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Simple Summary: The uterus is an important place for mammals to nurture new life, and improving
the physiological function of the uterus is important for improving the reproductive efficiency of
mammals. NAC is a small-molecule antioxidant with a positive regulatory effect on mammalian
reproductive performance. We found that NAC can alter the expression of uterine genes in goats
in early gestation. These DEGs may regulate uterine performance in early pregnancy in goats by
participating in signalling pathways related to reproductive regulation, resistance to oxidative stress,
immune regulation, angiogenesis and development, cytokines, and cell adhesion. These findings
provide a fundamental reference for the modulation of reproductive performance in goats in early
gestation by NAC.

Abstract: N acetylcysteine (NAC) affects antioxidation and reactive oxygen species scavenging in the
body and thereby promotes embryonic development and implantation and inhibits inflammation.
The mechanism through which NAC regulates reproductive performance in the uteri of goats
during early gestation remains unclear. In this study, the treatment group was fed 0.07% NAC for
the first 35 days of gestation, whereas the control group received no NAC supplementation. The
regulatory genes and key pathways associated with goat reproductive performance under NAC
supplementation were identified by RNA-seq. RT–qPCR was used to verify the sequencing results
and subsequently construct tissue expression profiles of the relevant genes. RNA-seq identified
19,796 genes coexpressed in the control and treatment groups and 1318 differentially expressed genes
(DEGs), including 787 and 531 DEGs enriched in the treatment and control groups, respectively. A
GO analysis revealed that the identified genes mapped to pathways such as cell activation, cytokine
production, cell mitotic processes, and angiogenesis, and a KEGG enrichment analysis showed that
the DEGs were enriched in pathways associated with reproductive regulation, immune regulation,
resistance to oxidative stress, and cell adhesion. The RT–qPCR analysis showed that BDNF and
CSF-1 were most highly expressed in the uterus, that WIF1 and ESR2 showed low expression in
the uterus, and that CTSS, PTX3, and TGFβ-3 were most highly expressed in the oviduct, which
indicated that these genes may be directly or indirectly involved in the modulation of reproduction in
early-gestation goats. These findings provide fundamental data for the NAC-mediated modulation
of the reproductive performance of goats during early gestation.

Keywords: N acetylcysteine; RNA-seq; Qianbei Ma goat; uterus

1. Introduction

Reproductive traits are among the most important economic traits of goats, and im-
proving fertility is an important route for achieving high efficiency in the goat industry.
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A previous study showed that embryo loss can lead to a reduced litter size, longer litter
intervals, and increased culling of breeding stock, resulting in great economic losses [1]. Im-
proving the receptive and physiological environment of the uterus is an effective measure
to prevent early embryo loss. The uterus is an important place for mammal reproduction,
successful implantation of the embryo into the endometrium and maintenance of intrauter-
ine environmental homeostasis during pregnancy are key steps in the successful Mammals
reproduce [2,3]. Maintaining immune homeostasis between the embryo and mother during
embryo attachment and pregnancy [4], enhancing antioxidant activity at the mother-foetus
interface [5], and promoting placental angiogenesis and development [6] are essential. Of
course, an adequate supply of nutrients is essential to ensure normal embryonic growth
and development [7], and the digestion, absorption, and metabolism of nutrients such
as protein, glucose, amino acids, and vitamins are necessary to support early embryonic
growth and development [8,9]. It is thus clear that the conception of new life involves
complex physiological regulation in the uterus. A previous study found that antioxidants
improve endometrial receptivity, reduce reactive oxygen species (ROS) levels, and suppress
the inflammatory response of the uterus [10]. Therefore, the effect of antioxidants on the
mechanisms regulating reproductive performance in the goat uterus deserves further study.

