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Massively parallel synthetic promoter assays reveal
the in vivo effects of binding site variants
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Gene promoters typically contain multiple transcription factor binding sites (TFBSs), which may vary in affinity for their
cognate transcription factors (TFs). One major challenge in studying cis-regulation is to understand how TFBS variants
affect gene expression. We studied the in vivo effects of TFBS variants on cis-regulation using synthetic promoters coupled
with a thermodynamic model of TF binding. We measured expression driven by each promoter with RNA-seq of tran-
scribed sequence barcodes. This allowed reporter genes to be highly multiplexed and increased our statistical power to
detect the effects of TFBS variants. We analyzed the effects of TFBS variants using a thermodynamic framework that models
both TF-DNA interactions and TF-TF interactions. We found that this system accurately estimates the in vivo relative
affinities of TFBSs and predicts unexpected interactions between several TFBSs. Our results reveal that binding site variants
can have complex effects on gene expression due to differences in TFBS affinity for cognate TFs and differences in TFBS
specificity for noncognate TFs.

[Supplemental material is available for this article.]

Transcription factors (TFs) orchestrate programs of gene expression

by binding promoters and interacting with the core transcriptional

machinery. Promoters typically contain multiple transcription fac-

tor binding sites (TFBSs) with varying affinities for their cognate TFs.

Analyses of TFBS variants must account for the effects of low-affinity

sites, which often have important and surprising roles in gene reg-

ulation, especially when TFs bind cooperatively (Driever et al. 1989;

Jiang and Levine 1993; Wharton et al. 2004; Gertz et al. 2009; Parker

et al. 2011; Peterson et al. 2012). Position weight matrix (PWM)

models (Stormo 2000) of binding affinities facilitate the study of

TFBS variants; however, these models are often developed in vitro

and offer a limited picture of the in vivo effects of variants on gene

expression. The effect of a TFBS variant on gene expression is a

function of the sum of its effects on binding by, potentially, all other

TFs present in the nucleus. In support of this model, recent genome-

wide binding studies show a striking overlap of TF binding profiles

(Neph et al. 2012). Therefore, given all the possible interactions

between TFs and between TFs and DNA, it is difficult to model and

predict the in vivo effects of TFBS variants. The analysis of TFBS

variants is particularly relevant in light of studies of human genetic

variation (The 1000 Genomes Project Consortium 2012) and the

role of noncoding polymorphisms in complex traits and disease

(Degner et al. 2012; Maurano et al. 2012). Progress in this field re-

quires methods to study the effects of combinations of TFBS variants

inside cells.

Synthetic promoters are powerful tools for studying cis-regu-

lation (Cox et al. 2007; Gertz and Cohen 2009; Gertz et al. 2009;

Mogno et al. 2010; Raveh-Sadka et al. 2012; Sharon et al. 2012).

Recent advances in DNA synthesis and high-throughput sequenc-

ing have driven the development of novel techniques for measuring

large numbers of synthetic promoters (Kwasnieski et al. 2012;

Melnikov et al. 2012; Patwardhan et al. 2012; Sharon et al. 2012;

Arnold et al. 2013). These techniques add transcribed sequence

barcodes to traditional fluorescent reporter genes, allowing reporter

genes to be highly multiplexed and assayed by RNA-seq. To date, all

of these methods rely on plasmid-based reporter gene libraries.

Limitations in the length of synthesized DNA restrict some of these

techniques to assaying relatively short synthetic regulatory ele-

ments. Here we present a method to assay large numbers of chro-

mosomally integrated synthetic promoters of arbitrary size. We

implemented the method in the yeast Saccharomyces cerevisiae and

used it to study the effects of TFBS variants on cis-regulation.

The method we developed is a variant of CRE-seq (Kwas-

nieski et al. 2012), a technique created to transiently assay large

numbers of cis-regulatory elements in mammalian cells. The

modifications we made to this technique allow us to sample large

numbers of chromosomally integrated synthetic promoters

consisting of combinations of TFBSs with differing affinity. This

large sampling was necessary to obtain the statistical power

necessary to model the effects of TFBS variants on cis-regulation.

We fit a thermodynamic model to the resulting data, which

provides a formal framework to describe the system in terms of TF

binding to DNA, and interactions between TFs. We found that

binding site variants have complex effects on gene expression

that are due to both differences in affinity for their cognate TFs,

and differences in specificity for noncognate TFs.

