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Abstract: Nanomedicine employs molecular materials for prevention and treatment of disease.
Recently, smart nanoparticle (NP)-based drug delivery systems were developed for the advanced
transport of drug molecules. Rationally engineered organic and inorganic NP platforms hold the
promise of improving drug targeting, solubility, prolonged circulation, and tissue penetration. How-
ever, despite great progress in the synthesis of NP building blocks, more interdisciplinary research
is needed to understand their self-assembly and optimize their performance as smart nanocarriers.
Multi-scale modeling and simulations provide a valuable ally to experiment by mapping the potential
energy landscape of self-assembly, translocation, and delivery of smart drug-loaded NPs. Here,
we highlight key recent advances to illustrate the concepts, methods, and applications of smart
polymer-based NP drug delivery. We summarize the key design principles emerging for advanced
multifunctional polymer topologies, illustrating how the unusual architecture and chemistry of
dendritic polymers, self-assembling polyelectrolytes and cyclic polymers can provide exceptional
drug delivery platforms. We provide a roadmap outlining the opportunities and challenges for the
effective use of predictive multiscale molecular modeling techniques to accelerate the development
of smart polymer-based drug delivery systems.

Keywords: dendritic polymers; polyelectrolytes; cyclic polymers; self-assembly; smart drug nanocar-
riers; molecular modeling

1. Introduction

The efficacy of Active Pharmaceutical Ingredients (API) is often hampered by low
aqueous solubility and short residence times in the body [1]. Conventional drug delivery
formulations such as tablets, capsules, pills, solutions, powders, suspensions, injectables,
lotions, creams, pastes, and, etc., have contributed greatly to the treatment of disease.
The impetus for smart delivery methods has escalated due to several factors. These include
low efficacy, the difficulty in keeping the drug levels within a desired range, minimising
side effects and toxicity, and the emergence of specific biological therapeutics [2,3]. Research
into newer smart drug delivery systems is being carried out using liposomes, nanoparticles,
niosomes, transdermal drug delivery, implants, microencapsulation, polymers, aerosols,
etc. These studies show their potential for higher bioavailability, less side effects, less total
amount of required drug, more patient compliance, less tissue damage and lower price,
compared to the conventional methods [4].

One promising approach to improve the physicochemical properties of APIs is to
engineer smart nanoparticle (NP)-based drug delivery systems [5–7]. The ability of the NPs
to enter the cell is determined by both physicochemical parameters and biological barriers.
Due to the high surface area to volume ratio (small size), they are able to penetrate the cell
membrane and deliver the drug inside the cell [8]. NP drug carriers can improve drug
solubility, biocompatibility and half-life, and can reduce dosage frequency and side effects
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by transporting drugs to specific and targeted sites. This novel class of multifunctional
drug carrier platform can potentially combine diagnostic agents and targeted multidrug
therapies together in a single system [9–13].

Smart nanostructured systems can be categorized into two main groups of organic
and inorganic nanocarriers, the physiochemical characteristics of which can be tuned by
changing their compositions, shape, dimension, and surface properties [14,15]. The organic
group includes polymer micelles [16], liposomes [17–20], dendrimers [21–23], glycopep-
tides [24,25] and protein assemblies [26,27], while carbon-based nanomaterials [28,29],
gold nanoparticles [30,31], silver nanoparticles [32,33], porous silica-based nanomateri-
als [34–36], and various metal-based quantum dots [37,38] belong to the inorganic group.

The promise and potential of NPs has been discussed in numerous review articles
covering their history, advances, advantages, potentials and limitations [39–50]. Research
articles have reported valuable knowledge on their intracellular transport [51,52], targeted
drug delivery to tumors [53], internalization and cellular uptake mechanism (localization
of intracellular nanoparticles) [54,55], interfacial biophysicochemical interactions [56],
mechanisms of nanoparticle endocytosis [51,57], cellular excretion and degradation of
nanoparticles [58] and toxicity (cytotoxicity and immunogenicity) [12,59]. The amount of
often-conflicting data makes it difficult to draw general conclusions about how to produce
particles for optimal drug delivery. There is still a lot to learn about NP-based drug delivery
mechanisms in order to interpret data from in vitro studies and to improve the in vivo
use of the particles. Thus, understanding the whole cellular process induced by NPs
would provide a rational basis for materials design, tuning their interaction with the cell
membrane, and improving their uptake by cells [60,61].

