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Abstract

The Electronic Medical Records and Genomics (eMERGE) network is a network of

medical centers with electronic medical records linked to existing biorepository
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samples for genomic discovery and genomic medicine research. The network

sought to unify the genetic results from 78 Illumina and Affymetrix genotype array

batches from 12 contributing medical centers for joint association analysis of 83,717

human participants. In this report, we describe the imputation of eMERGE results

and methods to create the unified imputed merged set of genome‐wide variant

genotype data. We imputed the data using the Michigan Imputation Server, which

provides a missing single‐nucleotide variant genotype imputation service using the

minimac3 imputation algorithm with the Haplotype Reference Consortium

genotype reference set. We describe the quality control and filtering steps used

in the generation of this data set and suggest generalizable quality thresholds for

imputation and phenotype association studies. To test the merged imputed

genotype set, we replicated a previously reported chromosome 6 HLA‐B herpes

zoster (shingles) association and discovered a novel zoster‐associated loci in an

epigenetic binding site near the terminus of chromosome 3 (3p29).

KEYWORD S

electronic medical records, genotypes, GWAS, herpes zoster, variants

1 | INTRODUCTION

The Electronic Medical Records and Genomics
(eMERGE) network has been developing a unified
genome‐wide single‐nucleotide variant (SNV) genotype
array‐based association platform for analysis of electro-
nic medical record (EMR)‐derived phenotypes for
approximately 10 years (Chisholm, 2013; Crawford
et al., 2014; Gottesman et al., 2013). The eMERGE
network has successfully continued efforts to advance
the growth and discovery results of this genotype array
and clinical phenotype resource. In the first funding
phase, eMERGE 1, discovery efforts were based on the
Illumina 660k genotype array with ~20,000 participants
being enrolled through five medical centers. Using this
common array allowed for a unified analysis in

eMERGE 1 without the need for imputation to
harmonize datasets. This homogeneous quality con-
trolled variant set (Turner et al., 2011; Zuvich et al.,
2011) with EMR phenotype algorithms was used to
discover novel genomics findings and showed replica-
tion of many prior associations, including diabetes (Ng
et al., 2014) and blood cell traits (Crosslin et al., 2012,
2013; Kullo et al., 2011). In eMERGE 2 ~30,000 more
individuals with high‐density genotype data were
ascertained resulting in analyses with ~50,000 indivi-
duals. The genotype array platforms and variant
selections genotyped were not all the same in eMERGE
2, making merged analyses across all variants not
possible without the loss and/or addition of information
on the ungenotyped variants not shared by all Illumina
and Affymetrix arrays. Progress in the development of
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statistical imputation software (Browning & Browning,
2009; Howie, Donnelly, & Marchini, 2009) for calculat-
ing missing genotypes at ungenotyped variants, and the
development of population‐based reference haplotype
panels (1000 Genomes; Howie, Marchini, & Stephens,
2011) by this time (~2011), made imputation‐based
unification of the eMERGE 2 genotyped samples
possible (S. S. Verma et al., 2014). This enabled
discovery of genetic associations with EMR‐derived
disease phenotypes for the eMERGE network, including
cataracts (Hall et al., 2015; Ritchie et al., 2014),
glaucoma (S. S. Verma et al., 2016), serum thyroid
stimulating hormone levels (Malinowski et al., 2014),
angiotensin‐converting enzyme inhibitor‐associated
cough (Mosley et al., 2016), liver function tests (Namjou
et al., 2015), cardiovascular (Dumitrescu et al., 2017),
obesity (Cronin et al., 2014; De et al., 2015), and lipid
traits (De et al., 2017; Rasmussen‐Torvik et al., 2012) as
well as phenotype‐wide association study (PheWAS)/
International classification of diseases (ICD‐9) code
associations (A. Verma et al., 2016). Additionally,
detailed population‐based analysis of a common genetic
condition, hemochromatosis (Gallego et al., 2015),
became possible with the increased sample size in
eMERGE 2. This catalog of associations demonstrates
the potential of discovering novel associations and their
genomic risk in the eMERGE network.

In eMERGE 3, genotype and clinical EMR data of
~33,000 additional participants have been added to the
resources available for analysis. Statistical methods for
imputation have progressed, and improved reference panels
used to infer missing variants have become larger and more
cosmopolitan with global ancestries represented in the
Haplotype Reference Consortium (HRC1.1), a genotype
reference set of ~30,000 individuals with 64,976 haplotypes
and ~40million genetic SNV marker alleles (McCarthy
et al., 2016). The HRC1.1 contains the 1000 Genomes
globally diverse sample set as well as a large balance of
European samples. The Michigan Imputation Server (MIS)
uses the HRC1.1 reference haplotypes’ linkage disequili-
brium (LD) to impute missing SNV genotypes with the
minimac3 algorithm (Das et al., 2016; Loh et al., 2016).
These imputed and molecularly genotyped sets can then be
combined across smaller studies with different genetic
variant site selection ascertainment than in the original
genotyping chip array platforms, making larger genome‐
wide association studies possible on the sample‐variant
level. Here, we describe methods to develop a merged
imputed data set for the network, including quality control
steps and we validate the data by recapitulating the
previous herpes zoster (shingles) association to HLA‐B
(Crosslin et al., 2015) using the EMR ICD‐9 phenotype at
this larger sample size with discovery potential.

2 | SUBJECTS, MATERIALS AND
METHODS

2.1 | Participating medical center’s
source plink genotype batch bfiles

In the creation of the eMERGE 3 merged multisample
genotype set, the imputation of participants’ missing
variants was performed in 78 batches provided as PLINK
bfiles from the 12 contributing medical centers in eMERGE
1, 2, and 3. The institutional review board of each
contributing institution approved eMERGE study enroll-
ment and informed consent was obtained from participants.

2.2 | Imputation pipeline

To implement the minimac3 missing genotype variant
imputation statistical model, we followed the MIS guide-
lines (Das et al., 2016; Loh et al., 2016; McCarthy et al.,
2016) and imputed each genotype array batch indepen-
dently. The MIS used the HRC1.1 variation reference in
genome build 37 (hg19, hs37d5.fa) coordinates to impute
the missing variants across samples in genotype array
batches of up to 15,000 samples. The starting genotype array
batch data files were provided in genome reference build 37
positions and ACGT allele coding by the contributing
medical centers. We have included a pipeline flowchart as
Figure S1 in the Supporting Information Materials.