Results

Construction of a barcoded synthetic promoter library

We sought to understand how sequence variants of TFBSs affect

gene expression. We previously used libraries of fluorescent re-

porter genes to study cis-regulatory interactions between four

TFBSs, which correspond to binding sites for Mig1, Reb1, Rap1,
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and Gcr1 (Gertz et al. 2009; Mogno et al. 2010). To build on our

previous results with consensus TFBSs, we chose to create libraries

consisting of variants of these same four sites. For each of the four

TFs, we chose three variants, with differing predicted affinity, for

a total of twelve TFBSs (e.g., Mig11, Mig12, and Mig13 denote three

variants of the Mig1 TFBS). Table 1 shows the specific sequences we

chose and the estimated affinities to their cognate TFs as calculated

with a position weight matrix (PWM) model (Stormo and Fields

1998; MacIsaac et al. 2006) based on ChIP data (Harbison et al. 2004).

We tested TFBSs with a wide variety of predicted affinities, from very

high (Mig11), to very low predicted affinity (Reb13 and Rap12). Be-

cause the increase from four to twelve TFBSs entails an exponential

increase of the number of possible synthetic cis-regulatory elements

(CREs), we implemented CRE-seq technology to multiplex our ex-

pression measurements.

We built a CRE-seq reporter library in which each synthetic

CRE reporter gene contained a unique sequence barcode (BC) in

its 39 UTR. We first synthesized double-stranded oligonucleotides

(oligos) corresponding to each of the three TFBS variants for each

TF: Mig1, Reb1, Rap1, and Gcr1 (Table 1). These oligos were pooled

and then randomly ligated to form a library of synthetic CREs (Fig.

1A; Supplemental Fig. S1), which was cloned into a plasmid. We

then inserted a library of random 15-nucleotide (nt) barcodes

downstream from the CREs, such that each barcode uniquely

identified a specific CRE. We performed this cloning step in such

a way that each CRE was attached to more than one unique bar-

code: Our final library contained 7289 barcodes representing 2534

unique CREs (Supplemental Fig. S2). This redundancy increases

our statistical power by providing multiple expression readouts for

any specific CRE.

We matched the barcodes to their specific CRE using paired-

end sequencing of the plasmid library containing the CREs and

barcodes (Fig. 1B; Supplemental Fig. S1; Supplemental Data 1),

coupled with a naı̈ve clustering algorithm (Methods). We were

careful not to use PCR to prepare the library for sequencing, as we

found that PCR amplification creates chimeric products that

scramble the CRE-barcode associations. After determining the

CRE-barcode associations, we cloned a cassette containing a basal

promoter (TSA1) driving yellow fluorescent protein (YFP) into the

library, between the CREs and the barcodes. The entire library

cassette was then excised and inserted into the S. cerevisiae genome

at the TRP1 locus (Fig. 1C).

To measure, in parallel, the expression driven by each CRE, we

grew the integrated yeast library and then sequenced the barcodes

(Supplemental Data 2) from harvested RNA and genomic DNA

(gDNA). We computed the cDNA/gDNA ratio of each barcode and

used the median ratio for all barcodes corresponding to a particular

CRE as the expression of that CRE (Supplemental Data 3).

CRE-seq accurately measures gene expression

To test the accuracy of the CRE-seq method in S. cerevisiae, we

compared expression measurements made by CRE-seq to those

made by flow cytometry. We picked 337 CREs containing sites for

Mig11, Reb11, Rap11, and Gcr11 and measured their expression in

glucose minimal media by flow cytometry. We then pooled all

strains and measured their expression in glucose minimal media

by CRE-seq. The high correlation (r = 0.92) between pooled CRE-

seq measurements and individual flow cytometer measurements

confirms that CRE-seq accurately measures gene expression in our

system (Fig. 2A).

To verify that the 15-bp barcodes in the 39 UTR of the reporter

genes do not affect our measurements, we assayed the effects of

barcode sequences on expression. Using CRE-seq, we assayed the

expression of 602 clones of the same promoter, in which each

clone contained a different barcode sequence in its 39 UTR. We

performed two replicates of this experiment. If the barcodes had an

effect on gene expression, we would expect to see a positive cor-

relation between the two replicates, as barcodes that increased re-

porter expression would be correlated between replicates. How-

ever, we observed a low correlation between the two replicates (r =

0.04). The lack of correlation demonstrates that the random

barcodes in the 39 UTR do not have reproducible effects on ex-

pression (Fig. 2B).

