Research Note Cite This: Ind. Eng. Chem. Res. 2019, 58, 12459-12464 pubs.acs.org/IECR # Separation of GaCl₃ from AlCl₃ by Solid-Liquid Extraction and Stripping Using Anhydrous n-Dodecane and NaCl Zheng Li,[†] Brent Bruynseels,[†] Zidan Zhang,[‡] and Koen Binnemans*,[†] Supporting Information esearch ABSTRACT: Separation of GaCl₃ from other associating chloride compounds (e.g. AlCl₃, SbCl₃, and InCl₃) is generally achieved by hydrometallurgical processes. In this study, we explore the separation of GaCl₃ from these compounds on the basis of the exceptionally high solubility of GaCl3 in hydrocarbon solvents. We found that GaCl₃ can be efficiently extracted by anhydrous n-dodecane from a solid mixture of GaCl₃ and AlCl₃; on the contrary, SbCl₃ and InCl₃ significantly reduce the extraction of GaCl₃. On the basis of Lewis acidity theory and study of the Raman spectra, it is shown that formation of the ionic compound [SbCl₂][GaCl₄] is responsible for the reduced GaCl₃ extraction. Formation of [InCl₂][GaCl₄] is also likely, but further study is needed to support the existence of this compound. Further making use of the strong Lewis acidity of GaCl₃, GaCl₃ can be efficiently stripped from the loaded n-dodecane phase by solid NaCl through formation of NaGaCl₄. The extraction of GaCl₃ by n-dodecane, in combination with its stripping by NaCl, is a solvometallurgical process that is essentially different from the hydrometallurgical processes for the separation of GaCl₃ and AlCl₃. #### 1. INTRODUCTION Known as "the backbone of the electronics industry", gallium is used widely in optoelectronics and particularly for semi-conductors. 1-4 It also finds applications in alloys 5,6 and biomedical applications. Gallium does not form its own ores, but it is produced primarily as a byproduct of the treatment of bauxite for alumina production in the Bayer process.^{1,8} Besides, secondary resources such as waste semiconductors (e.g. InGaN, GaSb) are potential sources for gallium. ^{9–11} Therefore, purification of gallium via a chloride route involves the separation of GaCl₃ and these associating chloride compounds, including AlCl₃, InCl₃, or SbCl₃. Hydrometallurgical processes, such as solvent extraction and ion exchange, are the main processes for the separation of gallium from these associating elements. 8,10,12-14 While established, these processes usually require multiple separation stages due to the similar affinity of these compounds to extractants and ion exchangers. In contrast to the generally negligible solubility of inorganic salts in hydrocarbons, GaCl₃ has the unique property of being highly soluble in aliphatic hydrocarbons: up to 1230 g of GaCl₃ can be dissolved in 1 L of hexane at 60 °C. 15 GaCl, is likely dissolved in hexane as a mixture of monomer, dimer, and even trimer, as indicated by a 71 Ga NMR study, 16 whereas GaCl₃ forms a π -complex in aromatic solvents. 16,17 This high solubility of GaCl3 in hydrocarbons could be exploited for purification of gallium. Iwantscheff and Dötzer proposed that volatile hydrocarbons, such as n-pentane, n-hexane, and cyclohexane can be used to extract GaCl3 from AlCl3 and InCl₃, followed by removal of the hydrocarbon solvents by distillation. 15 However, these solvents raise significant environmental concerns: they are volatile organic compounds (VOC) and highly flammable, and some of them, such as *n*-hexane, are neurotoxic. 