2.3 | Preprocessing

In general, Unix automation by bash, Perl, python, and R
scripts prepared data for imputation, sample inventory,
merging, and analysis to produce results in a parallel
computing environment. In batch processing scripts, the
software plink (Chang et al., 2015; Purcell et al., 2007),
vcftools, bcftools, checkVCF.py, and William Wrayner’s
HRC1.1 variant pruning tool were used to format data.
(See the Section 8 for software uniform resource
locators.) These tools use an allele frequency based
format conversion method to fix strand problems that
exist on and between the many different genotyping
platforms to the HRC reference forward‐strand format.
Briefly, we assessed the participant missingness at all
molecularly genotyped variant sites, then genotype
variant site missingness of the participants using plink
1.9, both at an exclusion threshold of >2% in a genotype
array batch. We then generated a plink frequency file
which is the input along with the plink bfile to Wrayner’s
variant pruning tool (HRC‐1000 G‐check‐bim.pl). This
made a shell script named Run‐plink.sh, which we ran to
prune each batch. We then split the pruned plink bfiles
into chromosome 1–22 files and recoded them as variant
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call format (VCF) files using plink. With these files, we
then used the bcftools + fixref function to ensure the
reference allele VCF column is fixed to the reference
genome. The checkVCF.py script was used to perform a
double‐check of the variants to assess whether the data
are properly formatted. We also ran vcf‐sort and bgzipped
the final VCF to have the prepared files for imputation.

2.4 | Imputation postprocessing

All samples in the 78 batches of bfiles which passed initial
missingness QC were uploaded to the MIS, imputed, and
the results downloaded. If samples were duplicated on
different array batches, they were analyzed in duplicate or
more in each of these batches for the imputation results. In
subsequent merging steps, we selected the unique sample
from the array batch with the most variants genotyped
using a custom Perl sample inventory script that batches
vcftools command‐line calls into shell scripts run on a
computing cluster. The finished MIS imputation data are
provided by chromosome in VCF format with an under-
lying allele‐dose model in a diploid 0–2 continuous variable
range and the statistically phased hard genotype calls
(0|0, 0|1, 1|0, 1|1) with a posterior probability of >50%. The
accompanying *.info files contain the R‐squared quality
correlation for each variant between the true genotype and
the imputed value at each variant.

2.5 | Variant frequency analysis

The minor allele frequency (MAF) of the merged imputed
variant genotypes was calculated using vcftools (Danecek
et al., 2011). For summary purposes, we counted a variant
as molecularly genotyped if it was present in one or more
arrays after imputation preprocessing and imputed only if it
was imputed in all genotype array batches. To produce the
site frequency spectrum and counts of imputed and
molecularly genotyped variants, we used a Perl script that
interprets the vcftools frequency output to bin counts and
formatted tables for plotting with an R script. If variants had
more alleles than a biallelic variant we only considered the
more common minor allele.

3 | POPULATION AND
ANCESTRY SUBSTRUCTURE

3.1 | Principal component
analysis (PCA)

The hard genotype call merged sample set of unique
imputed samples was analyzed by PCA using the plink2–
pca approx fast pca method for large sample sizes and
participant groupings were compared to the self‐reported or

observed‐reported ancestry. We performed PCA on the
83,717 participant multisample with variants MAF> 5%,
variant missingness of 0.1, and LD‐pruned to an
R‐squared threshold of 0.7. We then used the R
k‐means() function with three groups and PCs 1 and 2 to
define the canonical Asian, European, and African ancestry
groups (Lee, Abdool, & Huang, 2009; Solovieff et al., 2010).
We then excluded the Hispanic, Native American, and
other ancestry groups to refine the canonical European,
Asian, and African ancestry groups by requiring the
observed/self‐reported ancestry to match the PCA‐based
k‐means group. Within these ancestry groups, we calculated
PCAs with the same SNV pruning reapplied.

3.2 | Identity by descent (IBD)

The plink2–genome function for IBD calculation was
performed with the same SNV pruning and preprocessing
as the PCA to generate ~3.5 billion pairwise comparisons.
Z0 indicates the probability that zero alleles are shared IBD
and Z1 represents the probability that one allele is shared
IBD. We defined families using sample pairs with
(Z0< 0.83 and Z1> 0.1) and then included everyone who
has a shared pair with another sample to include founders
and distantly related branches into the same family.

3.3 | R‐squared imputation quality

The quality of missing genotype imputation in the 78
genotype array batches was assessed using the R‐square
imputation quality metric in the chr*.info files provided by
the MIS (Das et al., 2016; Loh et al., 2016; McCarthy et al.,
2016). This value (0–1) is an estimate of the squared
correlation between the unobserved genotypes and the
imputed genotypes. Since the true genotypes are not
available at imputed sites, the minimac3 algorithm makes
the assumption that the population frequency affects the
quality of imputed genotypes counts by shrinking them to
their expectation derived from this frequency.

3.4 | Regression of batch imputation
quality

We calculated the mean of the ~40million variants
R‐square imputation qualities for each of the 78 array
batches. We used this array batch mean R‐square value as
the dependent variable in a linear regression to deter-
mine the influence of the input batch sample count and
batch molecular genotype count on imputation quality.
The linear regression took the following form:

Batch mean R‐square imputation quality ~ log(batch
genotype count) + log(batch sample count).
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3.5 | Variant genotype average qualities

We calculated the mean, median, maximum, and minimum
of each variants imputation quality R‐square across the 78
batches for the ~40million variants. A histogram of the
variants’ R‐squared means was used to summarize the data
for viewing the distribution and assist in deciding the
quality threshold for inclusion for subsequent genome‐wide
association study (GWAS). We also analyzed the imputation
R‐square quality metric by the frequency bins used in the
frequency analysis. We plotted boxplots of the distribution
of the means of the batches R‐squared for each variant
frequency bin and observed the expected decay in R‐square
imputation quality from common to rare variant bins.
Additionally, an empirical R‐squared measure was calcu-
lated for the variants on the various genotype array chips by
imputing while leaving the know genotype out, then
comparing the imputed values to the known values. We
report the percentage of empirical R‐squared values greater
than 0.8.