N-acetylcysteine (NAC), a natural derivative of L-cysteine and precursor of reduced
glutathione (GSH), is a common small-molecule antioxidant that promotes intracellu-
lar GSH biosynthesis and enhances glutathione-S-transferase activity and antioxidant
effects [11]. The addition of trace amounts of NAC during oocyte maturation increases
blastocyst rates, promotes early embryo formation, improves the success of early embryo
development, and reduces embryo loss [12]. NAC improves the reproductive performance
of animals [13], increases sperm counts and viability [14], and significantly regulates fertility
in female rats, which results in the effective amelioration of gonadal hormone disorders and
improvements in reproductive function by inhibiting the activation of NADPH oxidase [15].
In addition, NAC can prevent MXC-induced granulosa cell apoptosis and follicular atresia
by reducing the oxidative stress induced by methoxychlor (MXC) and decreasing the ROS
signalling pathway of apoptosis [16]. NAC can promote granulosa cell proliferation by
reducing granulosa cell oxidative stress and apoptosis levels, and thereby restore ionizing
radiation-induced ovarian and uterine functional damage and promote follicle develop-
ment and embryo implantation [17]. Studies on mares have shown that the administration
of NAC can support the antibiotic treatment of endometritis by reducing inflammation [18].
Additionally, NAC exerts a positive effect on the treatment of polycystic ovary syndrome
(PCOS) [19]; specifically, NAC improves the receptivity and decidualization of the rat
uterus and the level of gene expression during placental differentiation and is beneficial
for foetal survival [20]. In addition, NAC improves production performance, reproductive
performance, antioxidant status, immunity, and the delivery of maternal antibodies in
Japanese quail under heat stress conditions [21]. In a previous study with Nubian goats,
we found that different concentrations of NAC increase the lambing numbers of Nubian
goats and that 0.07% NAC has the most significant effect [22]. In summary, we found that
NAC plays an important role in the modulation of animal reproductive performance, but
the molecular mechanisms through which NAC regulates reproductive performance in the
goat uterus during early gestation are unclear.

Previous studies have shown that CSF-1 can enhance endometrial regeneration by
activating the PI3K/Akt signalling pathway [23], and that changes in the level of CSF-1
expression in the uterus affect endometrial receptivity and the establishment of preg-
nancy [24]. BDNF and its receptors are key regulatory proteins in gonadal development,
the physiological regulation of the ovary and uterus, and embryonic and placental devel-
opment [25]. The ESR2 gene is indispensable for female reproduction [26] and can regulate
the physiological functions of the uterus by binding to oestrogen [27]. TGF-β3 may control
apoptosis and survival at specific stages of pregnancy [28], and maternal TGF-β3 expression
is downregulated during pregnancy, which may lead to miscarriage [29]. PTX3 is essential
for the maintenance of female fertility [30]. Changes in the CTSS expression levels are
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important for regulating endometrial and placental remodelling [31]. WIF1 is involved
in the regulation of reproductive performance by the Wnt signalling pathway, and WIF1
overexpression may be related to the pathogenesis of preeclampsia [32].

The Qianbei Ma goat is an ideal goat breed in China with a high adaptability, good meat
production performance and meat flavour, a high protein content, and other advantages,
and this breed has considerable economic value and development potential [33]. A previous
study showed that antioxidants can improve the meat quality and enhance antioxidant
activity in the muscle of Qianbei Ma goats [34], but whether antioxidants can improve the
reproductive performance of these goats remains to be determined. Therefore, building
on the work of the previous study, 60 Qianbei Ma goats were employed in this study,
separated into two groups (control and NAC groups), and then fed for 35 days. RNA-seq
and bioinformatics analyses were performed to screen key candidate genes and signalling
pathways affecting the reproductive performance of goats during early gestation, and
to investigate the changes in the genome-wide gene expression levels in early-gestation
goats. In conjunction with previous studies, we constructed tissue expression profiles of
the TGFβ-3, CSF-1, BDNF, PTX3, CTSS, WIF1, and ESR2 genes by RT–qPCR with the aim
of providing a reference for elucidating the molecular mechanisms through which NAC
regulates reproductive performance in early-gestation goats.