Model selection

After verifying the accuracy of our assay, we analyzed the full li-

brary, composed of 7289 BCs for 2534 CREs. To understand the

rules of combinatorial regulation, we applied a thermodynamic

model to our data. This model is a formal framework that describes

the data in terms of TF binding to DNA and interactions between

TFs, and provides an automated method to detect the effects of

TFBS in large sets of promoters (Gertz and Cohen 2009; Gertz et al.

2009; Mogno et al. 2010). Because the differences in expression

between members of our library were not correlated with predicted

nucleosome occupancy (R2 = 0.033), we did not explicitly model

interactions with nucleosomes (Kaplan et al. 2009).

We first analyzed CREs containing only Mig11, Reb11, Rap11,

and Gcr11 sites and recapitulated the results (Supplemental Table

S1; Gertz et al. 2009; Mogno et al. 2010) , showing that Mig11 sites

act cooperatively to repress expression, while the Reb11, Rap11,

and Gcr11 sites all have activating effects. We, therefore, demon-

strated that the trends in expression data from CRE-seq re-

capitulate the trends in expression measured by traditional re-

porter gene assays.

To explore different potential mechanisms that could account

for the effects of TFBS variants, we applied several thermodynamic

architectures to the full data set with all 12 TFBSs. We started with

the simplest set of hypotheses: Each TF binds at its three cognate

TFBSs with different affinities (Fig. 3A). We also included a pa-

rameter to represent the Mig1-Mig1 cooperative interaction that

was found in Gertz et al. (2009) and verified in our data.

We then asked whether our data supported a model with

additional interactions. We started by generating a list of addi-

tional features (hypotheses) that were not present in the initial

Table 1. Twelve TFBS sequences in our library, including
S. cerevisiae promoters where they are present and the PWM score
(MacIsaac et al. 2006)

TFBS Sequence Promoter MacIsaac PWM score

Mig11 CCCCGGATTT SUC2 10.4
Mig12 CCCCACAAAT MAL61 9.82
Mig13 CCCCAGGTAT GAL3 6.69
Reb11 TTACCCGT TPI1 8.68
Reb12 TCACCCGT TRP1 6.15
Reb13 CAGCCCTT GAL1 �3.11
Rap11 ACACCTGGACAT TPI1 7.66
Rap12 ACCCCTTTTTAC TPI1 �3
Rap13 ACACCCAAGCAT TEF1 9.95
Gcr11 CAGCTTCCT TPI1 2.88
Gcr12 CGGCATCCA TPI1 7.7
Gcr13 CGACTTCCT ADH1 8.76
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simple model, including (1) an interaction term between Rap1 and

Gcr1, as suggested by Scott and Baker (1993) and Tornow et al.

(1993), (2) a cooperativity term for Gcr1, as suggested by our ex-

pression data (Supplemental Fig. S3) and by Scott and Baker (1993),

(3) a term allowing a protein (X) other than Reb1 to bind the Reb13

site, and (4) a term allowing a protein (Y) other than Rap1 to bind

the Rap12 site. We included features 3 and 4 because Reb13 and

Rap12 had strong effects on expression, even though PWM anal-

ysis of these sites indicates that they have very low affinities for

their TFs, which suggests that their effects may be mediated

through the binding of other TFs.

After identifying a set of features that might improve the

simple model, we constructed several model architectures in-

cluding these additional features in various combinations. Each

model was fit to the measured expression values and scored based

on the sum of squares of the residuals (RSS) and the number of free

parameters needed for the fit, introducing a greater penalty for

models with more free parameters. When we rank our models

based on this score, a clear pattern appears (Fig. 4A): the addition of

the Rap1-Gcr1 interaction consistently lowers the model score

(worse model), while adding Gcr1 cooperativity always results in

a higher score (better model). Moreover, allowing unknown pro-

teins to bind the Reb13 and Rap12 sites (six TFs in total) results in

a better model even after penalization for increased parameter

number. The best performing model includes parameters repre-

senting Mig1 self-cooperativity, Gcr1 self-cooperativity, a protein

(X) other than Reb1 binding at site Reb13, and a protein (Y) other

that Rap1 binding at site Rap12 (Fig. 3B). Scoring Reb13 and Rap12

against PWMs for known TFs (Spivak and Stormo 2012) suggests

that Reb13 may be bound by Rtg1 (P = 0.0032) and that Rap12 may

be bound by Yer130C (P = 0.0059). This result is not surprising

given that the PWM models for these two sites (Reb13 and Rap12)

predict extremely low affinity for their cognate TFs (see Table 1). It

is, therefore, reasonable to expect other TFs to bind to these par-

ticular sites.

