global diversity. A

similar mechanism is found in chaotic dynamics, where it is reported that booms and bust

(asynchronous abundances) at different identical locations nurture persistent high diversity

dynamics [27].

Adding a connected space increases the dynamics available for a system. This is apparent in

our study as well as in [28], studying the abruptness between such different dynamical realisa-

tions along a spatial gradient. We find that not only is there room for different combinations

of dynamics in the grid but the connected space can also facilitate dynamics not found or

unstable in spatially unresolved systems. This is a source of stability, but we also argue that the

increased dynamical possibilities is itself a mechanism of robustness for the system. Impor-

tantly we also find that this repertoire of dynamics is largest at intermediate levels of dispersal,

an observation in line with previous studies [21, 25, 26, 39].

It is quite remarkable that the inclusion of space even with homogeneous patches and with-

out external forcing is sufficient for dynamic spatial heterogeneity to emerge in the GLV,

including regimes of stable global abundances and persistent local abundance fluctuations.

High diversity meta-communities have been shown to also display local species turn-over in

absence of external influence [40]. The fact that undisturbed high diversity meta-communities

have such a wealth of dynamical behaviour can have a large impact on biological monitoring.

To correctly asses and manage ecosystems it is vital that we can predict what behaviour can be

expected from intrinsic system dynamics so that we do not wrongfully assign such dynamics

to environmental change or anthropogenic pressures and invest our efforts where it is uncalled

for.

With the help of spatially extended models many novel mechanisms promoting diversity

and stability have been found and intrinsic dynamics uncovered, but there are avenues rele-

vant to real ecosystems still unexplored. In this study we used different diffusion constants for

different species but all within the same order of magnitude, with no definite qualitative

change in stability properties compared to constant diffusion rates. It is still unclear how a

larger spread in species mobility, larger spread in diffusion constants, would effect stability.

This, both because of the very slight nudge towards unsynchronised dynamics and since spatial

patterning in reaction diffusion systems tend to appear in systems where the components have

a large spread in diffusion constants. We can speculate that spatial species patterning might

appear in such systems. Varying the diffusion constants between grid-points is also a direction

left unexplored. Varying constants can represent varying distance, some natural obstacle, a

road or systems with internal dynamics connected to surrounding ecosystems. With varying
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diffusion constants we can therefore both study “unsymmetrical” habitats where interactions

between local areas differ as well as how local disturbances might affect an ecosystem and con-

nected ecosystems.

Left for future work is also varying the standard deviation of interaction strength σ over the

grid. The inverse interaction strength can be interpreted as a proxy for available habitat, since

a reduction of available space will force the existing species closer together and to interact

more which is an increase in σ. Thus, with different σ we can model a grid with different local

habitat sizes as well as a system’s response to local habitat losses if perturbing one or some of

the σ at a time.

Conclusion

A large ecosystem can have internal spatial heterogeneity in local species abundances.

Although, many insights into ecosystems’ functioning and stability have been gained through

studies where such heterogeneity is averaged out, in this study we find that adding this possi-

bility promotes ecosystem robustness and diversity. We add the possibility of abundance het-

erogeneity by modelling an ecosystem as collection of communities connected by dispersal. In

this spatially resolved system a limit of complexity for stability is no longer a limit to qualitative

change or collapse. With the connected space acting as a buffer harbouring unsynchronised

local abundances, global abundances are kept constant beyond stability limits of spatially

homogeneous systems. We also found that spatially extended systems have lower variability in

abundance fluctuations and the ability to avoid extinctions by local species oscillations, thus

promoting high diversity. The increase in dynamical possibilities and combinations is a source

of robustness for the global system. This repertoire of dynamics is maximal at intermediate dis-

persal which we therefore find to promote the most robust ecosystems.
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