2. Materials and Methods
2.1. Experimental Animals

All Qianbei Ma goats used in the trial originated from the same farms (Fuxing Herding
Co., Zunyi, China) (106.198244 E, 28.26403 N). The farm’s Qianbei Ma goats are sexually
mature at 4 months of age and ready for mating at approximately 8 months of age. Does
enter oestrus throughout the year and have an oestrus cycle of 19–21 d, an oestrus duration
of 24–48 h, and a litter rate of approximately 200%. Sixty healthy unpregnant goats (aged
2–3 years; 32.38 ± 3.12 kg, mean ± SEM) raised in the same environment were employed
in this study. Prior to the experiments, these Qianbei Ma goats were housed at a Fuxing
Herding Co., Ltd., sheepfold under constant temperature (25 ◦C) and a fixed light/dark
cycle (12 h/12 h) to achieve as similar a physiological state as possible. After acclimatization,
vaginal implants impregnated with progesterone were used for 12 d to synchronize the
oestrus. After removal of the implants, equine chorionic gonadotropin (eCG, 330 IU/each)
and prostaglandin (PG, 1 mL/each) (Sansheng Biologicals, Ningbo, China) were injected
intramuscularly. After 48 h of concentrated oestrus, the does were inseminated for the
first time with fresh semen from six healthy bucks and for the second time 12 h later.
Both inseminations were performed using the vaginal opener method with a volume
of 0.5 mL per dose. The ejaculate volume per goat was 0.8–1.5 mL, the sperm viability
was about 70%, and the semen was diluted 1:4 with saline for insemination. According
to a completely randomized design, 60 Qianbei Ma goats were divided into a control
group (basal diet, n = 30) and a treatment group (basal diet + 0.07% NAC, n = 30) (Fanhai
Biotechnology Co., Ltd., Zhuhai, China). Each goat was fed regularly and quantitatively
in the sheepfold (feeding time: 9:00, 17:00) and had free access to water. After 35 days of
feeding under the same environmental conditions and nutrition levels, pregnancy was
determined using a Micro-imager 1000 sector ultrasound scanner equipped with a 3.5-MHz
abdominal transducer (Ausonics, Sydney, Australia), and three pregnant goats in the
treatment and control groups were randomly selected for euthanasia according to their ear
tag numbers. The number of embryos in the euthanized goats was recorded. To ensure
consistency with previous work, the experimental goats were fed a previously described
basal diet [22]. Specific information is provided in Table 1.
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Table 1. Ingredients and nutrient composition of experimental diets (DM basis).

Ingredients % Content Chemical Composition % Content

Corn silage 50 DM 60.13

Chinese wildrye 20 Metabolic energy (MJ/kg DM) 12.51

Corn 15 Crude protein, DM 13.42

Soybean meal 8.02 Organic matter 86.38

Wheat bran 4.98 NDF 38.67

Calcium bicarbonate 0.5 ADF 31.07

Sodium chloride 0.5 Ca 0.68

Premix * 1 P 0.49

Total 100
* Per kilogram of premix of the diet contains vitamin A 55,000 IU, vitamin D 11,500 IU, vitamin E 13,000 IU,
MgSO4·H2O 110 g, CuSO4·5H2O 0.7 g, FeSO4·7H2O 3.0 g, MnSO4·H2O 2.5 g, ZnSO4·H2O 5.0 g, Na2SeO3 15 mg,
KI 40 mg, CoCl2·6H2O 28 mg. DM, dry matter; NDF, neutral detergent fibre; ADF, acid detergent fibre.

2.2. Sample Collection

Does in the treatment and control groups were euthanized at day 35 of gestation. Gonadal
axis tissue samples were collected from the goats within 20 min after euthanasia and washed
with phosphate-buffered saline solution. All the samples were then snap frozen in liquid
nitrogen and subsequently transferred to storage at −80 ◦C for further analysis.

2.3. Total RNA Extraction and RNA Sequencing

Total RNA was extracted from the gonadal axis tissues of the control and treated groups
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and an RNeasy RNA purification kit
containing DNase treatment (Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions. The RNA concentration and purity were determined using a 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA), and the RNA quality was assessed by 1%
agarose gel electrophoresis. High quality RNA with an OD260/280 absorbance ratio in the
range of 1.8–2.0, an RNA integrity > 7.0, and a 28S:18S ratio > 1.0 was used for sequencing on
the Illumina NovaSeq 6000 system to generate 150-bp paired-end reads.