The in vivo availability and efficacy of drug delivery systems are mainly determined
by their pharmacokinetics. The pharmacokinetic parameters of drug delivery systems
are size, shape, composition, administration route, and surface modification. All these
parameters also influence pharmacodynamics. While the main advantage of the smart
NPs drug delivery systems as compared to the conventional ones is having controllable
pharmacokinetic parameters [8], it can be very difficult to predict a priori the material
performance given the broad range and interdependence of the parameters.

Understanding how the smart NPs form and perform becomes crucial for the future
development of efficient drug delivery. However, there is still a lack of knowledge about
the interactions and processes in mediated drug transport due to the short time and
length scales at which nanocarriers operate, which can rarely be detected by experiments
alone. Appropriately benchmarked and parameterized computer simulation methods can
supply the necessary molecular details to build a deeper understanding of how the API is
encapsulated and transported [13,62].

Different molecular modeling approaches scaling from ab initio quantum mechanics
(QM) to classical molecular mechanics (MM), molecular dynamics (MD), Monte Carlo (MC)
methods and out to mesoscale (MS) techniques cover the broad range of both length and
time scales to design a complete drug delivery system [63–67] (see Table 1 for more details
of the simulation methods). QM methods can provide exceptional accuracy by obtaining
the electron distribution of any molecular system but with practical size limitations of few
hundred atoms due to sharply rising computational cost. The MD level can capture all non-
covalent interactions at atomic resolution for systems of, typically, a few hundred thousand
atoms with microsecond sampling times [68]. However, many critical problems in this
field still require time and length scales far beyond atomistic MD, which can be modelled
by mesoscale simulations that have been appropriately parametrized using atomistic
simulations of the component building blocks and interfaces. Mesoscopic simulations are
performed using a coarse-grained molecular model formed by particles which are related
to a group of atoms in the corresponding atomistic structure [13]. Coarse-grained molecular
dynamics (GCMD) [69], MARTINI [70], and dissipative particle dynamics (DPD) [71–73]
are some of the most popular mesoscopic simulation techniques that have been applied to
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study the self-assembly of NPs from polymeric building blocks, providing valuable insights
and design principles for the rational engineering of novel drug delivery systems [13].

Table 1. General descriptions of the common simulation methods applied for drug-delivery studies.

Scales Length and Time Scales [74] Descriptions Formulations

Quantum scale ~10−10 m and ~10−12 s

• The nuclei and electrons are
the particles of interest at
this scale and quantum
mechanics (QM) methods
are used to model their state
by solving the Schrödinger
wave equation [74].

− h2

8π2m∇
2φ(r)k + U(r)φ(r)k = Ekφ(r)k,

φ(r)k : Wave equation
Ek: energy eigenstate
U(r) : Potential
h: Planck constant
r: coordinates vector
m: mass

Atomistic scale ~10−9 m, ~10−9–10−6 s

• The Monte Carlo (MC)
technique is a stochastic
method that uses random
numbers to generate a
sample population of the
system from which one can
calculate the properties of
interest [74,75].

A new configuration can be produced by
arbitrarily or systematically moving one
atom from position i → j and can be
accepted if ∆H = H(j)− H(i) < 0
If ∆H > 0 the move is accepted only
with a certain probability pi→j which is

given by pi→j ∝ exp
(
− ∆H

kBT

)
.

According to Metropolis et al. [76], one
can determine the new configuration
according to the following rule:

ξ ≤ exp
(
− ∆H

kBT

)
, the move is accepted;

ξ >

exp
(
− ∆H

kBT

)
, the move is not accepted.

H: Hamiltonian
kB: the Boltzmann constant
ξ: a random number between 0 and 1

• The Molecular dynamics
(MD) simulation technique
allows one to predict the
time evolution of a system of
interacting particles (e.g.,
atoms, molecules, granules,
etc.) and estimate the
relevant physical
properties [75].