18-20 Moreover, distillation is an energy-intensive operation. More importantly, the actual performance of GaCl₃ separation from other chloride compounds using hydrocarbons is not known, because no studies can be found except for the brief descriptions in the patent of Iwantscheff and Dötzer. Therefore, the feasibility of GaCl₃ separation from other chloride compounds using hydrocarbons warrants more investigations. In this study, we investigate the use of *n*-dodecane, which is a much less volatile and an environmentally more benign solvent, to extract GaCl₃, and we explore a suitable stripping process based on precipitation rather than distillation. In addition, we discuss the extraction and stripping mechanisms. This work fits into our research program on the development of solvometallurgy.²¹ Received: February 7, 2019 June 12, 2019 Revised: Accepted: June 21, 2019 Published: June 21, 2019 [†]KU Leuven, Department of Chemistry, Celestijnenlaan 200 F, bus 2404, Heverlee B-3001, Belgium [‡]University of Texas at Austin, Department of Chemical Engineering, Texas 78712, United States #### 2. EXPERIMENT AND METHODS 2.1. Extraction. Separations of GaCl₃ from metal chloride compounds were tested by mixing 500 mg of GaCl3 with different amounts of other chloride compounds with various molar ratios of MCl₃/GaCl₃ (M = Al, In, and Sb). Then, 10 mL of anhydrous n-dodecane (or n-hexane) was added to these mixtures and they were shaken for 30 min, although extraction equilibrium could be reached in 1 min. To analyze the extraction efficiency, the loaded n-dodecane phases were brought in contact with an equal volume of Milli-Q water and shaken for 60 min. The metals in the *n*-dodecane phase were found to be completely stripped, and the resultant aqueous solution was measured by total reflection X-ray fluorescence spectrometry (TXRF, Bruker S2 Picofox) or inductively coupled plasma optical emission spectrometry (ICP-OES. PerkinElmer Optima 8300). Raman spectra were recorded (by Bruker Vertex 70 spectrometer) for the pure compounds of AlCl₃, SbCl₃, and InCl₃ and the solid residues after extraction of GaCl₃ by anhydrous n-dodecane (or n-hexane) from the solid binary mixtures of GaCl₃/AlCl₃, GaCl₃/SbCl₃, and GaCl₃/InCl₃. **2.2. Stripping.** LiCl, NaCl, and KCl powders were ground by a mortar grinder (Fritsch Pulverisette 2) and sieved by a sieve shaker (Fritsch Analysette 3) with a sieve mesh of 250 μ m. Then the ground and sieved salts were put into a round-bottom flask and connected to a Schlenk line to dry them for 24 h at 100 °C. Subsequently, the salts were used for stripping experiments. Each of the samples containing 10 mL of loaded n-dodecane with 50 g·L⁻¹ GaCl₃ was contacted with the ground MCl (M = Li, Na, K) in varying MCl/GaCl₃ molar ratios and shaken for 120 min, followed by settling for 5 min. The resultant n-dodecane solution was then stripped by Milli-Q water by shaking for 60 min, and the aqueous solution was measured by TXRF for Ga concentration. Raman spectra were recorded for the pure salts of LiCl, NaCl, and KCl and the solid mixtures after stripping of GaCl₃ by these salts. **2.3. Computational Details.** The geometries for the compounds of Ga₂Cl₆, InGaCl₆, [GaCl₄]⁻, and [InCl₂]⁺ were studied in the gas phase by density functional theory (DFT).²² The structures were optimized at the B3LYP/def2tzvp theory of level.^{23–25} The frequency calculations were also performed to confirm that the obtained structures correspond to minima on their potential energy surfaces (PES). Based on the optimized structures, the Raman spectra of the compounds were calculated to compare with the experimental results. All calculations were performed by Gaussian 09.