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Sensorineural hearing loss (SNHL) affects approximately 466 million people worldwide,
which is projected to reach 900 million by 2050. Its histological characteristics are
lesions in cochlear hair cells, supporting cells, and auditory nerve endings. Neurological
disorders cover a wide range of diseases affecting the nervous system, including
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), autism
spectrum disorder (ASD), etc. Many studies have revealed that neurological disorders
manifest with hearing loss, in addition to typical nervous symptoms. The prevalence,
manifestations, and neuropathological mechanisms underlying vary among different
diseases. In this review, we discuss the relevant literature, from clinical trials to research
mice models, to provide an overview of auditory dysfunctions in the most common
neurological disorders, particularly those associated with hearing loss, and to explain
their underlying pathological and molecular mechanisms.

Keywords: hearing loss, neurodegenerative diseases, autism spectrum disorder, pathological mechanisms,
molecular mechanisms

INTRODUCTION

Hearing loss is defined by an average pure-tone threshold detection exceeding 20 dB, affecting
approximately 466 million people worldwide. According to the value of pure tone thresholds, it
can be classified as mild (20–35 dB), moderate (35–50 dB), moderately severe (50–65 dB), severe
(65–80 dB), profound (80–95 dB), and total (≥95 dB) hearing loss. Lesions in the cochlea, auditory
nerve, and central auditory pathway induce sensorineural hearing loss (SNHL); nearly a third of
the population over the age of 65 is suffering from it1. Histological characteristics of age-related
hearing loss include degenerative pathology in cochlear hair cells, supporting cells, and auditory
nerve endings, resulting in irreversible damage to the sensory epithelium of the cochlea (He et al.,
2020; Keithley, 2020; Wu et al., 2020b). Sound is collected and conducted by the external and
middle ear, then transformed into electrical signals by cochlear mechanosensory cells: the inner
and outer hair cells (OHCs) (Dallos, 1986). OHCs function to enhance sound frequency selectivity
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and mechanical amplification, and inner hair cells (IHCs) are
responsible for subsequent sound detection and transmission.
Hair cells are sensitive to aging, acoustic trauma, ototoxic drugs
(Fu et al., 2021b), and environmental or genetic influences
(Wang et al., 2017; Qian et al., 2020; Fu et al., 2021a; Lv
et al., 2021). As damages to either type of hair cells can result
in permanent SNHL, many studies have focused on biological
treatments for hearing restoration, including gene therapy, hair
cell regeneration, etc. (Liu et al., 2016; Li et al., 2018b; Chen et al.,
2021; He et al., 2021). These electrical signals are then transduced
to the auditory cortex by spiral ganglion neurons (SGNs). SGNs
are located in the Rosenthal’s canal of the cochlea and work
as the primary sensory neurons to connect the peripheral and
central auditory systems, which are susceptible to aging and
ototoxic drugs. Hence, preventing the degeneration of SGNs
carries critical implications for improving the restoration of
hearing (Appler and Goodrich, 2011; Coate and Kelley, 2013;
Sun et al., 2016; Liu et al., 2019, 2021; Guo et al., 2021). The
pulses ascend into the cochlear nuclei, superior olivary complex,
and inferior colliculus for the perception of time and intensity,
then target toward the medial geniculate body, and finally, the
auditory information is integrated into and further processed by
the auditory cortex (Grothe et al., 2010; Profant et al., 2015; Wu
et al., 2015). The ascending and reversed descending pathways
(originating from the cerebral cortex to the cochlea) form the
complete auditory circuitry. Pathology in any portion of the
auditory circuitry will lead to auditory dysfunctions, including
hearing impairments and central auditory processing disorder,
which can be addressed through pure tone audiometry (PTA) and
speech tests (such as speech discrimination and speech-in-noise
tests). The effects of hearing loss are widespread and profound,
resulting in social isolation, psychological illness. And hearing
loss is reported to be closely associated with cognitive decline
and dementia independently in the elderly population (Lin et al.,
2011a, 2013; Jafari et al., 2019).

Neurological disorders include a broad range of diseases
that affect the nervous system, of which neurodegenerative
diseases and neurodevelopmental disorders have been widely
discussed. In the elderly, neurodegenerative diseases are common
causes of morbidity and cognitive impairment (Kritsilis et al.,
2018; Hou et al., 2019). The progression of these diseases
is characterized by the diffusion of protein aggregates, which
correlates with clinical severity (Ross and Poirier, 2004; Herrero
and Morelli, 2017; Davis et al., 2018). Autism spectrum
disorder (ASD) is a neurodevelopmental disorder characterized
by social isolation, stereotypical behaviors, and interests. Genetic
and environmental risk factors jointly account for phenotypic
variations in ASD (Johnson et al., 2007; Lai et al., 2014a).
Recent studies have reported that patients suffering from
these neurological disorders are accompanied by hearing
impairments and other auditory dysfunctions, especially in
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), and ASD. Meanwhile, many mechanisms may
account for the complex interplay, including neuropathological
changes in the central and peripheral auditory system, social
isolation caused by hearing decline, or other potential molecular
mechanisms (Fortunato et al., 2016; Shen et al., 2018). It

remains unclear whether auditory dysfunction is intrinsic or
secondary to these diseases. Here, we discuss the relevant
clinical literature to review the most common neurological
disorders, particularly those associated with hearing loss,
and explain their underlying pathological and molecular
mechanisms.