Image data of sequenced fragments obtained from high-throughput sequencers were
converted into sequence data (reads) by CASAVA base identification to generate files in
fastq format. The RNA-seq fastq raw data were then filtered using Fastp v to remove
reads with adapters, N-containing reads, and low-quality reads (quality scores < 20) and
thus obtain clean data. HISAT2 (v2.0.5) was used to map the clean reads to the goat
(Capra hircus) (ARS1.2) reference genome [35]. FeatureCounts (1.5.0-p3) was then used to
calculate the number of reads mapped to each gene to estimate the expression of each gene
transcript. Gene expression levels were estimated based on fragments per kilobase million
mapped reads (FPKM) values [36]. In this experiment, we used DESeq2 software (1.20.0)
based on the negative binomial distribution model to perform differential expression
analysis between the treatment and control groups. The method described by Benjamini
and Hochberg was used to adjust the resulting p value (P-adj) and thus control the false
discovery rate. Genes with a |log2-fold change| ≥ 1 and P-adj < 0.05 were selected as
significantly differentially expressed genes (DEGs) [37]. Analyses of the enrichment of all
identified DEGs in GO functions and KEGG pathways were performed using clusterProfiler
(3.8.1) software, and the results were considered significant if p < 0.05.

2.4. Quantitative Reverse Transcription PCR

DEGs associated with reproduction and immunity were selected from the sequencing
results, and their expression levels were verified by quantitative reverse transcription PCR
(RT–qPCR). One thousand nanograms of total RNA was synthesized into complementary
DNA (cDNA) using the RT Master Mix for qPCR II kit (MCE, Monmouth Junction, NJ,
USA). The synthesis reaction conditions were 25 ◦C for 5 min, 55 ◦C for 15 min, and 85 ◦C
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for 2 min. Information on the primers used for RT–qPCR is shown in Table 2. Relative
gene expression levels were measured using the CFX96 Real-Time PCR system (BioRad,
Foster City, CA, USA). The reaction system consisted of a volume of 10 µL and included
the following components: 5 µL of 2 × RealStar Green Fast Mixture, 0.5 µL of each forward
and reverse primer (10 pmol/µL), 1 µL of cDNA (1000 ng/µL), and 3 µL of ddH2O. The
reaction conditions were as follows: 1 cycle at 95 ◦C for 2 min, followed by 40 cycles at
95 ◦C for 15 s and annealing temperature (see Table 2 for details) for 30 s, and 72 ◦C for 30 s.
The melting curve was set automatically by the machine (base temperature 65 ◦C, rising by
0.5 ◦C every 5 s to 95 ◦C). The annealing temperature of β-actin is the same as the annealing
temperature of each gene. The specificity of the PCR primers was confirmed through a
single peak in the melting curve. The amplification efficiency of each pair of primers was
in the range of 90–110% at different cDNA template concentrations. Three replicates were
performed, and the average value was reported as the result. The gene expression levels
were normalized to β-actin expression, and relative gene expression levels were calculated
via the 2−∆∆Ct method [38].

Table 2. Details of primers for RT-qPCR validation of mRNA sequencing data.