3.6 | Heterozygosity–homozygosity
analysis

We used vcftools (Danecek et al., 2011) to calculate the
inbreeding coefficient, F as a measure of homozygosity
(1‐heterozygosity), for chromosomes 1–22. A method of
moments calculation is used to estimate F for each
individual. Higher values indicate less heterozygosity and
more homozygosity. We then compared F to the batch
mean R‐square imputation quality and k‐means ancestry
groups determined by the PCA.

4 | GWAS OF THE HERPES
ZOSTER ICD ‐9 PHENOTYPE

Given this eMERGE 3 unified imputed genotype set, we
sought to validate the data by recapitulating the previous
eMERGE 2 association to the HLA‐B gene region
variation with herpes zoster (shingles; Crosslin et al.,
2015) with the larger sample size offered by the eMERGE
3 data. The previous herpes zoster phenotype GWAS
participants are contained as a subset of the included
samples making this analysis a validation, with HLA‐B as
an expected positive control. The eMERGE 3 data have
approximately twice the sample size of the previously
reported eMERGE 2 data. The zoster phenotype has been
defined here by the ICD‐9‐derived PheWAS codes
(Denny et al., 2010, 2013) from the eMERGE network
to identify case and control status of the individual
participants. We selected the Phecode 053 from the
eMERGE records, requiring at least one observation of

the code in cases. We removed participants from the
three pediatric sites, sites which had fewer than 50 cases
identified and genotype imputation batches where the
mean imputation quality R‐square was <0.3. We removed
anomalous IBD clusters and suspected twins which may
be duplicated sample errors. We retained one individual
from each family, a case if available. Regression was
performed with the PLINK 1.9 software (Chang et al.,
2015) in additive mode on the hard‐called genotypes with
a posterior probability of >50%. We applied covariate
adjustment for the 12 medical centers and gender as well
as PCs 1, 2, and 3 as continuous variables to control for
major population stratification (Crosslin et al., 2014).

We first analyzed all samples jointly. Next, we
stratified individuals to the major African and European
continental ancestral groups as defined by the intersec-
tion of the PCA‐based k‐means clusters (Lee et al., 2009;
Solovieff et al., 2010) and the observed/self‐reported
ancestry. We used the PCs 1, 2, and 3 of the secondary
(ancestry group specific) PCAs as covariates in the
stratified regression models. The PCAs control for both
population structure and platform bias (Crosslin et al.,
2014). We relaxed the medical center site minimum case
count to 15 (from 50 in the joint analysis) for medical
center participant exclusions in the ancestry‐stratified
regressions. We also repicked the cases and controls from
families within the ancestry subgroups.

For SNVs in common variant regressions, we required
MAF> 0.05 and R‐squared imputation quality≥ 0.3 inclu-
sion thresholds to achieve a high confidence set of results.
The R‐squared imputation quality threshold we applied in
two ways, initially we excluded imputation batches which
had a mean R‐square of <0.3 across the ~40million
variants. We also excluded regressions with imputed
variant genotypes which had a mean R‐square of <0.3
across the 78 genotype array batches. Using the variants
which meet these association and quality parameters, we
plotted the Manhattan and Quantile–Quantile plots using
the GWASTools (Gogarten et al., 2012) R package and
observed the genomic control lambda (λ; Devlin & Roeder,
1999). λ has an expected value close to one in a valid
genome‐wide association. To declare genome‐wide sig-
nificant variants, we used the generally accepted p‐value
threshold of <5 × 10e–8. We inspected all associated loci
using the University of California, Santa Cruz (UCSC)
genome browser (Hinrichs et al., 2006) and the NCBI
bioinformatics online tools to summarize the gene and
nucleotide elements present.

We also inspected the genomic inflation control of λ
by running the regression models with a variant MAF
threshold of ≥0.001 and at all variants that converge
without a per variant R‐square quality or MAF inclusion
threshold. This allowed us to observe how imputation
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uncertainty, quality, and variant frequency may affect the
association statistics and genomic inflation. We report
these lower quality lambdas, low frequency, and low‐
quality associations in the supplemental materials.

5 | RESULTS

After removal of low‐call‐rate samples (>2% missingness)
and duplicated samples, the data set resulted in 83,717
unique imputed participants based on the eMERGE
subject IDs from 77 imputation batches. One batch was
duplicated completely by samples on other arrays. The
medical centers and batch counts for genotypic data,
gender, and self‐reported or observed ancestry is shown
in Table 1. The sampled participants were imputed
collectively for 39,127,678 variants genome wide from
5,166,481 variants molecularly genotyped on one or more
arrays. Only 13 variants were shared by all 78 arrays in
the data input to the MIS, while 181,713 variants are
shared among any 50 arrays. Supporting Information
Tables S1 to S3 show the participant sample counts by
batch array bfile name, medical center, and eMERGE 1,
2, and 3 project development cycles.

5.1 | Variant frequency analysis

Among the 5,166,481 molecularly genotyped variants, 404
were monomorphic in the merged imputed genotype set.
Similarly, 668,157 monomorphic variants and 33,293,040
polymorphic variants were imputed across all genotype
array batches. In the site frequency spectrum (see Support-
ing Information Figure S2), 2,312,962 molecularly geno-
typed variants have MAF> 0.05 and comprise ~45% of the
genotyped variants with a MAF> 0.05. There are 3,447,308
imputed common variants with MAF> 0.05. Collectively,
imputation makes 5,760,270 common variants available for
subsequent analysis. There is a large drop‐off in the number
of variants both molecularly observed and imputed between
the 0.0001 and 0.00001 genotype frequency bins. The
frequency bins 0.01 to 0.00001 represent the bulk
(27,119,930 variants) of the imputed genotype spectrum.
See Supporting Information Table S4 for counts of imputed
and genotyped variants by MAF bin.