ALZHEIMER’S DISEASE

Alzheimer’s disease is a progressive neurodegenerative disorder
and the most common form of dementia. One in 10 people aged
over 65 years is affected by AD, and the incidence increases with
age (Soria Lopez et al., 2019; Alzheimer’s Association, 2020). Late-
onset AD (LOAD) is the onset of AD later than 65 years of
age, accounting for approximately 94% of all cases. Symptomatic
AD exhibits insidious impairments in learning and memory at
the initial stage, and then progresses toward impairments in
cognition and executive function at the later stage (Long and
Holtzman, 2019). AD patients are usually present with deficient
perceptual and semantic processing of sounds (Perez et al., 2009;
Benarroch, 2010; Ruan et al., 2012; Attems et al., 2014; Albers
et al., 2015; van Wijngaarden et al., 2017). Since the 1980s,
the association between hearing impairments and AD has been
discussed. Evidence has shown that cognitive impairment is often
accompanied by hearing loss, and in turn, hearing loss increases
the incidence of cognitive decline and AD (Gallacher et al., 2012;
Hung et al., 2015; Panza et al., 2015; Fortunato et al., 2016; Ford
et al., 2018). Ford et al. (2018) estimated that midlife hearing
loss might account for 9.1% of dementia cases globally. Lin et al.
(2011a) demonstrated that for every 10 dB increase above the
pure tone threshold of 25 dB, the risk of dementia increased
by approximately 20%, with risk ratios for mild, moderate, and
severe hearing loss of 1.89, 3.00, and 4.94, respectively. Taljaard
et al. (2016) conducted a meta-analysis illustrating that hearing
impairments coexisted with more inferior cognitive ability in
older individuals, and receiving hearing interventions improved
cognitive outcomes.

Neuropathological changes in the auditory system of AD
have been widely explored, and typical AD pathological changes
have been observed in auditory pathways (Uhlmann et al.,
1986). Extracellular amyloid-β (Aβ) peptide aggregation
and intracellular neurofibrillary tangles (NFTs) are the
neuropathological hallmarks of AD (Figure 1; Long and
Holtzman, 2019). In the amyloidogenic pathway, amyloid
precursor proteins (APP) are membrane proteins that are
sequentially cleaved by β-secretase and γ-secretase, resulting
in the release of extracellular amyloid-β peptides, where they
clump together to form deposits (Aβ plaques) and initiate a
cascade of pathogenic processes and neurodegeneration. Tau
protein plays a critical role in the development of neurons,
and its hyperphosphorylation leads to the production of NFTs.
Aβ peptides and NFTs coalesce to induce cellular dysfunctions
(inflammation, oxidative stress, etc.), synaptic loss, and
neurodegeneration (Guo et al., 2017; Makin, 2018). Genetically,
AD is classified into familial (FAD) and sporadic cases. FAD
accounts for 5% of AD cases and has an autosomal dominant
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FIGURE 1 | Amyloid plaque formation extracellular and tau pathology intracellular. Amyloid precursor protein (APP) is a transmembrane protein that can be cleaved
by three kinds of secretases. In the process of amyloid plaque formation, APP is cleaved by β-secretase and γ-secretase sequentially, then amyloid-β peptides
release to extracellular and clump together to form deposits (Aβ plaques). Tau plays a critical role in microtubule assembly and stabilization, hyperphosphorylation of
tau leads to microtubules depolymerization, and paired helical filaments (PHF) aggregate to form tau neurofibrillary tangles (NFTs).

inheritance pattern. Mutations in APP, PSEN1 (Presenilin 1),
and PSEN2 (Presenilin 2) are responsible for the occurrence of
FAD, and it was reported that mutations in these genes alter APP
processing, induce Aβ formation, and then initiate tau pathology.
In contrast, more than 90% of AD patients appear sporadically,
which usually presents with late-onset AD (Piaceri et al., 2013).
The only confirmed risk gene for sporadic AD is apolipoprotein
E (APOE), which encodes an amino acid lipoprotein that can
bind to amyloid precursor proteins. The Epsilon4 allele in APOE
is strongly associated with an increased risk of AD in either
homozygous or heterozygous states. Over 60% of sporadic cases
are unrelated to APOE, suggesting that the interplay of genetic
and environmental elements contributes to the occurrence of
sporadic AD (Verghese et al., 2011). Similar neuropathology is
also observed in sporadic AD without such mutations, indicating
that Aβ plaques may be the driving force behind tau pathology,
but not the sole one (van der Kant et al., 2020).

In the early stage of AD, brain atrophy occurs in the central
auditory cortex and related functional nuclei; senile plaques (SPs)
and NFTs are extensively distributed throughout relay stations
in the ascending auditory pathway (Sinha et al., 1993; Parvizi
et al., 2001; Rub et al., 2016). Many AD mouse models have
been used to explore hearing dysfunction and their underlying
mechanisms (summarized in Table 1). Studies have shown
that AD mouse models initially exhibit high-frequency hearing
loss and finally progress to the entire frequency. 5xFAD and
APP/PS1 mice are mainly characterized by β-amyloid plaque
deposition and show elevated auditory brainstem response (ABR)
thresholds. 5xFAD mice co-express gene mutations in five FAD
and can generate Aβ deposits rapidly (Oakley et al., 2006). In
5xFAD mice, amyloid depositions were observed at 2 months
of age, while cochlear histopathology revealed a large amount
of apical and basal hair cell loss at 13 months of age (O’Leary
et al., 2017). The onset of auditory dysfunctions in APP/PS1
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TABLE 1 | List of AD, HD, ASD mice models that have been used for auditory function and anatomy study.

Mice lines Mutations Neuropathological
abnormalities/manifestations

Auditory dysfunction Auditory circuit anatomy Reporter and
year of
publication

AD 3xTg-AD APP • Neuroinflammation: • ABR: thresholds increased at
9-month-old

• SGNs loss: at 9–12 months Wang and Wu,
2015

PSEN1 6-month –old • DPOAE: normal

Tau • Aβ deposits:

Initiate at 6-month-old

Apparent at 12-month-old

• Tau pathology:

12-month-old

• Synaptic dysfunction

5xFAD APP K670N/M671L • Aβ deposition: • ASR: thresholds elevated at
3–4 months

• HC loss: O’Leary et al.,
2017

(Swedish) + I716V Onset at 2-month-old • ABR: thresholds increased at
8–32 kHz

Apical and basal IHCs

(Florida) + V717I
(London)
PS1
M146L + L286V

Apparent at 4-month-old
• Neurodegeneration and cognitive

deficits:
4–5 months

at 13–14 months And OHCs at 15–16 months

APP/PS1 APP • Aβ deposition: • ABR: / Liu et al., 2021

PSEN1 6–7 months 1) High frequency increased at
2–3 months;

2) Whole frequency increased
at 3–4 months;