The simulation of a many-body system
would require the formulation and
solution of equations of motion of all
constituting particles, which for a particle
i is
mi

d2ri
dt2 = fi,

mi: the particle mass
ri: the particle position vector.
fi: the force acting on the ith particle
The interaction potentials describe in
detail how the particles in a system
interact with each other, i.e., how the
potential energy of a system depends on
the particle coordinates. Some of the
most common simulations use AMBER
[77], GROMOS [78] CHARMM [79] and
OPLS [80].



Pharmaceutics 2021, 13, 141 4 of 28

Table 1. Cont.

Scales Length and Time Scales [74] Descriptions Formulations

• Molecular mechanics (MM)
is a simulation technique to
minimize large molecular
structures such as DNA,
RNA, proteins and their
complexes, in which atoms
are treated as masses, and
bonds as springs with
appropriate force constants.
For minimizations
calculations, the positions of
the atoms within a molecule
must be systematically or
randomly moved and the
energy recalculated with the
goal of finding a lower
energy and hence more
stable molecule [81,82].

Similar to MD simulation, MM is based
on Newton’s equation of motion. The
interactions between the particles in the
system can be described via the
force-field potentials applied in MD
simulations [82].

Mesoscopic scale ~10−6 m, ~10−6–10−3 s

• Coarse-grained molecular
dynamics (CGMD) methods
overcome length and time
scale limitations of atomistic
simulations though
coarse-graining large
molecules by several
connected beads [13].

Commonly used forcefields in CGMD
are:

• Weeks–Chandler–Andersen
potential, COS potential and Finite
Extensible Elastic (FENE) bond
potential [83].

• MARTINI forcefileds [70].

• The Dissipative particle
dynamics (DPD) method is
also a mesoscopic simulation
technique which can
correctly account for the
hydrodynamic interactions
by considering water
molecules explicitly. In DPD
simulations, a cluster of
atoms are represented by
one bead and its dynamics is
governed by Newton’s
equation of
motion [13,74,75].

Beads i and j interact through simple
pairwise force consisting of a
conservative force (FC

i j), a dissipative
force (FD

i j), and a random force (FR
i j).

The total force applied on each bead i due
to bead j is given as a sum of these three
terms [71]
F = FC

ij + FD
ij + FR

ij

The present review aims to highlight the key common features of recent successful
modeling-led investigations into the use of organic polymer-based NPs in drug delivery.
We discuss the advanced topologies and chemistries of functional polymers including
dendrimers, hyperbranched polymers, cyclic polymer and polyelectrolyte-based micelles
(Figure 1) that can self-assemble into multifunctional smart drug carriers.
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Figure 1. Schematic structure of (a) “star burst” dendrimer (of generation 4, G4), (b) hyperbranched polymer, (c) dendrimer
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2. Polymer-Based Smart Nanocarriers

Organic nanocarriers are generally characterized by their tunable morphology, col-
loidal stability, relatively large size, high biocompatibility and improved drug loading
capacity, which make them suitable for transporting a wide variety of drugs [84–92]. How-
ever, it is very important to make sure that the polymeric drug nanocarriers are safe and do
not trigger cytotoxicity at the tissue level. Safe, smart NPs formulations for drug delivery
must be biocompatible and have low immunogenicity; thus, they should be carefully
designed and evaluated [93].

They can be divided into two main categories: (1) nanostructures that form through
the self-assembly of short polymer chains and (2) synthesized large polymers (such as
the dendrimers, hyperbranched polymers, chemical nanogels). The latest generation of
smart supramolecular nanocarrier often is made by combining the two types [94–96]. How-
ever, the common point between these smart NPs categories is that they form through
self-assembly of smart polymers. These so-called smart polymers have been defined as poly-
mers that can undergo physical and structural conformational changes/rearrangements
in response to mild changes in their surrounding environment, categorized as thermo-,
pH-, electro- and magneto-responsive polymers [97]. In the following, we discuss the main
characteristics of dendritic, cyclic polymers and polyelectrolytes, and critically assess recent
efforts to predict their NP drug carrier potential via modelling.