6 | POPULATION AND
ANCESTRY SUBSTRUCTURE

6.1 | PCA

A total of 1,003,235 autosomal biallelic SNVs with a
MAF> 0.05 after LD pruning were used to create the
participant by genotype correlation matrix for PCA. TheT
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PCA results were used to quality control the data for genetic
versus self‐reported ancestry and provide genomic control
of p‐value inflation in regression analysis. The scree of
variance explained by eigenvectors and principal compo-
nents is plotted in Figure 1a,b. PC 1 explained 88.3% of the
imputed genotype variance and represented the African to
European ancestry cline. PC 2 showed 6.1% of the genotype
variance while representing the Asian to European ancestry
cline. PCA ancestry analysis showed concordance with self‐
reported race and displayed the canonical European,
African, and Asian ancestry sample groupings without
evidence of gross batch effects in the first two principal
components (Figure 1). The participants were classified to
15,980 African, 2,604 Asian, and 65,133 European subjects,
using k‐means with three groups on PCs 1 and 2 (see
Supporting Information Figure S3). When the observed/
self‐reported categories not matching the continental
k‐means ancestry groups were removed, we had an
intersection of 14,380 African, 646 Asian, and 60,747
European participants.

6.2 | Ancestry‐specific PCA

We computed three additional PCAs, one for each ancestry
subgroup from the k‐means of the joint PCA while
requiring the intersected observed/self‐reported ancestry
to match to obtain refined ancestry‐specific PCs for
stratified analyses of the main ancestral types. After the
MAF filtering and LD pruning the African samples had
1,889,435 variants, Asians had 776,084 variants, and
Europeans had 741,856 variants for PCA. In Figure 1c, we
plot the African subgroup PCA where we see two self‐
identified African specific clusters separated by PC 2
explaining 7.3% of the variance, while PC 1 explains
56.6% of the variance. In Figure 1d we plot the Asian
subgroup PCA where we see four main clusters, three of
these are mainly separated by PC 1. The fourth cluster
appears as a long cline defined by PC 2 on the right side of
PC 1. The Asian PC 1 explains 56.2% of the variance while
PC 2 explains 8.3%. In Figure 1e, we plot the European
subgroup PCA where we see a triangle shape with no
separation in clusters. The European PC 1 explains 43.4% of
the variance and PC 2 explains 9.9% of the variance.

6.3 | IBD

The plot of 3,504,226,187 pairwise sample IBD comparisons
is presented in Figure 2. Upon inspection of the IBD plot, it
was noted that there were 114 pairs (228 individuals) close
to the origin that are either twins or sample duplicates with
different eMERGE IDs. We also noted a grouping of 4,211
pairs (139 individuals) with noncanonical IBD plot
positioning in the region of Z0 between 0.4 and 0.65 with

Z1< 0.4. Inspection of this IBD cluster determined that the
majority of these samples (108/139) are from a single
contributing center (Marshfield) and represent a family
study. We recommend to exclude these related samples in
association analyses that do not take into account a
relatedness metric. Initially, we defined a family as those
sample pairs falling in the IBD metrics Z0 < 0.83 and
Z1> 0.1 with any pair connecting a family network to
include the samples with unrelated founders in the same
family. We additionally included any sample with Z0< 0.63
to capture the twins/sample duplicates near the origin into

FIGURE 1 PCA and Screen plot using MAF 5%, LD‐pruned
R‐square of 0.7 and missingness of 10% by joint ancestry, and
stratified by African, Asian, and European ancestry PCAs defined
by the intersection of the k‐means and observed/self‐reported race.
LD: linkage disequilibrium; MAF: minor allele frequency; PCA:
principal component analysis
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families. Using this, we identified 13,152 individuals that
grouped into 4,529 families.

6.4 | The R‐squared metric of
imputation quality

The mean R‐square of the array batches has a range of
0.089–0.68 across the entire variant frequency spectrum. A
linear model using the variables, the count of directly
genotyped variants (See Figure 3a; range 50,911–3,410,557)
and batch sample count (see Figure 3b; range 4–9,315)
showed the log of the batches sample counts (p<2× 10e–
16; 62% of variance) and the log of the batches directly
genotyped variant counts as input to the imputation
algorithm (p~5.6 × 10e–6; 21% of variance) were both
significantly associated with the batch mean R‐square
imputation quality. Imputation quality is very poor
(R‐square < 0.3) with small batch sizes, so we elected to
exclude the 27 batches with a mean R‐square of <0.3,
leaving 50 batches for GWAS analysis. Supporting Informa-
tion Table S5 provides a summary of the batches, sample
counts, and genotype counts.

The histogram of the variants’ mean R‐squares in
Figure 3c shows a trimodal distribution with two minima
and three maxima. Two of the maxima are at the ends of
the distribution close to zero and one with a middle
maximum at ~0.45 with the minima on either side. The
right side lower minimum is at ~0.8 and the left side
higher minimum shoulder is at ~0.3. We chose the left
minimum for variants with an imputation quality
R‐square of >0.3 to be the decision threshold for
inclusion in subsequent GWAS analysis summaries.
There are 21,924,838 variants (56%) with a mean

R‐square imputation quality >0.3, and 17,294,872 var-
iants (44%) with a median R‐square imputation quality of
>0.3. Among the variants with genotypes on various
arrays where the empirical R‐square was calculated, 94%
had an empirical R‐square of >0.8.

We also analyzed the R‐squared imputation quality
metric by the MAF bins as shown in the site frequency
spectrum analysis. The median R‐squared quality
values were all >0.9 down to the 0.05–0.1 MAF bin. See
Figure 3d for boxplot distributions of R‐square values of
each MAF bin. The median R‐square imputation quality
value then begins to drop and passed 0.3 in the 0.00001–
0.0001 MAF bin. Based on the distribution of variability
in the imputation quality R‐squares in these MAF bins,
the common variants generally impute very well while
rare variants have less certainty in their imputation.

6.5 | Homozygosity

We compared the chromosome 1–22 inbreeding coeffi-
cient (F) homozygosity to the batch mean R‐square
imputation quality and k‐means ancestry groups deter-
mined by the PCA (see Figure 4, top and bottom panels

FIGURE 2 Z0 Z1 identity by descent plot of eMERGE 3
imputation (n= 3,504,226,187 pairwise comparisons). eMERGE:
Electronic Medical Records and Genomics

FIGURE 3 Plots of genotype array batch mean R‐square
imputation quality regression variables of samples size (a) and
variant count (b). Histogram (c) of each variants mean R‐square
imputation quality across imputation batches. Boxplots (d) of
variants mean R‐square imputation quality by frequency bins
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respectively). African ancestry participants in general
have inbreeding coefficients centered around −0.2 with
the Asian and European ancestries centered on ~0.1.
Batches with mean R‐square imputation qualities down
to ~0.2 were able to resolve African ancestry individuals
by F. Three European only batches with very low
imputation quality (R‐square < 0.2) began to skew their
inbreeding coefficients to higher values (~0.15–0.4; 98th
to 100th percentiles of F values) suggesting the imputa-
tion is under calling these samples’ batches making them
appear as more homozygous.