This model explains 57% (P << 0.01) of all the variance in

expression in our 12-site synthetic promoter library (Fig. 4B). For

each model, we performed 100 independent fits. In general, model

fits converged 40% of the time, and these parameters were within

the 95% confidence interval of the solution. We performed re-

peated random subsampling validation (Supplemental Fig. S5),

showing that we obtain similar results with ;1000 unique pro-

moters. However, to obtain reliable estimates of some parameters,

at least 2000 unique promoters are necessary. Thus, the extra sta-

tistical power afforded by CRE-seq allowed us to identify features of

this system that were undetectable in our previous experiments

with smaller libraries (Gertz and Cohen 2009; Gertz et al. 2009;

Mogno et al. 2010).

Figure 1. Schematic of the CRE-seq method adapted for this study. (A) Double-stranded oligonucleotides encoding TFBS are mixed in a pool and
ligated randomly to create a CRE library. (B) After cloning CRE and barcode (BC) sequences into a reporter plasmid, the concordance between CREs and
BCs is determined with a paired-end next-generation sequencing run. Each BC identifies a single CRE. (C ) The cassette containing the library of CREs
upstream of a basal promoter driving YFP and BC is integrated into the S. cerevisiae genome at the TRP1 locus by selecting for URA+ cells. (D) Cells are
grown in liquid culture, and gDNA and RNA are harvested. The fraction of reads in the cDNA pool divided by the fraction of reads in the gDNA pool for each
BC is a quantitative measurement of the expression driven by the corresponding CRE.

Mogno et al.
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The thermodynamic model predicts in vivo relative affinities
between TFs and DNA

We next asked whether the in vivo predicted affinities estimated

from our thermodynamic model match the PWM predictions from

ChIP-seq data. We computed DDG for pairs of binding sites. A

negative DDG indicates a stronger TFBS (with higher affinity),

while a positive DDG indicates a weaker site. When the PWM and

our thermodynamic model are in agreement, the DDG calculated

with the PWM and the DDG calculated with the thermodynamic

model are proportional. For example, our model is in good agree-

ment with the PWM model for Mig1 (Table 2, rows 1 and 2). Our

model also agrees with PWM predictions that Rap13 is stronger

than Rap11 (Table 2, row 3). In contrast, our model predicts Reb12

to be stronger than Reb11, while the PWM model predicts the

opposite (Table 2, row 4).

Our relative affinity predictions for Gcr1 do not agree with

PWM models (Table 2, rows 5 and 6). Our model predicts that

Gcr12 is the strongest site for Gcr1, while the PWM model predicts

Gcr13 to be the strongest site. The PWM model was generated us-

ing genome-wide chromatin immunoprecipitation (ChIP) data

collected in a rich media (Harbison et al. 2004; MacIsaac et al.

2006); our predictions are estimated from measuring synthetic

promoter expression in minimal media. It is possible that the in-

consistencies in these predictions can be explained by differences

in growing conditions or by differences between measuring

binding versus activity through a gene expression-based reporter

assay. We also tried using different PWM models for Gcr1, which

came from different experiments. None of these PWMs for Gcr1

are in good agreement with each other, nor do they agree well with

our predictions (Harbison et al. 2004; MacIsaac et al. 2006; Pachkov

et al. 2007; Foat et al. 2008; Spivak and Stormo 2012). The re-

lationship between occupancy at the Gcr1 sites and the sites’ ef-

fect on gene expression may be complicated by condition-specific

binding of Gcr1 or the binding of other factors. In the following

analysis, we refer to Gcr12 as the strongest site and Gcr11 as the

weakest site, as predicted by our model.

Gcr1 participates in complex TF-TF interactions

The Gcr1 binding sites used in this study showed the ability to en-

hance the activity of surrounding TFBS, regardless of whether acti-

Figure 3. The thermodynamic model consists of a set of interactions that govern TF-DNA and TF-TF binding. Each arrow represents an interaction
included in the model in the form of a parameter proportional to the DG. Black arrows represent the free parameters. (A) The set of interactions allowed in
the simplest model: Each TF is allowed to bind to its cognate TFBSs and to interact with polymerase. Mig1 is allowed to interact with itself when two or
more Mig1 sites are present in the same promoter. (B) The set of interactions applied to the model with the highest score: A protein X other than Reb1 is
allowed to bind at site Reb13, and a protein Y other than Rap1 is allowed to bind at site Rap12. Both Mig1 and Gcr1 are allowed to interact with themselves
when two or more of their sites are present in the same promoter.