Gene Name Primer Sequences (5′→3′) GenBank ID Product Size/bp Tm/◦C

BDNF F: GTCCTTGAAAAAGTCCCCG
R: CTATCCGAATGAACCGCCA XM_005690025.2 205 61

CSF-1 F: AGGTGTCGGAGAACTGTAGC
R: TTGGGGGTGTTGTCTTTGAA XM_013962557.2 214 56

CTSS F: ACTGGAGAGAGAAGGGGTGT
R: ATGGCTTTGTAGGGATAGGA XM_005677657.3 268 59.4

PTX3 F: CTGGTCGCTGATGCTGT
R: GCCATTCTTTTCTTGCC XM_018048475.1 183 59.4

TGF-β3 F: GCCAAGCAGCGGTAT
R: GCAAGAGCCATTCACG XM_005686141.3 100 57.9

WIF1 F: GTGGCAGCATTTGAAGTGAAC
R: ATCCATCAGGACATTCGCAG XM_005680217.2 172 56

ESR2 F: GACAGACCACAAGCCCAAA
R: GGCACAACTGCTCCCACTA NM_001285688.1 191 60

β-actin F: TGATATTGCTGCGCTCGTGGT
R: GTCAGGATGCCTCTCTTGCTC XM_018039831.1 189 All

2.5. Statistical Analysis

Differences in the relative expression levels of DEGs were analysed using SPSS 18.0
software (IBM Corporation, Armonk, NY, USA), and differences in reproductive perfor-
mance were analysed using a Student’s t test and considered significant if p < 0.05. The
relative expression levels of the genes are presented as histograms. The results for repro-
ductive performance are expressed as the mean ± standard deviation (SD).

3. Results
3.1. Effect of N-Acetylcysteine on the Reproductive Performance of Qianbei Ma Goats

To verify the effect of adding NAC to the diet on the reproductive performance of
Qianbei Ma goats, the litter size and conception rate of the control and treatment groups
were compared (Table 3). The treatment group consisted of 23 pregnant does, the total litter
size was 54 (the number of goat embryos sampled for slaughter was 7), and the average
litter size was 2.35. The control group comprised 21 pregnant does, the total litter size was
45 (the number of goat embryos sampled for slaughter was 5), and the average litter size
was 2.14. No stillbirths were recorded in either the treatment or control groups, and all the
foetuses were eutocic. The number of litters in the treatment group was increased by 0.21
compared with that in the control group, but the difference was not significant (p > 0.05).
The conception rate of the treatment group was increased by 6.67% compared with that of
the control group.
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Table 3. The effect of NAC on the reproductive performance of Qianbei Ma goats.

Items Treatment Group Control Group

No. of test does 30 30
No. of pregnant goats 23 21

No. of total kids 54 45
No. of kids in slaughtered does 7 5

No. of average kids 2.35 ± 0.71 2.14 ± 0.73
Conception rate 76.67% 70%

3.2. Sequence Quality and Differential Gene Expression Profiling

To obtain comprehensive gene expression profiles of the uterine horns collected from
the control and treatment groups, six RNA-seq libraries were constructed. RNA-seq analysis
revealed averages of 4,682,911 and 49,335,290 raw reads in the control and treatment groups,
respectively, and the sequencing error rates ranged from 0.02% to 0.03%. After quality
control screening, the final average numbers of clean reads obtained for the control and
treatment groups were 44,978,308 and 47,403,637, respectively. In addition, the GC content
of each sample averaged 51.89%, all Q20 values were greater than 97.58%, and all Q30
values were higher than 93.5%. The percentage of clean reads in each sample mapped to the
goat reference genome was above 96.07%, indicating a high level of sequencing accuracy.
After quality control and mapping to a reference genome, gene expression levels were
obtained for the different samples. The gene expression profiles showed similar expression
patterns within each group of samples and differed between groups of samples, suggesting
overall transcriptional differences between the control and treatment groups (Figure 1) and
indicating that the obtained biological information could be used for subsequent analysis.
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Figure 1. Clustering heat map of DEGs among the samples. The abscissa is the sample name, and the
ordinate is the normalized value of the differential gene FPKM (Z-score). The redder the colour, the
higher the expression level, and the bluer the colour, the lower the expression level.
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3.3. Screening of DEGs

A comparative analysis revealed that 19,761 genes were coexpressed in the control and
treatment groups. Using a |log2-fold change| ≥ 1 and P-adj < 0.05 as the screening criteria
for DEGs, a total of 1318 DEGs were identified in the control and experimental groups, and
these included 787 genes in the experimental group and 531 genes in the control group
(Figure 2).
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3.4. GO Function and KEGG Enrichment Analyses