6.6 | Imputed data set validation by
GWAS of previous eMERGE association

eMERGE has previously identified HLA‐B variants on
chr6p21 as associated with herpes zoster in a case–
control analysis of 22,981 participants (2,280 cases;
Crosslin et al., 2015). In the current analysis, 27 genotype
batches had imputation mean R‐squared values of <0.3
thus, we excluded the 2,234 participants in these batches
from GWAS. We removed the anomalous IBD cluster of
participants from the Marshfield Clinic, the suspected
twins and left one individual (a case if available) from
each family. See Table 2 for a count of the included zoster
cases and controls by contributing medical center. A total
of 46,350 participants (3,763 cases) from nine medical
centers were selected based on inclusion criteria and
availability of an ICD‐9 record.

Logistic regression results are presented in Table 3 for the
28 common variants which reach genome‐wide significance
(p<5× 10e–8). We included variants with MAF≥ 0.05 and
mean imputation quality R‐squares of ≥0.3 for a total of
5,752,274 common variants that converge in the regressions.
The GWAS λ statistic is ~1.02 in this high confidence set. We
observe two peaks in the Manhattan plot (Figure 5), one at
chr3p29, near the terminus of chromosome 3, and the
second on chromosome 6 in the HLA‐B locus, which
replicates the previous GWAS (Crosslin et al., 2015).

The 12 zoster‐associated variants on chromosome
3 are in or closely adjacent to an annotated brain tissue
histone H3K4me3 peak (Maunakea et al., 2010), which
also is in the footprint of transcription factors family
of transcription (FOS), signal transducer and activator
of transcription 3 (STAT3), and transcription factor
7‐like 2 (TCF7L2) Chip‐seq DNA precipitation peaks
and also is a DNAase I hypersensitivity site that all
occupy the same genomic bases near the end of the
chromosome (3p29; Hinrichs et al., 2006). The closest

FIGURE 4 The chromosomes 1–22 inbreeding coefficient F,
as a measure of homozygosity plotted versus the batch mean
R‐square imputation quality in the top panel and k‐means
Principal component analysis ancestries in the top and bottom
panels

TABLE 2 Counts of herpes zoster cases and controls included in the final zoster regression model

Site Cases Controls Male Female African Asian European

KPUW 641 1,625 984 1,282 94 78 2,094

MRSH 758 1,244 851 1,151 2 13 1,987

COLU 51 1,511 817 745 368 178 1,016

GEIS 285 1,983 1,232 1,036 6 1 2,261

NWUN 178 3,415 588 3,005 399 8 3,186

HARV 461 7,063 3,539 3,985 405 205 6,914

MTSI 286 3,648 1,507 2,427 2,846 73 1,015

MAYO 348 6,128 3,426 3,050 19 36 6,421

VAND 755 15,970 7,679 9,046 2,692 164 13,869

Total 46,350 3,763 42,587 20,623 25,727 6,831 756 38,763

Note. Ancestry is reported based on the k‐means three clusters of PC 1 and PC 2.
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TABLE 3 28 common variants that reach genome‐wide significance

rsID Rsq G/I M/MA MAF chr position p OR gene

rs9810195 0.92 8/70 G/A 0.13 3 192746326 2.805e‐09 1.26 TFBS

rs9848218 0.92 0/78 T/C 0.13 3 192746451 3.438e‐09 1.26 TFBS

rs6784731 0.92 0/78 C/G 0.13 3 192746746 3.538e‐09 1.26 TFBS

rs6784850 0.92 0/78 A/G 0.13 3 192746850 3.604e‐09 1.26 TFBS

rs1039219 0.91 0/78 G/A 0.12 3 192747249 2.966e‐08 1.24 TFBS

rs1039220 0.94 0/78 T/C 0.14 3 192747381 1.096e‐08 1.23 TFBS

rs11916599 0.92 0/78 G/A 0.13 3 192747851 6.238e‐09 1.25 TFBS

rs11924420 0.94 4/74 T/C 0.15 3 192748011 2.09e‐08 1.23 TFBS

rs4371461 0.94 0/78 T/C 0.15 3 192748673 2.911e‐08 1.23 TFBS

rs7428308 0.94 0/78 G/A 0.14 3 192749047 3.481e‐08 1.22 TFBS

rs73071839 0.94 0/78 G/A 0.15 3 192749140 2.387e‐08 1.23 TFBS

rs112062423 0.94 0/78 A/C 0.15 3 192749169 2.367e‐08 1.23 TFBS

rs2844584 0.86 0/78 G/A 0.09 6 31321524 2.043e‐08 0.772 HLA‐B intron

rs2769 0.88 3/75 A/G 0.12 6 31321882 3.027e‐10 0.772 HLA‐B 3 prime UTR

rs1093 0.88 3/75 G/A 0.17 6 31321906 1.541e‐09 0.884 HLA‐B 3 prime UTR

rs17199328 0.89 0/78 G/A 0.12 6 31322395 2.284e‐10 0.771 HLA‐B intron, missense

rs2854001 0.88 0/78 A/G 0.17 6 31323012 8.484e‐09 0.819 HLA‐B intron

rs1050723 0.88 0/78 A/G 0.12 6 31323321 2.528e‐10 0.77 HLA‐B missense

rs9266266 0.89 12/66 T/C 0.15 6 31326011 6.869e‐09 0.807 HLA‐B upstream

rs9266269 0.89 0/78 A/G 0.15 6 31326055 4.808e‐09 0.805 HLA‐B upstream

rs9266270 0.89 0/78 A/G 0.15 6 31326072 6.724e‐09 0.806 HLA‐B upstream

rs116583816 0.89 0/78 C/G 0.13 6 31326123 2.36e‐09 0.785 HLA‐B upstream, TFBS

rs2523591 0.90 34/44 A/G 0.42 6 31326960 9.609e‐09 0.863 HLA‐B upstream

rs2523586 0.90 27/51 T/G 0.23 6 31327435 1.461e‐08 0.839 HLA‐B upstream

rs2596477 0.89 20/58 A/G 0.13 6 31327723 3.531e‐10 0.774 HLA‐B upstream

rs2523577 0.89 0/78 G/A 0.13 6 31328739 4.399e‐10 0.776 HLA‐B upstream

rs9266853 0.86 0/78 C/G 0.08 6 31387725 3.718e‐08 0.754 HPC5, HLA‐B upstream

rs3893526 0.88 0/78 A/G 0.08 6 31413742 2.102e‐08 0.751 HPC5, LINC01149

Note. G/I: genotyped/imputed batch count; M/MA: major/minor allele; MAF: minor allele frequency; OR: odds‐ratio; Rsq: Imputation quality R‐square mean;
TFBS: transcription factor binding site.