2.1. Dendritic Polymers

Dendritic polymers are branched polymers with useful encapsulation properties
including high degree of branching, high density of terminal functional groups, and
nanometric size [98]. There are two main groups of dendritic polymers: dendrimers
and hyperbranched polymers (see Figure 1a,b). Dendrimers are monodisperse polymers
with perfectly branched architectures that are known for their well-organized structures,
versatility in drug delivery and high functionality. Their potential abilities to physically
entrap or conjugate high molecular weight molecules have been proven. Dendrimers could
also be decorated to make them smart enough to carry the drug to the desired locus and
release it in a controlled manner [99–103].

The introduction of stimuli responsive functionality on dendrimers allows the release
of drugs in response to a specific trigger only. These triggers described below could be
endogenous in nature (acid, enzyme, and redox potentials) or could be applied exter-
nally (light and temperature) [104]. pH-responsive dendrimers: Presence of ionizable
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functional groups such as amine and carboxylic acid on the surface or in the core of
the dendrimer exhibit a pH-dependent release due to change of amphiphilicity of the
system [105]. Redox-responsive dendrimers: The frequently used redox-responsive link-
ers for dendrimer–drug conjugate, such as disulfide bonds, diselenide or ditellurium
bonds [106]. Enzyme-responsive dendrimers: Incorporation of drug molecules as the tail
units and an enzyme substrate as the trigger in dendrimers, generating a prodrug unit that
is triggered upon a single enzymatic cleavage. The enzymatic trigger commonly utilized
is 38C2 antibody, penicillin-G-amidase or β-galactosidase [107]. Temperature-sensitive
dendrimers: Modification of dendrimer surfaces with oligo- and poly(ethylene oxide)-
based groups endows them with temperature-sensitive characteristics. There is an inverse
relationship between aqueous solubility and temperature for temperature sensitivity func-
tionalities. As temperature is increased, the degree of hydrogen bonding between the
temperature sensitive moieties and water decreases, and this leads to phase separation.
Lower critical solution temperature (LCST) is the phrase used to describe such phase
transition [108,109]. Light-responsive dendrimers: The principle governing the release
of drug from dendrimers using light as a stimulus is based on (i) the absorption of light
by photosensitive ligands that would trigger configurational changes (e.g., trans-cis iso-
merization) and cause the release of the encapsulated drugs and (ii) the absorption of
light by photosensitive ligands causing irreversible cleavage reactions. The most common
photosensitive ligands for (i) are azobenzene derivatives and for (ii) are o-nitrobenzyl ether
derivatives grafted on the surface of dendrimers [110].

Dendritic polymers have tuneable surface charge and chemical composition obtained
by surface modification with charged moieties (such as amine-, carboxyl-, and acetyl-) [111]
and by special functional side groups (such as isobutyramide and poly(ethylene gly-
col)) [112,113], which also makes them controllable in size (reported between 1 nm and
100 nm) and physiochemical properties [114]. Owing to these features, dendrimers have
been used in the development of drug nanocarriers and many therapeutic and biomedical
applications [115–117]. In Table 2, some clinical studies that have been done on dendritic
polymer NPs as drug delivery systems are presented.

A complete dendrimer structure (Figure 1a) consists of an exterior multivalent (multi-
site) surface with a multitude of potentially active or passive sites and the interior layers
surround the core [118,119]. Higher-generation dendrimers have more branches. Depend-
ing on their hydrophobicity/hydrophilicity, drug molecules can occupy the vacant spaces
(voids) within the interior layers, or else bind to dendrimer surface functional groups either
physically or covalently [120–122].

Although the properties of dendrimers render them suitable as pharmaceutical excipi-
ents, they also present less advantageous properties, which may hinder their use, namely,
their cytotoxicity, the limitation of incorporation of the drug into the dendrimer cavities,
and the inability to control the rate of drug release. Furthermore, this type of polymer
also presents high manufacturing costs and the need for a specialized workforce [123].
The new developments have allowed for increased industrial manufacturing efficiency
and lowered production costs [124]. In order to reduce the cytotoxicity and to increase
the space on the dendrimer cavity, numerous modifications have been proposed to the
chemical structure of the dendrimers. These alterations make dendrimers more suitable for
use as pharmaceutical excipients. Additionally, PEGylation of dendrimers increases their
blood circulation time. The lack of control of the rate of drug release from the dendrimer
can be avoided by covalent conjugation of the drug to the dendrimer surface. Drug release
is then dependent on the cleavage of the dendrimer–drug linkage [114].