²⁶ The Multiwfn code was used for data postprocessing.²⁷ # 3. RESULTS AND DISCUSSION **3.1. Extraction of GaCl₃.** Results of $GaCl_3$ extraction by anhydrous n-dodecane from the solid binary mixtures of $GaCl_3/AlCl_3$, $GaCl_3/SbCl_3$, and $GaCl_3/InCl_3$ are presented in Figure 1. $GaCl_3$ was efficiently extracted from $GaCl_3/AlCl_3$ mixtures, even at very high $AlCl_3$ -to- $GaCl_3$ ratios. However, the presence of $InCl_3$ and $SbCl_3$ significantly reduced the extraction efficiency of $GaCl_3$. The difference in the $GaCl_3$ extraction efficiency from the tested chloride compounds might be attributed to the differences in Lewis acidity of these compounds. The sequence of Lewis acidity is $AlCl_3 > GaCl_3 > InCl_3 > SbCl_3$. The $GaCl_3$ dissolved in the anhydrous n-dodecane may react with $InCl_3$ or $SbCl_3$, which are weaker Lewis acids than $GaCl_3$, forming the ionic compounds of **Figure 1.** Solid—liquid extraction of GaCl₃ from binary mixtures of GaCl₃ and metal chloride compounds by anhydrous *n*-dodecane. **Figure 2.** Raman spectra of the pure chloride compounds and of the different separation residues after solid—liquid extraction of GaCl₃ by anhydrous *n*-dodecane. [InCl₂][GaCl₄] and [SbCl₂][GaCl₄] by chloride ion transfer.³¹ These ionic compounds are insoluble in nonpolar solvents such as *n*-dodecane due to their high lattice energy and the poorly solvating properties of these solvents, thus inhibiting the extraction of GaCl₃ by *n*-dodecane. In contrast, as AlCl₃ is a stronger Lewis acid than GaCl₃, one expects that the chloride Figure 3. DFT optimized structures of the compounds Ga₂Cl₆, InGaCl₆, [GaCl₄]⁻, and [InCl₂]⁺. ion transfers from GaCl₃ to AlCl₃, leading to the Lewis adduct of [GaCl₂][AlCl₄]. However, the efficient extraction of GaCl₃ from the GaCl₃/AlCl₃ mixture indicates that the influence of AlCl₃ on GaCl₃ extraction is almost negligible. To understand how the chloride compounds affect GaCl₂ extraction, Raman spectra were measured for the solid residues of the binary mixtures after extraction of GaCl₃ by anhydrous n-dodecane (Figure 2). For the spectrum of the GaCl₃/SbCl₃ mixture, four extra bands were observed in comparison with the spectrum of pure SbCl₃. The Raman bands at 127 and 354 cm⁻¹ can be assigned to the [GaCl₄] species, and the Raman bands at 206 and 376 cm⁻¹ can be assigned to [SbCl₂]^{+,32,33} Similarly, for the Raman spectrum of the GaCl₃/InCl₃ mixture, the bands at 133 cm⁻¹ can be assigned to [GaCl₄]⁻, which is reported to be at 128 cm⁻¹. 33 The band at 362 cm⁻¹ may be due to the vibration of [InCl₂]⁺, as reported to be at 367 cm⁻¹.³⁴ The Raman spectrum assignments indicate the formation of the ionic compounds of [SbCl₂][GaCl₄] and [InCl₂][GaCl₄]. Binary GaCl₃/InCl₃ mixtures have been reported to form an eutectic system, ^{35,36} but this does not exclude the possibility of forming an ionic compound under a different condition. For example, the mixed dimer InGaCl₆ can be formed in the vapor phase. 