3) Wave IV and V reduction at
3-month-old
• DPOAE

16 and 20 kHz increased at
3-month-old
• CM: normal

HD Hdh(CAG)150 Huntingtin knock-in • mHtt aggregation:
at 10–14 months

• ABR: thresholds at 4 and 8 kHz
increased
at 15-month-old

• Spiral ganglion/the organ of Corti:
1) mHtt aggregation;
2) Reduced CKB expression;
3) At 15–20 months

Lin et al., 2011b

R6/2 Huntingtin (around
150 CAG repeats)

• mHtt aggregation:
5–6 weeks of age

• ABR: thresholds increased at
2–3 months
• DPOAE: thresholds increased at

2–3 months

• Reduced prestin level: at
3-month-old
• HC loss: at 3-month-old

Wang and Wu,
2015

• SGNs loss: at 3-month-old

ASD 16p11.2
deletion ±

16p11.2 deletion • Low body weight • No ASR at any decibel level / Yang et al.,
2015

• Perinatal mortality • No ABR to wide frequencies:

• Spontaneous locomotor activity Between 8 and 100 kHz;

• Sporadic motor stereotypies

Cntnap2−/− Cntnap2 knockout • Reduced social interaction
• Hyperactivity
• Repetitive behaviors
• Reduced ultrasonic vocalization

output

• Auditory-processing dissociation:
1) Impairs Silent Gap Detection
2) Enhanced Tone

Discrimination

• Medial Geniculate Nucleus:
1) Reduced neuron numbers
2) Smaller neurons

Truong et al.,
2015

Adnp± truncated Adnp • Irregular tooth eruption
• Short stature
• Social and vocal impediments
• Motor delays
• Learning and memory deficits

• ABR:
Increased thresholds;
Prolonged latency;
at 2.5-month-old

• Normal hair-cell morphology at
P0
• Expression of autism and

auditory related proteins
1) Auditory cortex:

Decreased ChAT in male Adnp±

Decreased PVALB in male
Adnp±

2) Cerebellum:
Increased GAD67 in female
Adnp±

Decreased VGLUT2, CX32, and
ChAT in female Adnp±

Hacohen-
Kleiman et al.,
2019

ABR, auditory brainstem responses; ADNP, activity-dependent neuroprotective protein; APP, amyloid precursor proteins; ASR, auditory startle response; CKB, brain-
type creatine kinase; CNTNAP2, contactin-associated protein-like 2; DPOAE, distortion product otoacoustic emission; HC, hair cell; IHC, inner hair cell; mHtt, mutant
Huntingtin; OHC, Outer Hair Cell; PSEN1, Presenilin 1; SGNs, Spiral Ganglion Neurons.
“/” means that information on the item is not available in the relevant research.
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mice preceded before neuropathological changes, suggesting that
acoustic measurements might be a non-invasive indicator for AD
detection (Liu et al., 2020). 3xTg-AD mice express 3 AD-related
transgenes, and its neuropathology developments are similar to
FAD patients, characterized by Aβ deposition, tau pathology,
and neuroinflammation. In 3xTg-AD mice, a reduction of
SGN’s relative densities was observed at 9–12 months of age.
A transgenic mouse model with overexpression of Aβ peptides
in hair cells was established by Omata et al. (2016) and high-
frequency hearing impairments were found at 4 months of
age. Aligned with the electrophysiological assessment, basal hair
cell loss was observed. They further established another model
overexpressing tau pathology but found no significant hearing
dysfunctions. Nevertheless, double transgenic mice showed an
advanced and exaggerated hearing impairments, suggesting that
Aβ deposition was a fundamental pathological etiology for
hearing defects exhibited by AD and that tau pathology enhanced
the dysfunction (Omata et al., 2016). Many previous studies have
shown that both oxidative stress and apoptosis play essential
roles in the death of hair cells (Yu et al., 2017; Li et al.,
2018a), whether hair cell loss observed in the researches can
be attributed to Aβ-induced oxidative stress and cell apoptosis
need further study.

Clinical literature suggests that midlife hearing loss is
independently correlated with accelerated progression of
sporadic AD and incident dementia. The degree of hearing loss
was positively associated with an increased risk of dementia.
AD-related neuropathology was found in the central auditory
pathway but was not clinically identified in the peripheral
auditory pathway. Although multiple clinical studies have been
designed to determine the relationship between hearing loss and
AD, there are still some flaws in the experimental design. Most
of the important information has been neglected, including the
extent of hearing loss, measurements of auditory processing,
differences between sexes, and auditory condition in different
AD classifications, resulting in restricted access to information
to determine the relationship between auditory dysfunction
and AD. Mouse model studies further illustrated that hearing
loss is associated with AD development. In the APP/PS1 mouse
model, the shifts of ABR and distortion product otoacoustic
emission (DPOAE) preceded the neuropathy observed in
the brain. Loss of hair cells and SGNs was observed in AD
mouse models, which was likely induced by the spread of
AD-related neuropathology (Aβ deposition and tau pathology)
in the cochlea. However, the three AD-related mouse models
were all designed with mutations in FAD genes, which could
not completely mimic the pathogenesis of sporadic AD. The
central auditory pathway has not yet been studied in these
mouse models. High-frequency hearing loss has been observed
in patients with AD and incident dementia. Moreover, both
the central and peripheral auditory pathways are affected by
AD-related neuropathology, but the concrete cochlear pathology
is still debated. The results vary among studies due to different
mouse models, sampling times, and hearing measurements.
Hence, for a comprehensive understanding of AD-related
hearing loss, standard observation criteria should be established
in further studies.

HUNTINGTON’S DISEASE

Huntington’s disease is an autosomal-dominantly inherited
disorder with a mean prevalence of 2.71 per 100,000 individuals
worldwide (Pringsheim et al., 2012). HD manifests with midlife
cognitive impairment, motor incoordination, and psychiatric
symptoms (Martin and Gusella, 1986; Walker, 2007). Late-stage
HD patients often present with auditory sensory, processing,
and memory problems other than typical dysfunctions. Studies
have illustrated that hearing impairment is involved in and is
closely correlated with motor deficits in HD (Josiassen et al.,
1984; Lin et al., 2011b). Lin et al. (2011b) recruited 19 HD
patients and assessed hearing impairments using PTA and
ABR. The PTA thresholds showed that an average increase of
15 dB was detected in high frequencies of HD patients, and
no significant differences were observed in latency and inter-
peak intervals of ABRs, indicating that hearing impairments in
HD were more associated with the peripheral auditory pathway
than retrocochlear lesions (Lin et al., 2011b). In contrast, other
researchers found that HD patients displayed normal sound
sensation, but with a significant decrease in speech understanding
and sound source lateralization, suggesting that HD-associated
neuropathology affects the central auditory system (cortical and
subcortical parts) (Beste et al., 2008; Saft et al., 2008; Profant
et al., 2017). Wetter et al. (2005) revealed that HD patients had
delayed auditory event-related potentials (ERPs), which were also
found in individuals at risk for HD. These findings showed HD-
related dysfunction during sound processing (Homberg et al.,
1986; Josiassen et al., 1988; Wetter et al., 2005).