On the other hand, randomly branched polymers, also known as hyperbranched
polymers, have advantages due to their low intrinsic viscosity, low tendency to chain entan-
glements, good solubility and high degree of branching (see Figure 1b), which have been
exploited for development of smart nanocarriers for drug delivery [125,126]. In addition,
the composition of the branching, linear, and terminal units of hyperbranched polymers
can be engineered to be responsive to one or multiple stimuli, which leads to a signifi-



Pharmaceutics 2021, 13, 141 7 of 28

cant degree of freedom in the molecular design of smart hyperbranched polymer-based
nanocarriers for drug delivery [127].

Table 2. Clinical studies on the reviewed smart nanoparticles (NPs).

Delivery System Platform Nanoparticles Clinical Study

Dendritic polymers

• DEP™-Docetaxel DTX-SPL8783 [128] (DEP
dendrimer with docetaxel and PEG terminal
blocks)

• Advanced or metastatic cancer

• VivaGel® SPL7013 [128] (an active ingredient is
a generation 4 lysine dendrimer, ended by a
2-[(3,6-disulfo-1-naphthalenyl)oxy] acetic acid
disodium salt)

• Bacterial vaginosis

• Hydroxyl-terminated PAMAM
dendrimers [129]

• Neuroinflammation in a
large animal

Polyelectrolytes • Protamines [130]

• Approved by the FDA for clinical
applications, including insulin
delivery and reverting
heparin-induced anticoagulation.

Cyclic polymers

• An anticancer agent CALAA01, a targeted,
self-assembling nanoparticles system based on
CD complexed siRNA [131]

• Piroxicam-beta-Cyclodextrin [132]
• Nimesulide-beta-Cyclodextrin [132]
• Aceclofenac-beta-Cyclodextrin [132]

• In phase I clinical trials for the
treatment of solid tumours

• Anti-inflammation
• Anti-inflammation
• Anti-inflammation

Dendritic polymers have also shown great potential as building units for self-assembled
NPs. Known generally as dendrimer multi-arm copolymers or hyperbranched multi-arm
copolymers, the dendritic polymers used in self-assembly (Figure 1c) exhibit an amphiphilic
structure with a hydrophobic (or hydrophilic) core and many hydrophilic (or hydrophobic)
linear arms [57]. Many supramolecular aggregates with diverse structures and morpholo-
gies have been formed through self-assembly of amphiphilic dendritic polymers, including
macroscopic tubes [133], physical gels [134], vesicles [135–137], spherical micelles [138–141],
and honeycomb films [142], bridging atomic to macro space-time scales. Below, we select
recent research work that illustrates how molecular modeling of dendritic polymers can
guide the engineering of useful drug carriers by controlling supramolecular interactions
and self-assembly.

Liu et al. [143] compared the interaction of triethanolamine (TEA) core and NH3 core
polyamidoamine (PAMAM) dendrimers with DNA using atomistic molecular simulations
in explicit solvent, at physiological ionic strength (0.15 M) and pH = 7.4. The TEA-core
PAMAM showed open flexible conformations with voids localized within its interior shells,
while the NH3-core structure showed more rigid conformation, with a more homogeneous
distribution of the monomer units and voids throughout the entire molecule. The TEA-core
dendrimers then showed a preference for binding the charged phosphate backbone of
DNA to their outer branches during complex formation. The simulations showed that the
more flexible dendrimer architecture could achieve conformational rearrangement of its
amine to optimize induced-fit with DNA (see Figure 2a).