37 GaCl₃ dissolved in n-dodecane should have a higher propensity to react with SbCl₃ or InCl₃ than in the solid or molten state where the eutectic is formed. In contrast to the mixtures of GaCl₃/SbCl₃ and GaCl₃/InCl₃ that showed extra Raman bands, the Raman spectrum of a GaCl₃/AlCl₃ mixture was almost identical to that of pure AlCl₃, indicating that the formation of either [AlCl₂][GaCl₄] or [GaCl₂][AlCl₄] is unlikely. The absence of formation of an ionic compound for the GaCl₃/AlCl₃ mixture can be explained by the very similar Lewis acidity of GaCl₃ and AlCl₃, ²⁸⁻³⁰ and this result is consistent with the efficient solid-liquid extraction of GaCl₃ from the binary mixture of GaCl₃/AlCl₃ (Figure 1). GaCl₃ and AlCl₃ also form eutectic mixtures, ^{36,38} but AlCl₃ does not affect the extraction of GaCl₃, indicating that the eutectic does not suppress GaCl₃ extraction. Similarly, formation of a simple eutectic between GaCl₃ and InCl₃ cannot explain the reduced GaCl₃ extraction, and formation of an ionic compound might be a more reasonable explanation. To validate the Lewis adduct formation, the same extraction experiments were conducted using anhydrous *n*-hexane, and similar Raman spectra were observed for the extraction residues (Figure S1). Because the ionic compound [InCl₂][GaCl₄] has not been reported yet, more studies are required to confirm the formation of this species. Besides the formation of the ionic compound [InCl₂][GaCl₄], the mixed dimer InGaCl₆ may be formed in the mixture of InCl3 and GaCl3, which has been reported in the vapor phase of the InCl3-GaCl3 system by Buraya et al.³⁷ We optimized structures of the relevant compounds in this study by DFT calculations (Figure 3) and generated their Raman spectra, which are used to discuss the two possible compounds. Pure GaCl₃ is a dimer (Ga₂Cl₆),³⁵ and its Raman spectrum has been reported by various researchers. 40,41 There is a good match between the calculated Raman spectrum of Ga₂Cl₆ and the corresponding experimental spectrum (Figure S2), although the shifts for the bands at 244 and 329 cm⁻¹ are relatively large. The good match indicates that the DFT method used in this study is suitable for calculating this compound. The computed spectrum has an overall red shift, which is consistent with the observation of Timoshkin et al., 42 who found that at the B3LYP level of theory, the low frequency vibrations (<500 cm⁻¹) are underestimated and the high frequency vibrations are overestimated by DFT computation. Despite the fact that there are available coefficients for scaling the frequency of this level of theory (e.g., coefficients given by Bao et al. 43), these Figure 4. Raman spectra: (a) experimental and DFT calculated spectra of Ga_2Cl_6 and comparison of the two spectra; (b) DFT calculated spectrum of $InGaCl_6$; (c) DFT calculated spectrum of $[GaCl_4]^-$ and its comparison with literature data of Shamir and Rafaeloff, and Gerding and Koningstein; (d) DFT calculated spectrum of $[InCl_2]^+$. **Figure 5.** Stripping of GaCl₃ from the loaded *n*-dodecane solution by alkali metal chlorides. coefficients are suitable for high frequency vibrations but not suitable for low frequency vibrations, which is the case in this study. Therefore, we followed the treatment in the study of Timoshkin et al.,⁴² to regress scaling coefficients using the following equation, based on the experimental spectrum of $Ga_{2}Cl_{6}$. $$w_{\rm Exp} = A \times w_{\rm DFT} + B \tag{1}$$ where $w_{\rm Exp}$ and $w_{\rm DFT}$ are the experimental and computed wavenumber, respectively. The obtained coefficients are A=0.9878 and B=14.66 cm⁻¹, and the correlation coefficient is 0.996. After scaling (Figure 4a), the computed spectrum matches better with the experimental spectrum. The computed spectra of InGaCl₆, [GaCl₄]⁻, and [InCl₂]⁺ were also scaled using the same