FIGURE 5 Joint ancestry GWAS Manhattan (left panel) and quantile–quantile plots (right panel) of herpes zoster (shingles) with 3,763
cases and 42,587 controls. Variant inclusion stringency is set to R‐square of ≥0.3 and minor allele frequency of ≥0.05. Covariate adjustments
were made for PCs 1, 2, and 3, gender and the nine contributing medical centers which were included. Genomic control is close to one with
a λ of ~1.02
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genes to these transcription factor binding site variants
are MB21D2 towards the centromere and HRASLS
towards the terminus, both approximately 100 kb away
(see Figure 6). We could find no prior associations with
herpes zoster to this locus.

Sixteen significantly zoster‐associated variants are
annotated to be in the HLA‐B gene region on chromosome
6 (see Figure 7).HLA‐B as previously noted (Crosslin et al.,
2015) likely plays a role in viral suppression. Variants in
this region have also been associated with delayed
development of AIDS with HIV‐infected individuals
(Fellay et al., 2009). Similarly, we also see a protective
effect of the associated variants’ minor alleles with odds
ratios of ~0.77. Table 3 provides summary descriptions of
the variants. All these variants display similar association
statistics, MAF and are in LD with each other suggesting
they share a common haplotype.

6.7 | Common variant African and
European stratified ancestry association
statistics

In the ancestry‐stratified regression models five medical
centers had African ancestry participants (398 cases and
5,922 controls) and eight medical centers had European
ancestry participants (3,201 cases and 34,960 controls)
which are summarized in Supporting Information
Table S6. The ancestry‐stratified regressions showed no
statistically significant common variants in African

ancestry (λ= ~1.007; Supporting Information Figure S4)
and 46 genome‐wide significant common variants across
the HLA‐B locus in Europeans (λ= ~0.999; Supporting
Information Figure S4 and Table S7). These 46 variants
include 14 variants also identified in the joint ancestry
analysis. The chromosome 3p29 locus variants in the
ancestry‐stratified analysis did not reach genome‐wide
significance, but did display the same variants with low
p‐values in European (p, ~0.001–0.0003; MAF, ~0.08–0.1)
and African (p, ~0.0006–0.06; MAF, ~0.3) ancestral
groups. Similarly the African ancestry‐stratified analysis
displayed low p values (~0.001–0.1) with similar odds
ratios (~0.77) for many of the same variants in the HLA‐B
region. The minor allele frequencies of the protective
alleles in the African stratified analysis are ~0.06–0.08,
slightly less than observed in the joint analysis (~0.13
MAF). We are likely not powered to detect the HLA‐B
association at genome‐wide significance in the African
stratified analyses due to sample size.

7 | DISCUSSION

The metrics of variant R‐square imputation quality
(>0.3), batch mean of variants R‐square imputation
quality (>0.3), frequency thresholds, PCAs, and IBD will
assist in defining best practices for performing associa-
tion analyses with the rich eMERGE phenotype data

FIGURE 6 Chromosome 3p29 site LocusZoom plot of zoster
association in the joint ancestry regressions. SNP: single‐nucleotide
polymorphism; TFBS: transcription factor binding site

FIGURE 7 Chromosome 6 HLA‐B LocusZoom plot of zoster
association in the joint ancestry regressions. SNP: single‐nucleotide
polymorphism
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derived from electronic medical records. The diverse
genomic array datasets unified here show that sharing
resources with careful data management can work for
genomic association replication and discovery with EMR
phenotypes as cohorts grow in size.

Imputation with the HRC1.1 is able to discriminate
European, Asian, and African ancestry samples as seen in
the PCA and homo/heterozygosity results, even with the
large contingent of European HRC1.1 imputation refer-
ence samples. Additionally one can see the diversity of
the Hispanic/Latinos in the space between and adjacent
the African and Asian arms and in the V adjacent to the
Europeans (see Figure 1), hinting at the admixture
between Native American, European, and African
ancestry many Latinos can have. Both the PCA‐based
genetic ancestry grouping methods of k‐means
and observed/self‐reported compare well with the re-
ported ancestry for African and White/European but the
Asian observed/self‐reported (n= 725; see Table 1) is
overestimated by the PCA‐based ancestry grouping
methods (n, ~2,604; see Supporting Information Figure
S3) making the intersection of k‐means and self‐reported
ancestry important for stratified analyses. This is due to
the inclusion of many Hispanic/Latino reported samples
in the k‐means groups. We attempted to capture the
Hispanics in their own group by including a k= 4 with
PC 1–3 analysis, but found this did not capture the
Hispanic substructure and centered mainly on the
European samples with arms extending into the African
and Asian groups. Hispanics/Latinos have a complex
admixture with different proportions based on local and
urban versus rural influences, making clustering a
difficult endeavor in a single PCA analysis.

We interpreted the performance of array batches by
mean imputation quality by batch with respect to genetic
ancestry defined by the PCAs as the proportion of
African, Asian, and European samples (see Supporting
Information Table S5). The three large African American
batches performed well with imputation quality mean
R‐squares of ~0.5. Additionally, we have ~6 larger chip
batches with ~50% African Americans that have good
mean quality R‐squares of ~0.5–0.6 near the maximum
batch quality values we observe. This suggests that mixed
and ancestry unbalanced imputation array batches can
perform well with the HRC1.1 imputation reference set
given enough genotyped input variants and samples.