GO functional clustering analysis was performed with the 1318 screened DEGs, which
were divided into 3 major categories and 295 subcategories: biological processes accounted
for 82.37% of the enriched DEGs, cellular components accounted for 16.61%, and molec-
ular functions accounted for 1.02%. The GO analysis showed the enrichment of more
DEGs in the pathways of cell activation, cytokine production, leukocyte activation, mitotic
cycle, mitotic cycle process, development of the vascular system, and development of
the cardiovascular system (Figure 3). The 1318 DEGs were also annotated in the KEGG
database: 272 signalling pathways were enriched in the treatment group, with 32 significant
differences, whereas 238 signalling pathways were enriched in the control group, with
4 significant differences. The greatest numbers of DEGs were enriched in the PI3K/Akt
signalling pathway, cytokine–cytokine receptor interaction, phagosome, protein digestion
and absorption, and other KEGG signalling pathways (Figure 4). The analysis revealed
that several signalling pathways related to reproduction, immunity and inactivation of
pathogenic bacteria, nutrient digestion and uptake, resistance to oxidative stress, and cell
adhesion were enriched in the test group (Figure 5).
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DEGs in that term. Abbreviations: biological processes (BP), cellular components (CC), molecular
functions (MF).
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Figure 5. The results of KEGG enrichment analyses based on the upregulated genes in the treatment
group compared to the control group.

3.5. Analysis of DEGs Patterns

To check the accuracy of the RNA-seq results, we verified the changes in the mRNA
expression levels of upregulated genes (CTSS, TGFβ-3, CSF-1, BDNF, and PTX3) and down-
regulated genes (ESR2 and WIF1), and the results were consistent with the RNA-seq results
(Figure 6), indicating that the sequencing results of RNA-seq were reliable. After NAC treat-
ment, we constructed tissue expression profiles of these genes in the gonadal axis of Qianbei
Ma goats in early pregnancy. The results showed that after NAC supplementation, these
genes were expressed in the gonadal axis of early-gestation Qianbei Ma goats (Figure 7); the
relative expression levels of the BDNF and CSF-1 genes were highest in the uteri of Qianbei
Ma goats, and the differences from the other gonadal axis tissues were highly significant
(p < 0.01). WIF1 showed the lowest relative expression level in the uterus, followed by
the ovary, and ESR2 presented the lowest relative expression level in the hypothalamus,
followed by the uterus. TGF-β3, CTSS, and PTX3 presented the highest expression levels
in the fallopian tube; the patterns of expression in descending order were as follows:
TGF-β3, fallopian tube > uterus > pituitary gland > hypothalamus > ovary; CTSS, fallop-
ian tube > ovary > uterus > pituitary > hypothalamus; and PTX3, fallopian tube > uterus >
ovary > hypothalamus > pituitary.
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4. Discussion

Embryo attachment is a complex biological process that is simultaneously regulated
by several factors, among which immune-related processes between the maternal uterus
and the embryo before and during implantation are an essential component of pregnancy
establishment [39]. In mammals, the successful implantation of the embryo into the mater-
nal endometrium is a critical step in pregnancy [40]. NAC can suppress the inflammatory
response of the body by scavenging reactive oxygen radicals and inhibiting the increases
in NF-κB activity induced by TNF-α, IL-1β, and LPS in vivo, and thereby enhance the
antioxidant capacity of the body [41]. In this study, 0.07% NAC was fed to Qianbei Ma
goats in early pregnancy to investigate the effect of NAC on their reproductive performance.
Our preliminary data suggest that NAC can increase the conception rate of Qianbei Ma
goats. In a previous study with Nubian goats, we found that NAC significantly increases
the litter size [22]. However, our available data suggest that NAC can increase the litter size
of Qianbei Ma goats, but the increase is not significant. This result may be largely related to
the reproductive rate of the goats, because the reproductive rate of our subjects was higher
than that of the Nubian goat subjects, and it is speculated that NAC may exert a greater
effect on goat populations with a low reproductive rate than on goat populations with a
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high reproductive rate. However, given the limitations of our sample size, our findings
can only be used as a general reference. There is a need to expand the sample size of
the experimental population in the next study to further elucidate the specific regulatory
mechanisms underlying the effects of NAC on goat reproductive performance. Overall,
these data suggest that the addition of 0.07% NAC to goat rations in early gestation may
have some effect on improving the reproductive rates of goats and can be used as a general
reference. By RNA-seq, we identified a total of 1318 DEGs in the control and treatment
groups, including 787 DEGs in the treatment group and 531 DEGs in the control group. This
finding suggests that NAC feeding may be an important factor affecting gene expression in
early-gestation Qianbei Ma goats.