coefficients (Figure 4). InGaCl₆ exhibits a similar structure as Ga_2Cl_6 (Figure 3), and its Raman spectrum resembles that of Ga_2Cl_6 except for an extra band at 361 cm⁻¹ (Figure 4b), which is mainly due to the symmetric stretching of $In-\mu^1-Cl$. Since the Raman intensity at 403 cm⁻¹ for InGaCl₆, which corresponds to the band at 404 cm⁻¹ for the experimental Ga_2Cl_6 spectrum, is high, a band at around 404 cm⁻¹ should be observable if InGaCl₆ were formed. The absence of the band in Figure 2b indicates that InGaCl₆ was not formed. In addition, the structures of the mixed dimer of InGaCl₆ and the dimer of Ga_2Cl_6 are so similar that they are expected to have similar solubility properties; that is, InGaCl₆ should be soluble in anhydrous *n*-dodecane since Ga₂Cl₆ is highly soluble in anhydrous *n*-dodecane. However, InCl₃ suppressed the extraction of GaCl₃, meaning that a compound that is insoluble in anhydrous n-dodecane was formed. The calculated [GaCl₄] exhibits a tetrahedral structure, and the Raman spectrum shows four bands at 115 cm⁻¹, 158 cm⁻¹, 336 cm⁻¹, and 373 cm⁻¹, corresponding to experimental observations at around 128 cm⁻¹, 153 cm⁻¹, 346 cm⁻¹, and 390 cm⁻¹, respectively. The calculated [InCl₂]⁺ exhibits a linear structure, and the Raman spectrum shows only one band at 374 cm⁻¹ due to the symmetric stretching of In-Cl, which matches well with the reported band at 367 cm⁻¹. 34 Kloo and Taylor reported spectroscopic data of solid [InCl₂(15-crown-5) $| [InCl_4]$ but did not report the exact structure. ³⁴ In a similar study, Kloo and Taylor reported that the I-In-I angle is 170.1° in the solid compound of [InI₂(18-crown-6)][InI₄].⁴⁴ In this compound, the [InI₂]⁺ structure is almost linear. Besides, the coordination number of indium in this compound was estimated to be less than four based on the relatively short bond length of In−I. Considering the similarity of [InCl₂]⁺ and $[InI_2]^+$, the computed linear $[InCl_2]^+$ is reasonable. Therefore, the bands at 362 and 366 cm⁻¹ in Figure 2b and Figure S1-b, respectively, can be assigned to [InCl₂]⁺, indicating the formation of [InCl₂][GaCl₄]. Formation of the ionic compound [InCl₂][GaCl₄] also explains why the extraction of GaCl₃ was suppressed by InCl₃, because ionic compounds are insoluble in hydrocarbons. In summary, formation of [InCl₂][GaCl₄] in the InCl₃/GaCl₃ mixture after extraction is very likely. However, formation of [InCl₂][GaCl₄] contradicts with the formation of an eutectic between GaCl₃ and InCl₃. Further studies are needed to confirm the speciation of GaCl₃ and InCl₃ mixtures. **3.2. Stripping of GaCl₃.** With the knowledge that the chloride is transferred and the resulting formation of ionic complexes can inhibit the dissolution of GaCl₃, advantage of it was taken to strip GaCl₃ from the loaded n-dodecane solutions using alkali metal chlorides. LiCl, NaCl, and KCl that were ground and sieved with a 250 μm sieve mesh were tested for the stripping of GaCl₃ for various MCl/GaCl₃ (M = Li, Na, and K) molar ratios (Figure 5). The efficiency of stripping by LiCl, NaCl, and KCl is comparable, although NaCl is slightly more efficient when the MCl/GaCl₃ ratio is less than 10. About 96% of GaCl₃ can be stripped from the loaded ndodecane phase when the MCl/GaCl₃ is 20, and the stripping is almost complete when the ratio is 30. Raman spectra of pure MCl (M = Li, Na, and K) and the solid residues after stripping of GaCl₃ by MCl were recorded, and the species of [GaCl₄] was clearly