Collectively batch sample and variant count sizes had
a large effect (~80% of variance) on the mean imputation
quality of the variants. With a few exceptions in general,
batch sizes above ~500 samples are usable, while mean
R‐square is maximized above ~2,000 samples. In general,
the smaller less dense genotyping arrays also did not
perform as well as the higher density arrays. Many of the

arrays with fewer variants after pruning and strand fixing
(<~500 k variants) had lower mean variant R‐square
values of <0.3. These batch size analysis results give
estimates of sample and genotype array size for future
projects to plan imputation batches. Among the 14
Affymetrix arrays, many performed as well as the
Illumina arrays (see Supporting Information Table S5).
Homozygosity analysis by the inbreeding coefficient F by
batch (see Figure 4) showed that there was no inflation in
the F inbreeding homozygosity statistic until the batch
mean R‐square imputation quality became <~0.2 in the
sample batches plotted. This supports our selection of the
0.3 threshold for the mean batch imputation quality. We
also explored the lower quality associations and show
that including lower frequency variants (MAF> 0.001)
obtains similar acceptable lambda values (see Supporting
Information Materials Table S8 and Figure S6). The QC
and variant selection methods suggested here show a
validation of the data using standard GWAS tools. Many
parallel projects in eMERGE will utilize this imputed
genotype resource and include different subsets of the
data appropriate for their respective phenotypes. These
projects may choose to recalculate the imputation quality
R‐square means and inclusions based on the subset of
samples and arrays they select for their study. This may
include assessing the common variants only in the
calculation of chip imputation performance to ascertain
cases among the samples on the 27 low performing
arrays.

The IBD relatedness calculation and relatedness
thresholds we used are likely to be over conservative in
the exclusions for relatedness within families. This is due
to the admixed and multiancestry composition of this
cohort. Other methods (i.e., Pcrelate [Conomos, Reiner,
Weir, & Thornton, 2016] and KING [Manichaikul et al.,
2010]) are reported to be able to robustly distinguish
relatedness among these cosmopolitan assemblages of
diverse individuals. These methods may need to be
explored for studies where the phenotype of interest has
more related individuals within eMERGE. Regardless, for
the zoster phenotype, eMERGE has accrued the sample
size to power this association while avoiding complica-
tions due to related individuals and cryptic relatedness
using the conservative method used here. The PCA
methods we used to control for p‐value inflation were not
fitted with an exterior reference genotype set such as the
1000 Genomes (Howie et al., 2011). Of note, in initial
association runs we used all 10 PCs with regressions and
obtained an acceptable lambda value (~1.016) with the
same HLA‐B and chr3p29 hits, but we noticed that there
were three nonconvergent regions of the genome with
three false‐positive variants at the borders of these
regions. We decided to try regressions with just PCs 1,
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2, and 3 since these PCs showed very similar genomic
control. We obtained the same major HLA‐B and chr3p29
hits with a similar acceptable lambda (~1.02). The
nonconvergent regions and false positives at their
margins disappeared with just PCs 1, 2, and 3 used as
covariates. Due to this we chose to report results from
just the regressions with PCs 1, 2, and 3, while we view
the exploration of the PCs 1–10 in preliminary trial
regressions to show that genomic control is sufficient in
comparison with just the first three PCs.

The positive control recapitulation of the previous
HLA‐B locus association provides a validation of the
genotype data management, cleaning, and imputation
process. This HLA‐B association has also recently been
replicated by another large cohort of ~200,000 participants
from 23andMe (Tian et al., 2017). The novel epigenetic
binding site we discover on chromosome 3p29 has three
transcription factors (FOS, STAT3, and TCF7L2) known to
bind there and several DNAase hypersensitivity sites
flanking this transcription factor binding site and in the
span of associated variants. Among these various epigenetic
sites in the associated span, ~36+ diverse tissue types are
represented including brain, astrocytes, and lymphocytes.
Many of these tissues could hypothetically have interaction
with zoster and other herpes viruses. These associated
variants may be affecting the epigenetic and noncoding
genome function in this region. These same transcription
factors have also previously been shown to have interac-
tions with viral response and transcription in molecular
biology based analyses. HIV infection has been shown to
induce activated protein‐1 which contains the FOS
transcription factor subunit (Chirmule et al., 1995). STAT3
protein products are phosphorylated by receptor‐associated
kinases stimulated by cytokines and growth factors. STAT3
proteins induce a cellular antiviral state when they form
dimers which translocate to the nucleus and function as
transcriptional activators (Danziger, Pupko, Bacharach, &
Ehrlich, 2018; Roca Suarez, Van Renne, Baumert, &
Lupberger, 2018). The Kaposi sarcoma‐associated herpes
virus (KSHV) kaposin A and human immunodeficiency
virus (HIV‐1) Tat protein complex activates the MEK/ERK,
STAT3, and PI3K/Akt signals (Chen et al., 2009; Zeng et al.,
2007). Evidence shows KSHV also affects chromatin
looping through transcription factor binding sites and is
positively correlated with viral production (Campbell et al.,
2018). There are also STAT3 interactions with Epstein–Barr
virus in B‐lymphocytes (Martorelli et al., 2015). TCF7L2
expression in human B cells is downregulated by the HIV‐1
gp120 protein (Jelicic et al., 2013). T‐cell Factor 4 (TCF4) is
a common synonym for TCF7L2. TCF4 can inhibit HIV‐1
Tat docking in the HIV‐1 LTR (Henderson, Sharma,
Monaco, Major, & Al‐Harthi, 2012; Wortman, Darbinian,
Sawaya, Khalili, & Amini, 2002). Viral gene transcription is

thought to be regulated by TCF4, Sp1, and Tat interaction
(Rossi et al., 2006). The closest genes to these transcription
factor binding site variants are MB21D2 towards the
centromere and HRASLS towards the terminus, both
approximately 100 kb away (see Figure 5). The nearby
gene, HRASLS, is most highly expressed in EBV trans-
formed lymphocytes and transformed fibroblast cells
(Hinrichs et al., 2006). Interestingly, one of the annotated
UCSC genome browser DNAase hypersensitivity peaks
(chr3:192748121–192748415) is shown in the Huh‐7.5
hepatocellular carcinoma cell line selected for high levels
of hepatitis C replication. Collectively, this GWAS result
and these prior references implicate this transcription factor
binding and flanking epigenetic sites in the response to the
herpes zoster virus and suggest this epigenetic locus has
function in a general viral response program. This novel
herpes zoster susceptibility locus shows the continued
potential of discovering novel genome associations with
EMR phenotypes contained in the eMERGE network
resources.