The pathophysiological mechanisms underlying HD-related
auditory dysfunction are poorly understood; nonetheless, recent
studies in transgenic mouse models provide new insight
into these mechanisms (Walker, 2007). Aggregated mutant
huntingtin (mHtt) is the most classic cellular pathological
characteristic of HD; extra amplificated CAG repeats in exon
1 of huntingtin lead to polyglutamine (polyQ) extension at the
N-terminal of Htt protein, and mutant Htt accumulates to cause
neuronal loss (Figure 2; Macdonald et al., 1993; Mangiarini et al.,
1996; Ha and Fung, 2012). Neuronal loss preferentially affects the
cortico-striatal circuits, which leads to characteristic chorea, and
as HD progresses, mHtt spreads to peripheral tissues, including
the inner ear (Vonsattel and DiFiglia, 1998; Cepeda et al., 2007;
Snowden, 2017). Mouse models were also used to illustrate
auditory dysfunction and pathology in HD (summarized in
Table 1). R6/2-HD mice express mHtt and present with HD-
related phenotypes at 5–6 weeks of age. Lin et al. (2011b) found
that R6/2-HD mice exhibited approximately 10 dB elevation
of ABR thresholds at 2 months of age before the presentation
of motor deficits. After 3 weeks, the motor defects became
apparent, and a 30 dB threshold shift for click stimuli and a
15 dB threshold shift for tone bursts at all frequencies were also
observed. In addition, they found no difference in ABR latency
and peak intervals between R6/2-HD mice and wild type mice
(Lin et al., 2011b). As described in Wang’s research, R6/2-HD
mice exhibited increased distortion product otoacoustic emission
and ABR thresholds at 2–3 months of age. Furthermore, the
relative expression of prestin was reduced in OHCs, which was
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FIGURE 2 | mHtt aggregates induced toxicity and dysregulated PCr-CK system in hair cells. The PCr-CK system plays a critical role in providing ATP in hair bundles
of hair cells, mitochondrial creatine kinase (CKMT1) phosphorylates creatine (Cr) to phosphocreatine (PCr). In the stereocilia, brain-type creatine kinase (CKB)
regenerates ATP from PCr. Expression of mHtt in hair cells impairs the function of mitochondria, releases cytochrome C and reactive oxygen species (ROS) to the
cytoplasm. On the other hand, mHtt aggregates lead to protein sequestration (including many transcriptional factors), then induce transcriptional dysregulation,
which reduces the expression of CKB (creatine kinase).

reported to be responsible for dysfunction in hearing sensitivity
and frequency selectivity. Cochlear SGN reduction and hair
cell loss (especially OHCs) were observed histologically after
that (Wang and Wu, 2015), suggesting that mHtt pathology in
the central and peripheral auditory system contributed to the
presence of hearing impairments in HD. Hdh(CAG)150 mice are
knock-in mice that carry 150 CAG repeats on the Htt locus, of
which mHtt aggregation in the nervous system and HD-related
characteristics initiate at approximately 10 months of age. In
Hdh(CAG)150 mice, thresholds measured by click and tone bursts
ABR analysis at 15 months of age revealed that approximately
20 dB thresholds were increased for click and tone bursts at
frequencies of 4 and 8 kHz. No differences were observed at
frequencies of 16 and 32 kHz because wild type mice developed
presbycusis at 15 months of age (Lin et al., 2011b). Moreover,
aggregated mHtt and continuing loss of brain-type creatine
kinase (CKB), which was previously reported to decline in HD
patients, were both obtained in the organ of Corti and the spiral
ganglion in both mouse models (Perluigi et al., 2005; Sorolla
et al., 2008; Kim et al., 2010; Lin et al., 2011b). Aggregation of
mHtt is thought to affect many transcriptional factors and induce
mitochondrial dysfunction, which directly leads to the release of
cytochrome C and oxidative stress (Kim and Kim, 2014). CKB, a

cytosolic enzyme, can regenerate ATP by reversibly transferring
high-energy phosphate from phosphocreatine (PCr) to ADP
(Jacobus and Lehninger, 1973; Wallimann et al., 1992; Wyss
and Kaddurah-Daouk, 2000). CKB also localizes in cochlear
hair cells and ligaments and is critical for hearing function
(Spicer and Schulte, 1992; Spicer et al., 1997). CKB-knockout
mice presented with high-tone hearing loss that can be restored
by dietary creatine supplements (Shin et al., 2007; Lin et al.,
2011c). These studies suggest that CKB dysregulation may be
associated with HD-related auditory dysfunction, synergistic
with mHtt (Figure 2).

Auditory dysfunction appears to be authentic for HD. Clinical
studies have shown that hearing impairments and auditory
processing dysfunction are present in HD patients. Delayed ERPs
are suggested to be a potential predictor of HD. While there is
no consensus that auditory sense, processing, or discrimination
is uniparted or jointly present in HD, more research objectives,
detailed acoustic measurements, and specified auditory items
should be included. Hearing impairment is solid in HD mouse
models, and hearing loss precedes the occurrence of motor
defects and worsens with the progression of HD in R6/2-
HD mice. The loss of hair cells and SGNs was also observed.
Hdh(CAG)150 mice exhibited significant low-frequency hearing
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impairment compared to wild type mice, which was accompanied
by presbycusis-related high-frequency hearing loss, suggesting
that hearing impairments in HD patients was not merely related
to the auditory pathway degeneration caused by natural aging
and clarifying that hearing loss was authentic to HD, while
the cochlear anatomy has not been assessed in Hdh(CAG)150

mice. Moreover, pathological studies of the central auditory
pathway, including cochlear nuclei, superior olivary complex,
and auditory cortex, should be performed to determine auditory-
related lesions and guide auditory-related tests carried out for HD
patients and high-risk groups.