Su et al. [144] employed DPD simulations to study the complexation of the PAMAM
dendrimer and short ssDNA molecules. They built the coarse-grained model of ssDNA
model according to the wormlike chain (WLC) potential [145] and quantified the effects
of pH, dendrimer generation, salt concentration, and dendrimer/ssDNA charge ratio on
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the structure of the ssDNA–PAMAM complexes. They found that the ssDNA molecules
were significantly compacted by PAMAM dendrimers at neutral or low pH, with the most
stable ssDNA–PAMAM complex observed at low pH (see Figure 2b). They suggested that
the release of ssDNA from dendrimer could be modified by using different generations
of dendrimer. They also pointed out that the charge ratio between PAMAM dendrimer
and ssDNA can be used to tune the size and morphology of the self-assembled aggregates,
which could increase the transfection efficiency of ssDNA molecules in dendrimer-based
gene vectors.

PEG–polyester dendrimers are one of the most attractive dendrimers for in vivo drug
delivery due to their biodegradability and solubility achieved by PEGylation, their low
cytotoxicity, and long half-life in the circulation system [146]. The potential of polyester-
PEG dendrimers for in vivo delivery of anti-cancer drug doxorubicin (DOX) was studied
by Wen et al. [147] using DPD simulations to investigate the loading/release mechanism of
DOX in generation 5 polyester-PEG (G5-PEG polyester) dendrimers. In each dendrimer
molecule, units G1 to G4 consisted of aliphatic polyester blocks and the outermost G5 layer
contained 56 PEG blocks (see Figure 2c).
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They found four sequential transient stages during DOX encapsulation: (1) initial
random distribution of all the components in the simulation box, (2) dispersion of DOX
molecules in the G5-PEG dendritic microsphere, (3) core-shell microsphere growth by coa-
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lescence of the small core–shell dendritic microspheres, and (4) stabilization (see Figure 2c).
According to their results, in their system that contained 12.5 and 2.5% (mass fraction) of
G5-PEG and DOX, 16.7% of DOX molecules were loaded to the core–shell dendritic micro-
spheres with a loading efficiency of 100%, which is close to the experiment results [113].
The simulation also confirmed that no DOX molecule was released from G5-PEG/DOX at
pH 7.4 in the simulation temperature range, from 25 to 37 ◦C, which means temperature
was not the major driver for drug release at pH 7.4. Furthermore, at pH 5, the formation of
some pores on the surface of G5-PEG/DOX microspheres increased the exposure of DOX
molecules to water but did not trigger release. The authors concluded that the protonation
of G5-PEG may facilitate the drug release process but it is not the major factor governing
rapid release.

Modelling studies have provided useful insights to guide design of polymer-based
NPs structures and morphologies through self-assembly of copolymers with different
architectures, in order to create novel multifunctional platforms with promising application
in drug delivery. One excellent example came from Wang et al. [148] in a systematic DPD
simulation study of micelle formation from amphiphilic dendritic multi-arm copolymers
in dilute solution. The authors simulated three models for dendritic multi-arm copolymers
with different lengths of the arms and one model for hyperbranched multi-arm copolymers.
Two kinds of mechanisms, namely the unimolecular micelle aggregate mechanism and
the small micelle aggregate mechanism, were found to support the formation of large
multimolecular micelles from the dendritic multi-arm copolymers (see Figure 3a). For the
unimolecular micelle aggregate mechanism, the dendritic multi-arm copolymers first form
the unimolecular micelles, and then the unimolecular micelles further aggregate into large
micelles without microphase separations. For the small micelle aggregate mechanism,
the dendritic multi-arm copolymers first self-assemble into microphase-separated small
micelles, and then the small micelles further aggregate into large ones. These simulation
results supported the experiments very well and extended general understanding of the
micellization processes of dendritic multi-arm copolymers.

Amphiphilic hyperbranched multi-arm copolymers were also studied by Tan et al. [149]
using DPD simulations. Their comprehensive study of the self-assembly of amphiphilic hy-
perbranched multi-arm copolymers with different hydrophilic fractions in various solvents
resulted in three morphological phase diagrams. A variety of morphologies, ranging from
spherical micelles and worm-like micelles to membranes and vesicles, were obtained (see
Figure 3b). They also discovered several novel structures, such as aggregates of spherical
and worm-like micelles, vesosomes and helical micelles, generated during self-assembly
of amphiphilic hyperbranched multi-arm copolymers. Their results extend knowledge of
the self-assembly of amphiphilic hyperbranched multi-arm copolymers, especially on the
control of supramolecular interactions for the realization of novel self-assemblies.