identified (Figure S3). It is therefore evident that the alkali chlorides interact with the dissolved GaCl₃ by forming the ionic compounds of LiGaCl4, NaGaCl4, and KGaCl₄, which are insoluble in the aliphatic hydrocarbon, effectively inhibiting GaCl3 to be dissolved. Moreover, the formation of KGa₂Cl₇ and KGa₃Cl₁₀ is also possible, because these species have been observed as well. 46,47 NaCl is the most suitable salt for stripping GaCl3 because it is easily available, environmentally benign, and cheap. If NaCl is used for stripping GaCl₃, the resultant NaGaCl₄ salt can be further processed to recover gallium metal. For instance, it is known that gallium can be electrodeposited from alkaline solutions of GaCl₃, so that NaGaCl₄ could be dissolved in an aqueous NaOH solution to prepare an electrolyte for electrodeposition of gallium metal.⁴⁸ The *n*-dodecane after stripping can be recycled and reused for extraction of GaCl₃. #### 4. CONCLUSIONS A preliminary solvometallurgical process using only anhydrous n-dodecane and NaCl has been developed for the separation of GaCl₃ and AlCl₃, based on the exceptionally high solubility of GaCl₃ in hydrocarbon solvents and on its Lewis acidity. GaCl₃ can be efficiently extracted by anhydrous n-dodecane from binary solid mixtures of GaCl₃/AlCl₃ without formation of ionic compounds by chloride transfer thanks to the similarity of the Lewis acidity of these compounds. The loaded GaCl₃ in n-dodecane can be stripped by NaCl by forming NaGaCl₄. This solvometallurgical process is essentially different from, and can be supplementary to, the hydrometallurgical processes for GaCl₃ and AlCl₃ separations. ## ASSOCIATED CONTENT # Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.iecr.9b00768. Experimental materials; Raman spectra of different separation residues after solid-liquid extraction of GaCl₃ by anhydrous n-hexane; Raman spectra of solid mixtures after stripping GaCl₃ by LiCl, NaCl, and KCl; extraction and stripping rates (PDF) ## AUTHOR INFORMATION ## **Corresponding Author** *E-mail: koen.binnemans@kuleuven.be. ## ORCID ® Zheng Li: 0000-0002-7882-5999 Zidan Zhang: 0000-0002-6909-8742 Koen Binnemans: 0000-0003-4768-3606 #### **Notes** The authors declare no competing financial interest. # ACKNOWLEDGMENTS This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme: Grant Agreement 694078 — Solvometallurgy for critical metals (SOLCRIMET). Liubov Lukina is acknowledged for help with translating Russian papers. ## REFERENCES - (1) Moskalyk, R. R. Gallium: the backbone of the electronics industry. Miner. Eng. 2003, 16 (10), 921-929. - (2) Fang, S. F.; Adomi, K.; Iyer, S.; Morkoç, H.; Zabel, H.; Choi, C.; Otsuka, N. Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 1990, 68 (7), R31-R58. - (3) Davis, R. F.; Sitar, Z.; Williams, B. E.; Kong, H. S.; Kim, H. J.; Palmour, J. W.; Edmond, J. A.; Ryu, J.; Glass, J. T.; Carter, C. H. Critical evaluation of the status of the areas for future research regarding the wide band gap semiconductors diamond, gallium nitride and silicon carbide. Mater. Sci. Eng., B 1988, 1 (1), 77-104. - (4) del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317-323. - (5) Kellogg, R. A.; Russell, A. M.; Lograsso, T. A.; Flatau, A. B.; Clark, A. E.; Wun-Fogle, M. Tensile properties of magnetostrictive iron-gallium alloys. Acta Mater. 