PARKINSON’S DISEASE

Parkinson’s disease is a neurodegenerative disorder characterized
by static tremor, bradykinesia, rigidity, and postural instability,
affecting 1–2 per 1,000 individuals (Dorsey et al., 2007; Ascherio
and Schwarzschild, 2016). Before the onset of typical motor
symptoms, patients with PD often manifest with cognitive
impairment, olfactory dysfunction, fatigue, etc. (Postuma et al.,
2012; Khoo et al., 2013). Recently, hearing impairment has been
considered as another non-motor feature in PD patients. Studies
have shown that the incidence of developing PD in the hearing
loss group was 1.77 higher than in the control group (Lai et al.,
2014b), and high-frequency hearing impairment was observed in
PD patients without self-perceiving (Yylmaz et al., 2009; Santos-
Garcia et al., 2010; Shetty et al., 2019), which is positively related
to PD duration and worsens as it progresses (Scarpa et al., 2020).
PTA results showed an average elevation of 10 dB in 4 and
8 kHz in PD patients, and significantly increased latencies in
wave V and interpeak were obtained (Yylmaz et al., 2009). PTA
performed among the relatively younger (age < 55 years old)
population of PD showed that thresholds were elevated at high
frequency and low to mid frequencies. This ratio was even higher
for low-mid-frequency hearing loss. Concurrently, the brain
stem auditory-evoked potentials were comparable to the control
group, indicating that hearing loss in PD was independent
of aging and that the underlying mechanism appeared to be
peripheral according to the study (Shetty et al., 2019). Vitale
et al. (2013) calculated the proportion of different degrees of
hearing loss in 75 patients with PD and found that 89% of
them had mild to moderate hearing loss, and 11% had severe
hearing loss. In addition, they revealed that the prevalence of
PD with hearing impairments was higher in the male elderly
(Vitale et al., 2013). Whole frequencies of distortion product
otoacoustic emission thresholds in PD patients also increased.
It can be alleviated by dopaminergic treatment (Georgiev et al.,
2015; Pisani et al., 2015), which uncovered an undermined
dopamine-dependent cochlear dysfunction undermined. Sisto
et al. (2020) found that the ipsilateral cochlear dysfunction
developed in parallel with asymmetric motor impairment. The
abilities of speech discrimination and sound lateralization were
also markedly reduced in PD patients (Lewald et al., 2004; Vitale
et al., 2016; Folmer et al., 2017), and abnormal auditory evoked
potentials were suggested as a measurement of PD duration and
severity (Yylmaz et al., 2009; Jafari et al., 2020).

The association between hearing dysfunction and PD suggests
a common neuropathological background. Lewy pathology
and dopaminergic neuronal degeneration are two primary
neuropathological features of PD that spread as PD progresses
(Dickson et al., 2009; Dickson, 2012; Kordower et al., 2013).
Other protein aggregations, such as Aβ plaques and NFTs, are
also present in the nervous system of PD patients (Kalia and
Lang, 2015). Lewy pathology consists of insoluble misfolded
α-synuclein that can be found in certain regions of the central
and peripheral nervous system in PD (Wakabayashi et al., 1989;
Spillantini et al., 1997; Beach et al., 2010; Del Tredici et al.,
2010; Goedert et al., 2013). In the inner ear, α-synuclein is
located predominantly in the efferent neuronal system, especially
in the OHC, and contributes to the physiological maintenance
of auditory function. Hence, Lewy pathology in the auditory
system has been speculated to be associated with PD-related
auditory disorders (Akil et al., 2008; Park et al., 2011). On the
other hand, common neurotransmitters between the auditory
system and basal ganglia were indicated by the curative effect of
dopaminergic therapy on auditory responses (Rey et al., 1996;
Erro et al., 2015; Georgiev et al., 2015; Pisani et al., 2015).
Furthermore, dopamine and glutamate mediate the synaptic
interplay oppositely in the basal ganglia. In the auditory system,
dopamine also counteracts the excitotoxic effects caused by
glutamate to modulate auditory processing and neural plasticity.
Since glutamate overdose can induce excitotoxic damage to
primary auditory neurons, it was speculated that excessive
glutamate caused by the degeneration of dopaminergic neurons
might account for PD-related auditory dysfunction (Lendvai
et al., 2011). Other common underlying mechanisms, including
mitochondrial dysfunction, reduced neurotransmitter levels,
perturbed protein homeostasis, and oxidative stress, have also
been discussed in previous studies (Simon and Johns, 1999;
Raza et al., 2019).

There have been no reports on auditory dysfunction and
auditory anatomy in PD mouse model. Although manipulation
of specific genes reported in familial PD, including transgenic
overexpression for α-synuclein and leucine-rich repeat kinase 2
and knockout models for Parkin, DJ-1, phosphatase, and tensin
homolog-induced novel kinase 1, made it possible to establish
many mouse models, none of them recapitulate key clinical
and neuropathological features of PD entirely, especially in the
absence of neurodegeneration of dopaminergic neurons (Dawson
et al., 2010). While the objective is to gain insight into the
molecular mechanisms underlying auditory dysfunction and PD,
studies of auditory function in mouse models with specific gene
mutations are still needed. PD is a global neurodegenerative
disorder that affects the central and peripheral nervous system,
and extensive literature indicated a broad range of auditory
dysfunctions from the peripheral auditory system to cortical areas
in PD (Pekkonen et al., 1995; Kofler et al., 2001; Putzki et al.,
2008; Bronnick et al., 2010; Pisani et al., 2015; Potter-Nerger
et al., 2015; Seidel et al., 2015; Liu et al., 2017; Shalash et al.,
2017; Guducu et al., 2019), asymptomatic hearing impairments
appeared to be a newly non-motor manifestation of both early
and late-onset PD, and it can be speculated that the natural
aging process combined with PD-related neurodegenerative
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changes coalesce to induce that. Moreover, the central auditory
dysfunctions, including abnormal speech discrimination and
sound lateralization, cannot be ignored. The literature suggests
hearing measurement as a non-invasive potential biomarker
and indicator of disease severity for PD, widespread alpha-
synuclein neuropathology, and loss of dopaminergic neurons
were suspected of interfering with such auditory dysfunction, and
PD mouse models should be applied for precise assessment of
hearing function and pathological mechanism exploration.