Figure 2. CRE-seq accurately measures gene expression. (A) Comparison
between expression measured by CRE-seq and flow cytometry. Each dot
represents a CRE whose activity has been measured with a traditional fluo-
rescent assay (y-axis) and with CRE-seq (x-axis). The high correlation indicates
that CRE-seq expression measurements are as accurate as those measured by
traditional fluorescent assay. The line represents the perfect model (r = 1). (B)
Biological replicates of a CRE-seq library where expression is controlled by one
CRE matched to 602 different BCs. The library was grown and harvested two
times; CRE-seq was performed independently on each replicate. Replicate
measurements of BC expression are plotted on the x-axis (replicate 1) and on
the y-axis (replicate 2). The absence of correlation reveals that the BCs have
no reproducible effects on gene expression.

In vivo effects of binding site variants
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vators or repressors bind to those TFBSs. When Gcr11 sites are added

to promoters containing only Mig11 sites, their average expression

decreases (Fig. 5A). In contrast, when Gcr11 sites are added to pro-

moters containing only Reb11 or Rap11 sites, the expression of the

reporter gene increases. We also observe a similar behavior when

Gcr11 is added to Reb12, Reb13, Rap12, and Rap13. However, the

ability of Gcr11 to repress is weaker when it is coupled with weaker

sites for Mig1 (e.g., Mig12 and Mig13) (Fig. 5B). The data suggest that

the Gcr11 site acts as an activator when next to any activator site, but

it acts as a repressor when next to a strong Mig1 site, and has little

effect next to a weak Mig1 site. Increasing the predicted affinity of

the Gcr1 site hides this behavior: Gcr13, a stronger site, has a smaller

effect on the Mig11 site (Fig. 5C). The repressing effect disappears

when we use Gcr12, the highest affinity site. Moreover, this effect is

particularly strong in promoters in which Gcr11 and Mig11 sites are

adjacent to each other (Supplemental Fig. S4). These data seem to

suggest a role of the Gcr1 sites in facilitating the binding of other TFs

and increasing their regulatory potential.

Discussion
We adapted CRE-seq for use with synthetic promoters of arbitrary

size integrated into the genome of S. cerevisiae. With the develop-

ment of CRE-seq, we can assay thousands of integrated synthetic

promoters, a 10-fold increase over what was previously possible

with fluorescent reporter genes. We showed that the method is ac-

curate and reproducible and that the barcodes in the 39 UTR of the

reporter gene do not affect gene expression. As technologies for

genome editing (Christian et al. 2010; Bogdanove and Voytas 2011)

become more efficient, we anticipate using CRE-seq to study syn-

thetic promoters integrated into the genomes of mammalian cells.

An advantage of CRE-seq is that it allows us to build larger

libraries since all clones are built and assayed in parallel. It also

overcomes some of the limitations of traditional assays based on

flow cytometery, such as limited dynamic range. CRE-seq measures

the abundance of mRNA rather than stable fluorescent proteins,

whose long half-lives could mask the true promoter activity.

We used CRE-seq to obtain the statistical power necessary to

study cis-regulation in promoters containing combinations of

TFBS variants. The increased power we obtained from analyzing

large libraries revealed TFBS effects that we could not detect in

smaller libraries composed of the same binding sites. This dem-

onstrates the utility of CRE-seq when applied to synthetic pro-

moters. In many cases, our binding affinity predictions agree well

with established PWM models of binding (MacIsaac et al. 2006). In

cases where our predictions were discordant with PWM predictions,

as was the case for Reb13 and Rap12, we found that our data sup-

ported a model in which these variant TFBSs are recognized by other

TFs. We think the differences in these predictions stem from dif-

ferent experimental conditions and the fact that in vitro binding is

not equivalent to in vivo expression potential.

Our work uncovered an unusual interaction between Gcr1

and Mig1. Although Gcr1 sites behave as weak activators, when

put in combination with repressive Mig1 sites, Gcr1 sites increase

the repressive effects of Mig1. One possible explanation is that

Gcr1 binding opens the locus, thus facilitating the binding of

Mig1. This manifests as a greater repressive effect of Mig1 but only

when the activating potential of Gcr1 is weak.

With the increasing power and affordability of next-genera-

tion sequencing technologies, we anticipate that CRE-seq will be

a useful tool for unraveling other kinds of interactions between cis-

regulatory sequences.