The completion of important physiological processes in living organisms often requires
the co-regulation of multiple genes. Therefore, enrichment analyses of gene functions to
identify biological pathways that play a key role in biological processes are important to
reveal and understand the underlying molecular mechanisms of biological processes. We
performed a KEGG enrichment analysis of DEGs in the treatment and control samples.
Several reproduction-related signalling pathways were enriched in the treatment group,
which suggested that NAC may play an important regulatory role in the reproductive
performance of goats. Multiple signalling pathways associated with immunity and the
inactivation of pathogenic bacteria were enriched in the treatment group, implying that the
addition of NAC to the diet may improve the ability of goats to resist pathogenic bacteria
in early pregnancy, regulate the immune balance between the maternal uterus and the
foetus, and thus maintain normal foetal growth and development. Previous studies also
suggest that maintaining maternal and foetal immune regulation during pregnancy [42]
and improving maternal resistance to pathogenic bacteria during pregnancy are important
for normal embryonic development [43]. In addition, several signalling pathways related
to the digestion, absorption, and metabolism of proteins, amino acids, minerals, and other
nutrients were enriched in the treatment group; these results suggest that NAC could im-
prove the digestion, absorption, and utilization of nutrients in does during early pregnancy
and thus ensure that the nutritional needs for normal foetal growth and development are
met during pregnancy. Importantly, however, peroxisomes, glutathione metabolism, and
N-glycan biosynthesis, which are pathways associated with resistance to oxidative stress,
were enriched in the treatment group; these results indicate that NAC feeding results in a
greater antioxidant capacity of goats in early gestation. Studies have found that increasing
the maternal antioxidant capacity during pregnancy is effective for increasing the litter size
in sows [44] and reducing the levels of maternal, placental, and foetal inflammation [45].
In addition, several pathways related to cell adhesion were enriched in the treatment
group, suggesting that NAC could improve embryo attachment in the maternal uterus and
reduce pregnancy failure due to insufficient embryo attachment. Cytokines facilitate the
exchange of information between cells [46], are important regulators of pregnancy and
delivery, and play an important role in promoting healthy maternal pregnancy and foetal
development [47]. A KEGG analysis identified cytokine–cytokine receptor interactions
enriched in many DEGs; interestingly, the GO analysis also identified many DEGs enriched
in cytokine production. This finding indicates that in the presence of NAC, cytokines may
be an important factor in the reproductive performance of goats. Previous studies have
shown that mitosis and angiogenesis are beneficial for promoting embryo attachment and
development [48,49]. Moreover, the GO analysis revealed that many DEGs were enriched
in cellular mitotic processes and in pathways of angiogenesis and development, which
suggested that NAC may be beneficial for improving pregnancy in goats.