AUTISM SPECTRUM DISORDER

Autism spectrum disorder is a neurodevelopmental disorder
characterized by social isolation, stereotypical behaviors, and
interests, with a prevalence of approximately 1% worldwide
and has a strong male predominance (Johnson et al., 2007;
Lai et al., 2014a). Sense dysfunction, including the feeling of
touch, smell, taste, vision, and hearing, is another feature of
ASD. The pathogenesis of ASD is not entirely understood, but
comorbidities and maternal exposures in placental life may act
as risk factors (Arndt et al., 2005). Researchers have suggested
that genetic polymorphisms and environmental factors jointly
contribute to the phenotypic variation in ASD (Bailey et al., 1995;
Veenstra-VanderWeele et al., 2004; Lopez-Rangel and Lewis,
2006). Cerebellar and brainstem hypoplasia was observed in
patients with ASD (Courchesne et al., 1988; Hashimoto et al.,
1992, 1995), and multiregional neuropathy defects have been
identified, including a reduced number of Purkinje cells in
the cerebellum, delayed neuron maturation of the forebrain,
abnormal development of the frontal and temporal lobes, and
sporadic malformation in the brainstem and neocortex (Hardan
et al., 2004; Pickett and London, 2005; Lainhart, 2006; Wegiel
et al., 2010, 2014; Hampson and Blatt, 2015). These structural
abnormalities lead to typical behavioral manifestations and sense
dysfunctions in ASD.

Currently, most previous studies identified increased
rates of audiological dysfunctions in ASD, including hearing
impairments, hyperacusis, difficulty in sound discrimination
with background noise and speech sounds encoding (Tomchek
and Dunn, 2007; Russo et al., 2009; Stiegler and Davis, 2010).
A higher incidence of hearing loss (from unilateral to bilateral)
and hyperacusis was demonstrated in the ASD population
(Rosenhall et al., 1999; Demopoulos and Lewine, 2016; Do
et al., 2017). Fitzpatrick et al. (2014) found that approximately
29.4% of children with ASD had profound hearing loss and
that those children with hearing loss benefited from the use of
hearing aids. In addition, hearing dysfunction was attributed
to ASD-related neuronal degeneration of the auditory pathway
(Smith et al., 2019). In contrast, Szymanski et al. (2012) found
a high prevalence of ASD among children with hearing loss,
supporting that peripheral auditory dysfunction may be associate
with functional impairment in ASD (Demopoulos and Lewine,
2016). Previous studies have provided an abundance of evidence
supporting both abnormal structure and function in the auditory
brainstem of ASD, but there remains a battery of literature
showing that the peripheral auditory manifestations of children

with ASD were comparable to controls (Gravel et al., 2006;
Tharpe et al., 2006). Beers et al. (2014) reviewed 22 articles
about peripheral hearing loss in ASD and concluded that
there was no solid evidence for an increased risk of peripheral
hearing loss among children with ASD. Tas et al. (2007)
also evaluated the auditory function of children with ASD
through transient evoked otoacoustic emission and ABR. The
positive emission and normal hearing level at ABR revealed
an insusceptible peripheral auditory system in patients with
ASD. Nevertheless, the ABR results showed a prolonged III–V
interpeak latencies (IPLs) in children with autism (Rosenhall
et al., 2003; Tas et al., 2007).

Approximately 10% of ASD cases have an identifiable genetic
background. Many ASD-related genetic and chromosomal
disorders have been shown to present with auditory dysfunction
(Table 2), underlying a potential common genetic etiology
between ASD and auditory dysfunction. Many chromosomal
disorders have been reported to manifest with auditory
dysfunctions, ASD, developmental retardation, seizures,
facial dysmorphism, and multisystem defects. Deletions and
duplications range from specific loci to large segments and
comprise a considerable number of related genes. Genes with
remarkably high risk accounting for these manifestations
are listed in Table 2. Most of them are involved in neuron
and synaptic development (Smith et al., 2002; Sinajon et al.,
2015; Yang et al., 2015; Lahbib et al., 2019; Wu et al., 2020a),
among which only two genes are known to be auditory-related:
ELMOD3 and FGF2. ELMOD3 is involved in autosomal recessive
non-syndromic deafness disability (Lahbib et al., 2019), and
FGF2 plays a role in the proliferation and survival of auditory
neuroblasts (Wu et al., 2020a). Three monogenic disorders
were reported to present with auditory dysfunction and ASD
simultaneously, including Fragile X syndrome, MEIS2 syndrome,
andADNP syndrome (Rotschafer et al., 2015; Douglas et al., 2018;
Hacohen-Kleiman et al., 2019), related genes all function in brain
development, and MEIS2 is responsible for the development
of the inner ear in chicken (Douglas et al., 2018). Restricted
information about genes and their functions is insufficient to
illustrate the genetic association between auditory dysfunction
and ASD. Whether these certified ASD-related genes also
participate in auditory function is unclear.

ASD-related mouse models have been developed to study
auditory dysfunction (Table 1). Chromosomal disorder mice
characterized by 16p 11.2 deletions showed whole frequency
increased ABR and auditory startle response (ASR) thresholds,
indicating that genes located in the area were responsible for
auditory dysfunctions, of which KCTD13, SEZ6L2, and MAPK3
were considered to be highly correlated with autism (Konyukh
et al., 2011; Golzio et al., 2012; Blumenthal et al., 2014; Yang
et al., 2015), while their relationship with the auditory function
has not been determined. Monogenic disorder mice were also
studied; Fmr1−/−, Cntnap2−/− and Adnp± mice presented with
classical characteristics of ASD and showed impaired hearing
and auditory process functions. Anatomy of auditory circuits,
such as the ventral cochlear nucleus and the medial nucleus of
the trapezoid body exhibited reduced neuron size and number.
Altered hearing-related protein levels, including VGAT, ChAT,
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TABLE 2 | List of ASD-related chromosomal and monogenic disorders that have been reported co-presented with auditory dysfunction.