Hu et al. [150] investigated the formation mechanism of dendrimersomes through
MD simulations of the formation of synthetic vesicles from amphiphilic Janus (two-sided)
dendrimers. They created the spherical single-site Janus particle using an anisotropic
potential to mimic the two distinct surfaces, one hydrophobic side and another hydrophilic
side (see Figure 4a). This simple model allowed them to model both the concentration-
dependent growth of structures, both the enthalpy-mediated formation process of onion-
like dendrimersomes and the alternative entropy-mediated self-assembly of amphiphilic
flexible chains. Linear micelles, lamellar structures and vesicles were observed in the
simulations (see Figure 4a). They also found that the size of dendrimersomes will not
increase through mutual fusion once the well-defined onion-like structure is formed,
unlike numerous lipidsomes and polymersomes that can spontaneously coalesce. Future
work combining their hard chain model with the previous reports using flexible chain
models [144,147–149,151,152] could more fully characterize and predict the potential of
dendrimersomes for applications in drug and gene delivery.
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Wang et al. [153] reported a combined experiment–simulation co-study detailing a
general strategy to construct uniform aggregates by manipulating self-assembly of den-
drimers with precisely controlled polyhedral oligomeric silsesquioxane (POSS)-embedded
cores. The authors created different types of amphiphilic dendrimers with rigid–flexible
coupling POSS-embedded cores, different PEG chain lengths, and various geometries.
They found that the rigid POSS molecules could grow in ordered arrangements while
the flexible alkyl chains could rearrange to minimize the free energy of the assembly.
PEG chains with extended conformations influenced the configuration of the inner core
by occupying the excluded volume of the hydrophobic regions. DPD simulations sub-
stantiated their experimental findings, allowing better understanding of the underlying
self-assembly processes. As an example, they studied the self-assembly of amphiphilic
C3-POSS3-(PEG550)x polymers with different hydrophobic/hydrophilic ratios created by
simply changing the PEG length x. With increasing hydrophobicity, spherical micelles, rod
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micelles, and vesicles were obtained from DPD simulations in good agreement with the
images obtained from electron microscopy (see Figure 4b). The results obtained in this
work provide a methodology to broaden the variety of rigid–flexible core dendrimers to
fabricate responsive hierarchical self-assemblies for biomaterial science and biomimetic
nanotechnology [154,155].
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Combining DPD simulation and analytic models, Yan et al. [156,157] studied the
molecular mechanism and kinetic behavior of the transmembrane transport of PAMAM
dendrimer-like soft NPs conjugated with ligands. They identified three different states
during the interaction between the dendrimer and the cell membrane: penetration, partial
wrapping, and full wrapping (see Figure 4c). Both the membrane tension and the ligand
density on the NPs influenced all three stages.

2.2. Polyelectrolytes

Polymers carrying a net negative or positive charge (see Figure 1d) at or near neutral
pH are called polyelectrolytes (PEs). Their solubility in water is driven by electrostatic
interactions between water and the charged monomer [158]. Examples of such poly-
mers include DNA, protein and some derivatives of cellulose polymers. PEs are classi-
fied according to four main categories: natural/synthetic, homopolymers/copolymers,
linear/branched/cross-linked and polyanions/polycations/polyampholytes [159]. Many
researchers have extensively investigated the properties of the individual polyelectrolytes
and the formation of polyelectrolyte complexes (PECs) [160,161]. The structures created by
the collapse of PEs by, for example, macro-ion like proteins [162], ionic surfactants [163],
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or oppositely charged PEs [164,165] are usually described as a “polyelectrolytes complex”,
which has wide applications in functional nanomaterials, gene therapy, and drug deliv-
ery [166–171]. The formation mechanism of a polyelectrolyte complex can be explained
by theories based on the electrostatic forces and Flory–Huggins mixing free energies of
the polyelectrolytes [172,173]. When the charge fraction of the chains is low, the polymer
backbone repulsion (Flory–Huggins interaction parameter) is dominant and the solution
separates into two phases, each containing mostly one of the polymers, while at high charge
fraction, the attractive electrostatic interactions between the polymers is the controlling
factor which stimulates precipitation and formation of a complex [174,175].