Figure 4. (A) Several model structures with different sets of rules have
been applied to the data. Each dot represents a specific model, whose
score is on the y-axis. The score is plotted as the absolute value of the AIC
score, calculated taking into account the RSS and a penalty term for the
number of free parameters (Methods). An increase in the plotted score
(thus a decrease in the AIC score) indicates a better model. Increasing the
number of TFs included in the model from four to six increases the score.
The addition of the Gcr1-Gcr1 (GG) interaction always results in a better
score. The addition of the Gcr1-Rap1 (GP) interaction always results in
a worse score. The model with the best score is the one with six TFs and the
Gcr1-Gcr1 interaction. All models represented in this plot include the
Mig1-Mig1 interaction. (B) The thermodynamic model with six TFs and
Gcr1-Gcr1 interaction accurately predicts synthetic promoter gene ex-
pression. Each dot represents expression driven by one of the 2534 CREs
we assayed in this study. The measured CRE-seq expression is on the
x-axis, while the predicted expression from the thermodynamic model is
shown on the y-axis. R2 = 0.57 shows that our model explains 57% of
the variance in the data. The line represents the perfect model (R2 = 1).

Table 2. Comparison between TFBS affinities predicted by
thermodynamic modeling and PWM analysis

TFBS A TFBS B PWM DGBLDGA

Thermodynamic model
DGBLDGA

Mig11 Mig12 0.58 1.10 ± 0.12
Mig11 Mig13 3.71 4.40 ± 1.88
Rap11 Rap13 �2.29 �1.52 ± 0.51
Reb11 Reb12 2.53 �0.14 ± 0.11
Gcr11 Gcr12 �4.82 �0.86 ± 0.24
Gcr11 Gcr13 �5.88 �0.37 ± 0.30

For each combination of variant binding sites (columns 1 and 2), we show
PWM predicted relative affinities (column 3) and thermodynamic mod-
eled relative affinities (column 4). Each numeric value represents the
change in DG for the variant in the second column with respect to the
variant in the first column (DDG). A positive number predicts that site B
has a weaker affinity than site A, while a negative number predicts site B
has a stronger affinity than site A.

Mogno et al.
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Methods

Construction of the CRE-BC library
Escherichia coli strain DH5a was used for all bacterial cloning steps.
Plasmid pIM202 was derived from pIM102 (Mogno et al. 2010) by
removing the TSA1 promoter-YFP cassette and replacing it with
a multiple cloning site (containing sites for BglII, XmaI, BamHI,
KpnI, ClaI, EagI, AvrII, and XbaI restriction enzymes). CREs were
cloned into pIM202 at the BamHI site as in Gertz and Cohen
(2009), Gertz et al. (2009), and Mogno et al. (2010), and ;7000
colonies were scraped for DNA extraction using a maxi-prep kit
(Sigma GenElute HP Plasmid Maxiprep Kit).

To create random barcodes (BCs), two oligos containing 15
random nucleotides flanked by 6 or 7 bases (oligos prIM01 and
prIM02) (Supplemental Table S2) were denatured at 95°C in a water
bath and then annealed for 16 h until the water reached room
temperature. The BCs were then cloned into the CRE plasmid li-
brary using restriction sites EagI HF and XbaI. The ligations were
digested with AvrII before transformation to reduce background.
Roughly 20,000 colonies were then scraped and maxi-prepped

(Sigma GenElute HP Plasmid Maxiprep Kit) at this step. The TSA1
promoter-YFP cassette was amplified from plasmid pIM102 (98°C
for 1 min, 5 cycles: 98°C for 15 sec, 56°C for 30 sec, 72°C for 60 sec,
25 cycles: 98°C for 15 sec, 63°C for 30 sec, 72°C for 60 sec, and 72°C
for 5 min; NEB HF Phusion MM) using primers prIM03 and prIM04
(Supplemental Table S2) and cloned into the library using restriction
enzymes KpnI and EagI HF. The ligation mix was digested with ClaI
after ligation to reduce background. About 35,000 colonies were
picked at this step. The CRE-BC plasmid library was integrated into
S. cerevisiae BY4742 (MATa his3D1 leu2D0 lys2D0 ura3D0) at the
TRP1 locus, following the procedure described in Gertz and Cohen
(2009), Gertz et al. (2009), and Mogno et al. (2010). Between 7000
and 8000 S. cerevisiae colonies were replicated onto SC media with
2% glucose and 5-FAA (5-Fluoroanthranilic acid) to enrich for the
colonies carrying the correct integration. These colonies were scraped
and pooled for growth and expression assays.