Chromosomal/
genetical
abnormalities

Map position Incidence Manifestations Potential related genes and
function

References

Chromosomal
disorder

chromosomal
13q12→q13
deletion

• deletion at the distal
third of band 13q12
• deletion at the

proximal two-thirds
of band 13q13

/ • auditory processing defects
• autism spectrum disorder
• language deficit

• NBEA:
1) encodes a neuron-specific

multidomain protein
2) functions as a protein kinase

anchor protein
3) post-Golgi neuronal membrane

trafficking
• MAB21L1: neural development
• DCAMKL1:

1) encodes a brain-specific
transmembrane kinase

2) cortical development
• DCX:

1) encodes doublecortin, a
brain-specific putative signaling
protein

2) neuronal migration
• MADH9: a member of the SMAD

family
1) mediate the TGF beta signaling

pathway
2) proliferation and differentiation of

many different cell types
3) synaptic junction differentiation

Smith et al.,
2002

16p11.2 deletions
and duplications

heterozygous
deletions and
duplications of
16p11.2

1% of individuals
with autism

• auditory dysfunction:
1) hearing loss
2) absence of acoustic startle

responses
• autism spectrum disorder
• developmental delays, speech

delay
• obesity (deletion) and low body

weight (duplication)
• intellectual impairment
• psychiatric disorders
• seizures, syringomyelia
• cardiac defects
• motor hypotonia
• immune deficiency

• KCTD13:
• encodes the polymerase

delta-interacting protein 1 (PDIP1)
• regulation of cell cycle during

neurogenesis
• SEZ6L2: epilepsy and language

disorders
• MAPK3:

1) a member of the MAP kinase
family

2) cellular proliferation,
differentiation, and cell cycle
• NRX1, NRXN3:

synaptic transmission and cell-cell
interaction
• CHD8, EHMT1, MECP2, SOX5, TBF4,

SATB2, FOXP1:
chromatin modifiers and transcription
factors
• FMR1 and CEP290: intellectual

disability

Yang et al., 2015

chromosome
8q22.2-q22.3
deletion

deletion at
chromosome
8q22.2-q22.3

/ • bilateral hearing loss: hypoplastic
auditory canals
• autism spectrum disorder
• macrocephaly
• childhood seizure disorder
• moderate intellectual disability
• facial phenotype
• congenital heart defect

• GRHL2: non-syndromic autosomal
dominant deafness gene
• VPS13B: the causative gene for

Cohen syndrome
• SPAG1: responsible for primary ciliary

dyskinesia
• RRM2B: encodes a small subunit of

p53
mitochondrial DNA disorders and
depletions
• NCALD: neuronal signal transduction

process

Sinajon et al.,
2015

chromosome 2p11.2
deletion

homozygous deletion
in 2p11.2

/ • hearing impairment
• autism spectrum disorder
• intellectual disability
• language delay
• behavioral disturbances

• ELMOD3: involves in autosomal
recessive non-syndromic deafness-88
(DFNB88)
• CAPG:

1) member of actin regulatory
proteins

2) cytoskeletal rearrangements
regulation

3) involves in Rett syndrome
• SH2D6: signal transduction of

receptor tyrosine kinase pathways

Lahbib et al.,
2019

(Continued)
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TABLE 2 | Continued

Chromosomal/
genetical
abnormalities

Map position Incidence Manifestations Potential related genes and
function

References

Chromosome 4q
deletion and 7q
duplication

• deletion of
chromosome 4
• microduplication of

chromosome 7

/ • unilateral hearing impairment
• autism spectrum disorder
• multisystem malformation:

1) facial dysmorphism:
microcephaly

2) ocular malformation:
ocular hypertelorism;
exophthalmos

3) auditory malformation:
low-set ears

4) appendicular malformation:

• SPATA5:
1) mitochondrial function

(morphology and dynamics)
2) neuronal development
3) spermatogenesis

• FGF2:
6) Angiogenesis
6) cell survival, division,

differentiation, and migration
6) proliferation and survival of

auditory neuroblast

Wu et al.,
2020a

single palmar flexion crease;
overlapping toes

6) cardiopulmonary system:
discontinued cyanosis
recurrent respiratory infections
patent foramen ovale
tracheobronchomalacia

6) nervous system:
persistent falcine sinus with a
thin corpus callosum

• limb development
• wound healing
• tumor growth
• NAA15: encodes a component of the

Nat A Nacetyl-transferase complex,
which tethering the complex to the
ribosome for posttranslational
modification of proteins
• SMAD1: development of pulmonary

hypertension
• HHIP: development of lung

malformation

Monogenic
disorder

Fragile X Syndrome • FMR1 gene locates
in Xq27.3
• FMR1 gene

silencing by:
• amplification of a

CGG repeat
• methylation of the

promoter region

1 in 1250 males
and 1 in 2500
females

• hearing loss:
1) elevated cortical responses

to sound stimuli
2) aberrant ABRs

• autism spectrum disorder
• cognitive impairments
• seizures
• aberrant dendritic spine