Other next steps would be to more robustly extend the
analysis of R‐square quality variant inclusion in the rare
frequency spectrum of variation, where the majority of
genetic variation resides (Coventry et al., 2010; Keinan &
Clark, 2012). This would require gene or genomic segment
burden‐based collapsing tests like sequence kernel associa-
tion test (SKAT) analysis (Wu et al., 2011) of imputed
variants. Additionally, we did not yet explore the power
gains possible with the use of the continuous 0–2 variant
dose imputation calls and these imputed variant doses'
relations to the imputation quality. We simply used the
hard‐called genotype data with a posterior probability of
>50% in this first pass validation of the imputed data.

This eMERGE 3 data set includes EMR and genomic
data from 12 medical centers and can power the
investigation of novel associations and known replica-
tions in both GWAS and PheWAS contexts. The EMR
phenotyping algorithm components of the eMERGE
network provides access to ICD‐9 phenotype codes,
numerous clinically generated phenotypes and laboratory
medicine assay values unified across the sampled human
participants (Bielinski et al., 2015; Carroll, Eyler, &
Denny, 2015; McCarty et al., 2011; McDavid et al., 2013;
Newton et al., 2013; Pathak et al., 2011). eMERGE
currently has ~1,800 ICD‐9‐derived PheWAS codes which
could be investigated by similar analyses to this herpes
zoster shingles example using the same imputed geno-
type data. We expect the models derived from this Big
Genomic Data genotype set will inform genetic risk
assessments in a clinically defined context, providing
practical and pragmatic solutions to assess genomic
disease risk in an a priori manner. eMERGE also aims
to improve and inform transfer of genetic information to
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the usable clinical record. A forward thinking next step
would be to compare concordance of association direc-
tion between the PheWAS‐based case‐control status with
the NHGRI GWAS Catalog phenotypes and other similar
biobank scale efforts, as was done on a smaller scale
previously within eMERGE (Denny et al., 2013).

The ascertainment methods of eMERGE make for a
progressive use of existing resources. The pooling of
biobank resources, direct querying of ICD‐9/10 records,
standardized intake and consent procedures during clinic
visits and follow‐up by the medical practitioners make for
efficient study enrollment. Other biobank recruitment
efforts have found that clinic visit ascertainment of
participants to be the most cost‐effective at reference
population biobank building (Salowe et al., 2017). Salowe
et al. identified a saturating effect of their ascertainment
potential in a short enrollment period and that community
outreach‐oriented ascertainment programs have low rates
of enrollment in comparison to the clinical ascertainments
(Salowe et al., 2017). This suggests that after initial
identification in the existing clinic population, the temporal
intake rate will be defined by the new diagnosis rate of in
situ residents. Big Genomic Data with many predictors
homogenized across the ascertainment by imputation and/
or molecular methods, large sample size and EMR
phenotype information powers genetic risk discovery.
ICD‐9 is translatable to a direct economic indicator of the
burden of cost for each variant we discover.

There are several biobank projects that have amassed
tens of thousands to hundreds of thousands of samples
linked to medical records and are aimed at population
genetic risk assessment. The United Kingdom Biobank is a
particularly notable resource (Thompson & Willeit, 2015)
with many phenotypes and genetic associations for
~500,000 individuals (Clarke et al., 2017; Ge, Chen, Neale,
Sabuncu, & Smoller, 2017; Howard, Adams et al., 2017;
Howard, Hall et al., 2017; Luciano et al., 2018; Pilling et al.,
2017; Taylor, Davey Smith, & Munafo, 2018; Ward et al.,
2017) of public health importance. The Chinese Kadoorie
(Dong et al., 2017; Sun et al., 2018; L. X. Wang et al., 2017;
M. Wang et al., 2017; L. Yang et al., 2017; Yu et al., 2017)
and Guangzhou Biobanks (Au Yeung et al., 2017, 2018;
Pan et al., 2017; Xu, Jiang, Lam et al., 2017; Xu,
Jiang, Schooling et al., 2017; Xu, Lam et al., 2017; S. Yang
et al., 2017) have also grown extensively to be leading
investigative bodies in phenotype and genotype risk
estimation. Many consortia have also joined resources to
power and replicate their discoveries (Hagenaars et al.,
2016; Hoffmann et al., 2016; Hoffmann et al., 2017; Kraja
et al., 2017; Liu et al., 2017; Scott et al., 2017). eMERGE
exists as a cost‐effective early effort among this ecosphere
of medical informatics and genomics biobanks. Looking for
concordance between ascertainment strategies, imputation,

association results, and estimation of genetic risks will be
the weight of evidence informing our present and future
genomic medicine risk assessments. We are just at the
beginning of personalized genomics evidence‐based med-
icine. The United States has also recently started two new
programs, the Million Veteran’s Program (https://www.
research.va.gov/mvp/) and the ’All of Us’ Research
Program (https://allofus.nih.gov/), which seeks to enroll
1million participants. Health Maintenance Organizations
(Kaiser Permanente, Geisinger, etc.) are also integrating
routine discovery consent procedures of regular bio‐speci-
men samples into the clinical care practice. These efforts
will make the discovery and predictive statistics describing
personalized genomic healthcare more tractable and
reproducible by multiple institutions. This will also
robustly inform clinical practice to the interpretation of
underlying variables of medical risk and diagnosis in
genomics and multivariate predictive medicine.

8 | WEB RESOURCES

Michigan Imputation Server (MIS) (https://imputationserver.
sph.umich.edu/)
Minimac3 (http://genome.sph.umich.edu/wiki/Min
imac3)
plink (http://pngu.mgh.harvard.edu/~purcell/plink/
index.shtml)
plink1.9 and plink2 (https://www.cog‐genomics.org/
plink2)
vcftools (http://vcftools.sourceforge.net/man_latest.html)
bcftools (https://samtools.github.io/bcftools/bcftools.
html)
William Wrayner’s Haplotype Reference Consortium
Variant Pruning Tool (http://www.well.ox.ac.uk/
~wrayner/tools/HRC‐1000 G‐check‐bim.v4.2.5.zip)
checkVCF.py (https://github.com/zhanxw/checkVCF)
Factorbook (http://www.factorbook.org/human/chipseq/tf/)
NCBI (https://www.ncbi.nlm.nih.gov/)
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