Matching CREs to BCs

CREs and BCs were matched after cloning the BCs into the plasmid
library but before inserting the TSA1 promoter -YFP cassette. The
plasmid library was digested with restriction enzymes XmaI and
XbaI. Illumina paired-end adaptors were ligated, and the DNA
molecules between 250 and 500 base pairs in length were selected
on an agarose gel. No PCR was performed to prevent chimeric
products that mask the correct CRE-BC pairs. The purified DNA
was then sequenced with an Illumina MiSeq run using a paired-
end 250 3 50 bp protocol to sequence the CRE and BC regions,
respectively. We obtained about 1 million reads. BCs represented
by fewer than five reads were not used in the analysis. Occasion-
ally, more than one CRE was associated with a particular BC. In this
case, the CRE with the highest number of reads was assigned to the
BC if and only if it was represented by at least 90% of the total
number of reads associated with the BC (Supplemental Data 1).
Otherwise, the BC was not included in our analysis. Subsequently,
all BCs associated with the same CRE were analyzed. We calculated
the pairwise sequence distance for all BCs representing the same
CRE, and we eliminated the ones that had similar sequences to
another BC of higher rank, assuming that they arose from se-
quencing errors.

Flow cytometer assay

The strains used for the validation experiment (Fig. 2A), were
picked from the transformation plate and arrayed into 96-well
microplates. The CREs and the BCs were sequenced with a Sanger
protocol (Beckman Coulter Genomics). Cultures were grown in
500 ml of synthetic complete media lacking uracil with 2% glucose
with shaking at 30°C in 2-mL 96-well plates for 4 h. The cells were
then fixed with paraformaldehyde as described in Gertz and
Cohen (2009), Gertz et al. (2009), and Mogno et al. (2010). The
fluorescence intensities and electronic volumes of 25,000 cells
from each well were measured on a Beckman Coulter Cell Lab
Quanta SC with a multiplate loader. Fluorescence was then divided
by volume to obtain a normalized fluorescence value for every cell.
For each well, mean and variance were calculated from the nor-
malized fluorescence values for 25,000 events.

CRE-seq

The S. cerevisiae library was grown in synthetic complete media
lacking uracil with 2% glucose with shaking at 30°C. After 5 h,
gDNA and total RNA were harvested. RNA was then treated with
TURBO DNase (Ambion) to eliminate genomic DNA contamina-
tion, and cDNA was synthesized using SuperScript II Reverse

Figure 5. Gcr1 binding sites have complex effects on expression. (A)
When Gcr11 sites are added to promoters containing only Reb11 or Rap11

TFBSs, their effect is to increase the activation of gene expression. However,
when Gcr11 sites are added to promoters containing only Mig11 sites, their
effect on gene expression is repressive. (B) Gcr11 TFBS has a weaker re-
pressive effect when added to low-affinity Mig1 sites (Mig12 and Mig13).
(C ) Gcr1 TFBS with low affinity (Gcr13 and Gcr12) have weak repressive
interactions when combined with high-affinity Mig1 sites (Mig11).
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Transcriptase (Invitrogen), with oligo-dT primers (IDT). The 39 UTR
of the YFP gene, containing the BC, was amplified from gDNA and
from cDNA (98°C for 1 min, 5 cycles: 98°C for 15 sec, 54°C for 30
sec, 72°C for 45 sec, 10 cycles: 98°C for 15 sec, 58°C for 30 sec, 72°C
for 45 sec, and 72°C for 5 min; Phusion High-Fidelity PCR Master
Mix [NEB]) using primers prIM05 and prIM06 (Supplemental Table
S2). We also used primers that amplify across the integration re-
gion, prIM05 and prIM07 (Supplemental Table S2), on the gDNA to
select for correct integrations. Only the BCs represented in this
second control gDNA PCR were included in our analysis. The PCR
products were purified with a QIAquick PCR Purification Kit
(Qiagen), digested with EagI HF and XhoI, and ligated to Illumina
adaptor sequences. The final product was amplified (98°C for 1
min, 12 cycles: 98°C for 15 sec, 63°C for 30 sec, 72°C for 45 sec, and
72°C for 5 min) with primers prIM08 and prIM09 (Supplemental
Table S2) to enrich for molecules containing both adaptor se-
quences. This library was run on two lanes of an Illumina HiSeq
machine, generating ;102 million reads. Only barcodes with >25
reads in the gDNA pool and at least one read in the cDNA pool were
used for the analysis, for a total of 7289 BCs. Expression associated
with each BC was then calculated as the number of reads in the
cDNA pool divided by the number of reads in the gDNA pool (for
the same set of primers). These 7289 BCs mapped to 2633 unique
CREs (Supplemental Data 2). Subsequently, we determined that 99
of these CREs were likely to contain mutations that altered their
expression (see ‘‘Outlier detection’’ below). The distribution of BCs
identifying each promoter was uneven; 16.1% of the promoters
had at least three BCs associated with them, while the remaining
83.9% had two or one (Supplemental Fig. S2; Supplemental Data
3). Finally, expression driven by each CRE was calculated as the
median ratio of all the BCs associated with it.