morphology
• enhancement of response to

sensory stimuli

• a modulator of mRNA translation
• regulates synaptic proteins

production

Rotschafer
et al., 2015

MEIS2(MRG1) locates in
chromosome 15q14

/ • hearing loss
• autism spectrum disorder

• encodes a homeodomain protein
implicated as a transcriptional
activator

Douglas et al.,
2018

• atrial or ventricular septal defect • cell proliferation

• developmental delay • development of inner ear in chickens

• intellectual disability • development of heart, brain, limb

• short stature • differentiation of various tissues and
organs

• cleft palate

• gastrointestinal, skeletal, limb,
and skin abnormalities

ADNP syndrome locates in
chromosome 20

0.17% of
individuals with
autism

• mild hearing loss: > 10% of
children
• autism spectrum disorder

• regulates ion channels genes
• regulates the protein translation

process

Hacohen-
Kleiman et al.,
2019

• intellectual, motor, social, and
speech delays/disabilities

• neural tube closure
• associates with the cytoskeleton

• synaptic plasticity
• microtubule-dependent axonal

transport

• dendritic spine formation

• brain development

• mental function

CAPG, Capping Actin Protein, Gelsolin Like; CEP290, Centrosomal Protein 290; CHD8: Chromodomain Helicase Dna Binding Protein 8; DCAMKL1, Doublecortin Like
Kinase 1; DCX, Doublecortin; EHMT1, Euchromatic Histone Lysine Methyltransferase 1; ELMOD3, Domain Containing 3; FGF2, Fibroblast Growth Factor-2; FMR1,
Fmrp Translational Regulator 1; FOXP1, Forkhead Box P1; GRHL2, Grainyhead Like Transcription Factor 2; HHIP, Hedgehog Interacting Protein; KCTD13, Potassium
Channel Tetramerization Domain Containing 13; MAB21L, Mab-21 Like 1; MADH9, Smad Family Member 9; MAPK3, Mitogen-Activated Protein Kinase 3; MECP2,
Methyl-Cpg Binding Protein 2; NAA15, N-Alpha-Acetyltransferase 15; NBEA, Neurobeachin; NCALD, Neurocalcin Delta; NRX1, nucleoredoxin 1; NRXN3, neurexin 3;
RRM2B, ribonucleotide reductase regulatory TP53 inducible subunit M2B; SATB2, SATB homeobox 2; SEZ6L2, seizure related 6 homolog like 2; SH2D6, SH2 domain
containing 6; SMAD1, SMAD family member 1; SOX5, SRY-box transcription factor 5; SPAG1, sperm associated antigen 1; SPATA5, spermatogenesis associated 5;
VPS13B, vacuolar protein sorting 13 homolog.
“/” means that information on the item is not available in the relevant research.
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and GAD67, were observed in the auditory cortex and cerebellum
(Rotschafer et al., 2015; Ruby et al., 2015; Truong et al., 2015;
Hacohen-Kleiman et al., 2019), underlying a central auditory and
synaptic pathology.

Increased rates of auditory dysfunction, including hearing
impairments, hyperacusis, difficulties in sound discrimination,
and speech sounds encoding, were detected in patients with
ASD. ASD children with hearing impairments were identified
later than those with normal hearing for auditory disorders and
related communication delays. Although hearing impairment
is an uncommon manifestation of ASD, both diseases affect
communication abilities in children, and hearing impairment
may contribute to the development of ASD. Comprehensive
audiological assessments of confirmed and suspected ASD in
children and early hearing interventions are recommended to
improve social communication and reduce the aggression of
ASD. ASD with chromosomal and monogenetic disorders has
been shown to manifest with hearing impairments and auditory
process problems, which correspond to auditory dysfunctions
in ASD mouse models, and reduced neuron size and number
were observed in auditory brainstem nuclei. Studies have also
reviewed the genes that might be involved in chromosomal
and monogenetic disorders. They concluded that most of them
function in neuronal development, suggesting that defective
neuropathy in the auditory pathway leads to hearing dysfunction
and raises the idea that ASD-related genes may act as potential
deafness genes. Hence, specific transgenic mouse models should
be applied to clarify their function and influence on the auditory
system. For further analysis, next-generation sequencing should
be applied to identify more potential ASD-related candidate
genes for deafness.

CONCLUSION AND PERSPECTIVES

In this review, we presented research on hearing loss in
four common neurological disorders (AD, PD, HD, and ASD)
and concluded that hearing loss was present in these four
disorders. However, the related auditory lesions and underlying
mechanisms vary among them.

In AD, high-frequency hearing loss was observed in both the
patient and mouse models. Moreover, Aβ deposition appeared
to be the initial neurological etiology. Auditory studies on
AD mouse models raise the possibility that the auditory
pathway is more sensitive to AD-related neuropathology and
auditory dysfunction, especially hearing loss, presents before the
onset of cognitive impairments. Thus, auditory measurements
can provide a reference for preliminary diagnosis and early
interventions for patients with AD. Hearing impairments
and auditory processing dysfunction have been observed in
HD patients. In R6/2-HD mice, hearing loss precedes the
characterized presentations of HD, and in the SGNs of
Hdh(CAG)150 mice, mHtt aggregation was observed. However,
for a comprehensive understanding of auditory dysfunction in
AD and HD, more clinical trials involving more subjects and
including a variety of detailed auditory measurements should be
carried out, and complete studies on auditory circuitry (from

the cochlea to the auditory cortex) of mouse models should be
conducted in the future.

A broad range of auditory dysfunctions, including hearing
loss, abnormal speech discrimination, and sound lateralization,
have been reported in PD, and asymptomatic hearing
impairments appear to be a new non-motor symptom of
PD patients, and hearing measurements may act as a non-
invasive potential biomarker and indicator of disease severity.
There are no transgenic mouse models that can completely
mimic the important neuropathological features of PD, especially
the neurodegeneration of dopaminergic neurons. Hence, better
PD mouse models should be established, and to gain insight
into the underlying molecular mechanisms, auditory studies in
existing mouse models still worth exploring.

Many auditory dysfunctions, including hearing impairments,
hyperacusis, difficulty in sound discrimination, and speech sound
encoding, have been detected in patients with ASD. Concomitant
hearing loss makes the diagnosis of ASD more challenging. As
both disorders affect communication abilities in children and
early hearing interventions have been reported to improve social
communication and reduce aggression in ASD, comprehensive
audiological assessments should be carried out in confirmed
and suspected ASD in children. Moreover, approximately 10%
of ASD cases have an identifiable genetic background. Clinical
and transgenic mouse model studies revealed the involvement
of hearing impairments, raising the possibility that associated
genes may act as potential deafness genes. Hence, more potential
ASD-related candidate genes should be identified, and specific
transgenic mouse models should be applied to explore the
function of autism-related genes in the auditory system.

Sensorineural hearing loss affects a large population of people
worldwide, and the impact of hearing loss is broad and profound,
including delayed language development in children, social
isolation, and psychological illness. Hearing loss is not only
present in neurological disorders mentioned above but can also
affect the prognosis of these diseases to some extent. Hence,
exploring hearing loss in neurological disorders is beneficial for
understanding the pathogenesis and improving the prognosis
of these diseases.
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