FPR2 has been found to trigger trophoblast dysfunction through the PI3K/AKT sig-
nalling pathway, leading to recurrent spontaneous abortions [50]. The PI3K/Akt signalling
pathway affects embryo implantation by regulating the expression of RhoA [51]. NM23
can affect metaphase by regulating mouse and human endometrial stromal cells via the
PI3K-Akt-mTOR signalling pathway [52]. miR-494-3p regulates endometrial receptivity
in mice via the PI3K/AKT/mTOR pathway [53]. Our preliminary data suggest that the
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PI3K/Akt signalling pathway is enriched in the most DEGs compared with other signalling
pathways. Therefore, we analysed the DEGs enriched in the PI3K/Akt signalling pathway
and found that most of them are involved in regulation related to mammalian reproduc-
tive performance. For example, the knockdown of FN1 inhibits the PI3K/Akt signalling
pathway, whereas its overexpression activates the PI3K/Akt signalling pathway to inhibit
apoptosis in human trophoblast cells [54]. CSF-1R directly regulates the preimplantation
development and innate immune function of trophoblast cells, and CSF-1R deficiency in
mice results in embryonic death [55]. Using RNA-seq technology, Armstrong et al. revealed
that EREG expression is significantly associated with placental morphology [56]. IFNAR1
in the pig endometrium and foetus may establish and maintain pregnancy by mediating
the action of type I interferon during implantation [57]. IGF1 plays crucial roles in the
regulation of sexual development and reproduction in mammals [58]. Numerous studies
have shown that members of the integrin family are highly expressed in the gonadal axis
of female animals and play an important role in embryonic attachment [59–61], and the
present study showed that the ITGAM, ITGAV, ITGA1, ITGA5, ITGB1, and ITGB2 integrin
families are highly expressed in the treatment group, which suggests that integrins play
an important role in the modulation of reproduction in does. KRAS plays an important
role in regulating the implantation process in mouse embryos [62]. It has been reported
that miR-183 can inhibit embryo implantation by binding to LAMC1 [63]. The regulation
of VEGFC gene expression in the bovine uterus during implantation affects the maternal
uterine recognition of pregnancy and vascular remodelling prior to implantation [64]. The
abovementioned previous studies have shown that the FN1, CSF-1R, EREG, IFNAR1, IGF1,
ITGAM, ITGAV, ITGA1, ITGA5, ITGB1, ITGB2, KRAS, LAMC1, and VEGFC genes play im-
portant roles in mammalian reproduction. Notably, we found that the PI3K/Akt signalling
pathway was similarly screened after the feeding of Nubian goats with NAC [22]. There-
fore, we speculate that the PI3K/Akt signalling pathway may be an important pathway
through which NAC regulates uterine performance in goats.

Based on the RNA-seq data and the results from previous studies, we screened the
TGFβ-3, CSF-1, BDNF, PTX3, CTSS, WIF1, and ESR2 genes, verified the expression of
these genes in the gonadal axis of Qianbei Ma goats by RT–qPCR, and found that all of
these genes were expressed in the gonadal axis of Qianbei Ma goats under the action of
NAC. Studies have shown that BDNF can promote oocyte maturation and early embryonic
development [65]. Uterine CSF-1 mRNA expression and synthesis promote placental
growth and differentiation [66] and help to establish and maintain a normal pregnancy [67].
In this study, BDNF and CSF-1 were found to be enriched in the PI3K/Akt signalling
pathway and were highly expressed in the uterus. This finding indicates that BDNF and
CSF-1 may play a role in the uteri of Qianbei Ma goats in early pregnancy through the
PI3K/Akt signalling pathway, and thus regulate the reproductive performance of early-
pregnancy Qianbei Ma goats. The Wnt signalling pathway plays an important role in
mammalian reproduction [68]. WIF1 acts as an antagonist of the Wnt signalling pathway
and inhibits its activation [69]. This study showed that WIF1 was expressed at low levels in
the uterus of Qianbei Ma goats in early gestation, which suggests that the low expression
of WIF1 may activate the Wnt signalling pathway to maintain pregnancy. The expression
of ESR2 mRNA in the uterus during implantation and early gestation is extremely low [70]
and decreases during pregnancy [71], which is consistent with the results of the present
study showing that the ESR2 gene is expressed at low levels in the uteri of Qianbei Ma
goats in early gestation. The fallopian tubes are not only the place where the sperm
and egg are united, but secretions from the fallopian tubes also play an active role in
improving endometrial receptivity, facilitating embryo implantation and development, and
maintaining pregnancy [72]. Our data show that TGF-β3, CTSS, and PTX3 are most highly
expressed in the oviducts of Qianbei Ma goats, which suggests that high expression of
TGF-β3, CTSS, and PTX3 in the oviducts may promote the secretion of certain substances
that directly or indirectly affect embryogenesis and development.
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5. Conclusions

Dietary supplementation with NAC alters the expression of uterine horn genes in
goats in early gestation. These DEGs are involved in signalling pathways related to
reproductive regulation, immune regulation, resistance to oxidative stress, angiogenesis
and development, cytokines, and cell adhesion. Notably, activation of the PI3K/Akt
signalling pathway and altered expression levels of CSF-1, BDNF, WIF1, ESR2, TGF-β3,
CTSS, and PTX3 genes may be important mechanisms through which NAC regulates
uterine performance in goats in early gestation.
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