Thermodynamic model

To model gene expression, we implemented a thermodynamic
model of polymerase occupancy originally proposed by Shea and
Ackers (1985). The model and implementation were described pre-
viously in Gertz and Cohen (2009), Gertz et al. (2009), and Mogno
et al. (2010), and it includes parameters proportional to DGs of the
interactions between proteins and DNA and between proteins. We
did not model nucleosome effects. We scanned our promoter se-
quences with the Nucleosome Positioning prediction software
(Kaplan et al. 2008) and found very low correlation between pre-
dicted nucleosome occupancy averaged across the TFBS region and
the measured expression (r = 0.184). Moreover, the averaged nucle-
osome occupancy predictions were very similar across our promoter
sequences (CV = 0.06). The Akaike Information Criterion (Akaike
1974), which introduces a penalty term for the number of parame-
ters, was used for model selection. Repeated random subsampling
validation was performed for cross-validation with training sets
containing 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%,
and 90% of the total number of data points. All calculations were
performed using the Matlab package from The Mathworks, Inc.

Outlier detection

Given the high rate of mutations in S. cerevisiae transformants, we
expect 5%–6% of the colonies to contain mutations that could
affect gene expression. The CREs and the BCs were sequenced and
matched before inserting the basal promoter and YFP gene, and
before the transformation into S. cerevisiae; therefore, we did not
detect mutations in subsequent steps. CREs represented by three or
more BCs are not affected by this problem, since outlier detection
is an easy task in these cases. However, our library contains 1806
CREs associated either with one BC only, or with multiple BCs, and

high variance in expression (CV > 0.5). Replicate experiments
showed that 95% of the CREs represented by only one BC pro-
duce an accurate measure of gene expression. Instead of elimi-
nating all the CREs represented by a low number of BCs, we used
the thermodynamic model in a recursive way to identify the true
outliers.

The first step was to apply the thermodynamic model only to
the 827 CREs represented by two or more BCs and characterized by
low expression variance (CV < 0.5). The fit model was used to
calculate the error for each of the excluded 1806 CREs. The ex-
cluded CREs were ranked based on the error and reintroduced to
the model one at a time until the overall R2 dropped 10% with
respect to the original model. This resulted in the exclusion of
about 100 CREs. Then, the thermodynamic model was applied
only to the selected CREs. The CREs excluded from our analysis
represent the ones whose expression cannot be explained by the
model. There could be two reasons for this: (1) They contain high
measurement error; or (2) they contain a specific feature not included
in the model. To test whether these CREs contain features that we
were not capturing with our model, we looked at the sequence
contents of these excluded CREs: They were not enriched in length
(number of building blocks), and they were not enriched in any
specific TFBS or in any pair of TFBSs. We also tested several models:
We added parameters to include four or six TFs, and to capture the
Gcr1-Gcr1 and the Gcr1-Rap1 sites interactions. Each time, we re-
peated this recursive procedure, excluding between 96 and 115
CREs, and found no common sequence feature in the excluded sets.
Moreover, the pairwise intersections of the excluded sets were al-
ways between 96% and 100%, indicating a small, reproducible set of
outliers. After these analyses, we concluded that the unexplained
expression for these outlier promoters must be due either to se-
quencing errors or to secondary mutations that occurred during
their transformation into S. cerevisiae. We excluded these outliers
from our final analysis, obtaining a final set of 2534 CREs.

PWM analysis

PWM models for TF binding (MacIsaac et al. 2006; Pachkov et al.
2007; Foat et al. 2008; Spivak and Stormo 2012) were used to es-
timate the affinity of TFs to their cognate TFBSs. We used patser
(Stormo et al. 1982) to calculate these scores. The PWM scores are
proportional to the –DG of the interaction.
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