2004, 52 (17), 5043-5050. - (6) Okamoto, Y.; Horibe, T. Liquid gallium alloys for metallic plastic fillings. Br. Dent. J. 1991, 170, 23-26. - (7) Chitambar, C. R. Medical applications and toxicities of gallium compounds. *Int. J. Environ. Res. Public Health* **2010**, 7 (5), 2337–2361. - (8) Zhao, Z.; Yang, Y.; Xiao, Y.; Fan, Y. Recovery of gallium from Bayer liquor: A review. *Hydrometallurgy* **2012**, *125–126*, 115–124. - (9) Milnes, A. G.; Polyakov, A. Y. Gallium antimonide device related properties. *Solid-State Electron.* **1993**, *36* (6), 803–818. - (10) Gupta, B.; Mudhar, N.; Singh, I. Separations and recovery of indium and gallium using bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272). Sep. Purif. Technol. 2007, 57 (2), 294–303. - (11) Sturgill, J. A.; Swartzbaugh, J. T. Recovery of the components of group III-V material aqueous wastes. US Patent US\$972073A, 1999. - (12) Levin, I. S.; Shatalova, A. A.; Azarenko, T. G.; Vorsina, I. A.; Burtovaya-Balakireva, N. A.; Rodina, T. F. Concentration and separation of indium, gallium, thallium, antimony and bismuth by extraction with alkylphosphoric acids. *Talanta* 1967, 14 (7), 801–808. - (13) Saberyan, K.; Zolfonoun, E.; Shamsipur, M.; Salavati-Niasari, M. Separation and preconcentration of trace gallium and indium by Amberlite XAD-7 resin impregnated with a new hexadentates naphthol-derivative Schiff base. *Sep. Sci. Technol.* **2009**, 44 (8), 1851–1868. - (14) Koshima, H. Adsorption of iron(III), gold(III), gallium(III), thallium(III) and antimony(V) on Amberlite XAD and Chelex 100 resins from hydrochloric acid solution. *Anal. Sci.* **1986**, 2 (3), 255–260 - (15) Iwantscheff, G.; Dötzer, R. Method of producing gallium from the residues from chemical production of aluminum alkyls and aluminum-alkyl derivatives, US Patent US3167422A, 1965. - (16) Karasawa, Y.; Kimura, M.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. New initiating systems for cationic polymerization of plant-derived monomers: $GaCl_3/alkylbenzene-induced$ controlled cationic polymerization of β -pinene. *Polym. J.* (*Tokyo, Jpn.*) **2015**, *47*, 152–157. - (17) Ulvenlund, S.; Wheatley, A.; Bengtsson, L. A. Spectroscopic investigation of concentrated solutions of gallium(III) chloride in mesitylene and benzene. *J. Chem. Soc., Dalton Trans.* **1995**, No. 2, 255–263. - (18) Li, Z.; Smith, K. H.; Stevens, G. W. The use of environmentally sustainable bio-derived solvents in solvent extraction applications—a review. *Chin. J. Chem. Eng.* **2016**, *24* (2), 215–220. - (19) Clark, J. H. Green chemistry: today (and tomorrow). Green Chem. 2006, 8 (1), 17-21. - (20) World Health Organization. Indoor air quality: organic pollutants. Reports on a WHO meeting, Euro Reports and Studies 111. Copenhagen, 1989. - (21) Binnemans, K.; Jones, P. T. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. *J. Sustain. Metall.* **2017**, 3 (3), 570–600. - (22) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871. - (23) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. - (24) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789. - (25) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. - (26) Gaussian 09, Revision A.02; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; - Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford, CT, 2009. - (27) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592. - (28) Branch, C. S.; Bott, S. G.; Barron, A. R. Group 13 trihalide complexes of 9-fluorenone: a comparison of methods for assigning relative Lewis acidity. *J. Organomet. Chem.* **2003**, *666* (1), 23–34. - (29) Timoshkin, A. Y.; Bodensteiner, M.; Sevastianova, T. N.; Lisovenko, A. S.; Davydova, E. I.; Scheer, M.; Graßl, C.; Butlak, A. V. Do solid-state structures reflect Lewis acidity trends of heavier group 13 trihalides? Experimental and theoretical case study. *Inorg. Chem.* **2012**, *51* (21), 11602–11611. - (30) Hogg, J. M.; Brown, L. C.; Matuszek, K.; Latos, P.; Chrobok, A.; Swadzba-Kwasny, M. Liquid coordination complexes of Lewis acidic metal chlorides: Lewis acidity and insights into speciation. *Dalton Trans.* **2017**, *46* (35), 11561–11574. - (31) Gutmann, V. Coordination chemistry in non-aqueous solutions; Springer-Verlag: Wien, NY, 1968. - (32) Shamir, J.; Rafaeloff, R. Raman spectra and the structures of gallium trichloride complexes with phosphorus pentachloride and antimony trichloride. *Proc. 6th Int. Conf. Raman Spectrosc*, Heyden: 1978; pp 66–67. - (33) Shamir, J.; Rafaeloff, R. Raman spectra of solid complexes of trihalides of antimony and bismuth with trihalides of aluminium and gallium. *J. Raman Spectrosc.* **1986**, *17* (6), 459–462. - (34) Kloo, L.; Taylor, M. J. Spectroscopic characterisation of indium(III) chloride and mixed ligand complexes. *Spectrochim. Acta, Part A* **2002**, 58 (5), 953–957. - (35) Palkin, A. P.; Ostrikova, N. V. The gallium chloride-indium chloride system. *Zh. Neorg. Khim.* **1964**, *9* (8), 2045. - (36) Fedorov, P. I.; Nedev, S. K. Systems of gallium chloride with aluminum and indium chlorides. *Zh. Neorg. Khim.* **1965**, *10* (12), 2717–2719. - (37) Buraya, I. T.; Polyachenok, O. G.; Novikov, G. I. Formation and stability of mixed dimeric molecules. *Zh. Fiz. Khim.* **1974**, 48 (6), 1609–1610. - (38) Palkin, A. P.; Ostrikova, N. V. Fusion diagram of the system GaCl₃-AlCl₃. Zh. Neorg. Khim. 1962, 7, 2635–2636. - (39) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Oxford University Press: Oxford, 2012. - (40) Beattie, I. R.; Gilson, T.; Cocking, P. The vibrational spectrum of Ga₂Cl₆. *J. Chem. Soc. A* **1967**, 702–704. - (41) Salyulev, A. B.; Zakiryanova, I. D. Raman spectra of solid, molten, and gaseous gallium trichloride. *Russ. Metall.* **2010**, 2010 (2), 108–111. - (42) Timoshkin, A. Y.; Bettinger, H. F.; Schaefer, H. F. The Chemical Vapor Deposition of Aluminum Nitride: Unusual Cluster Formation in the Gas Phase. *J. Am. Chem. Soc.* **1997**, *119* (24), 5668–5678. - (43) Bao, J. L.; Zheng, J.; Alecu, I. M.; Lynch, B. J.; Zhao, Y.; Truhlar, D. G. Database of frequency scale factors for electronic model chemistries. https://comp.chem.umn.edu/freqscale/version3b2.htm. Accessed on 12 May 2019. - (44) Kloo, L. A.; Taylor, M. J. Complexes of a crown ether with gallium(III) iodide and indium(III) iodide. *J. Chem. Soc., Dalton Trans.* 1997, No. 15, 2693–2696. - (45) Gerding, H.; Koningstein, J. A. The Raman spectrum of an equimolar liquid mixture of sodium chloride and gallium trichloride. *Recl. Trav. Chim. Pays-Bas* **1960**, *79* (1), 46–47. - (46) Fedorov, P. I.; Tsimbalist, V. V. Reaction of gallium chloride with chlorides of lithium, potassium, ammonium, cesium, and thallium(I). *Zh. Neorg. Khim.* **1964**, 9 (7), 1676–80. - (47) Mascherpa-Corral, D.; Potier, A. Halogallates in crystallized media and fused salts. Existence of GaX_{4^-} , $Ga_2X_{7^-}$, and $Ga_3X_{7^-}$ ions. *J. Chim. Phys. Phys.-Chim. Biol.* **1977**, 74 (10), 1077–82. - (48) Bockris, J. O. M.; Enyo, M. Electrodeposition of gallium on liquid and solid gallium electrodes in alkaline solutions. *J. Electrochem. Soc.* **1962**, *109* (1), 48–54.