The concept of PECs in the design of drug delivery systems may be useful because they
can alter drug physicochemical properties such as stability and dissolution [171,176–178].
The drug molecules can be encapsulated through incorporation into PECs by being: (1) en-
trapped from the solution during precipitation of the complex, (2) absorbed on the already
formed complex, (3) chemically bonded to at least one partner, or (4) itself a charged partner
for PEC [179]. Polyelectrolyte–drug complexes have an amorphous colloidal structure that
may be suited for delivery of poorly soluble drugs [180–183]. An example of a clinical
study on a polyelectrolyte-based drug delivery system is presented in Table 2. The for-
mation of the PECs is a spontaneous reaction which appears in aqueous environments
at the stage of polymer mixing, yet its complex nature stems from the dual character of
macromolecules and electrolytes. This may, in turn, cause difficulties in providing the
structural homogeneity that may aid their deployment in living systems. A number of
technological factors, including pH alterations, charge density, or polymer concentration,
may determine or modulate the physicochemical and biological properties of the PECs
formed [184]. Upon ionization, polyelectrolytes become pH-responsive polymers that can
undergo various changes in their physical structure, including extension of their coiled
chains as a result of electrostatic repulsion between positive charges generated protona-
tion at low pH [185]. Various physiochemical characteristics of polyelectrolytes including
solubility, chain conformation, self-assembly of polymers/copolymers, aggregation size,
shapes and volume of the individual counterparts can be adjusted by controlling the pH
level [97]. Polyelectrolyte NPs are often polydisperse systems with broad size distributions
ranging between 10 nm and 1 µm [186]. pH-responsive behavior of polyelectrolytes has
been used to induce the controlled release of model compounds such as vitamin B12 [187]
and drugs including ibuprofen [188].

Despite the large amount of research works on the behavior of polyelectrolyte chains,
the size and complexity of the assemblies has limited modelling of the polyelectrolytes-
drug complex, in which the polyelectrolyte chains and opposite charged hydrophobic drug
molecules form a complex that can protect the drugs [189,190]. As an example, Sofronova
et al. [191] studied the influence of degree of polymerization on the structure and properties
of the formed soluble protein–polyelectrolyte complexes. Using MD simulations, they
modelled the structure, dynamics and energetics of complexes of cationic protein lysozyme
with highly charged polyanions poly(styrene sulfonate) and polyphosphate created with
different degrees of polymerization. The computed complexes revealed that the short
charged chains efficiently coated the protein, while the long chains interacted with the
protein mainly through the charged loops and tails (see Figure 5a), keeping the proteins
in their native state and protecting against aggregation. Given this ability to make stable,
specific complexes between PEs and naturally charged macromolecules such as proteins,
one potential application would be the design of platforms for antibody drug delivery
systems that protect against damage during different administration methods. Modelling
results such as those provided by Sofronova et al. can give a general perspective on the
influence of polymer type, length and charge on the mechanism of assembly of the desired
polyelectrolyte-based protein delivery system.



Pharmaceutics 2021, 13, 141 13 of 28

Pharmaceutics 2021, 13,  13 of 28 
 

exploring the dynamics aspect of PE–drug complexation, they found that extremely hy-
drophobic drug molecules could trap the complex in a non-equilibrium glass-like state. 
Their work can provide guidelines to fabricate colloidal PE–drug complexes with “dialed-
in” desirable physical characteristics. 

 
Figure 5. (a) Computed protein–carrier structures made from poly(styrene sulfonate) (PSS) and 
polyphosphate (PP), showing PSS5 (top left) and protein-PSS45 (top right) complexes. The poly-
anion is shown in sticks, the protein is shown in surface representation and colored according to 
electrostatic potential. The number of bound and unbound repeat units of PP (middle) or PSS 
(bottom) chains (n is a degree of polymerization) is plotted underneath [191]. (b) Morphological 
phase diagram of the PE–drug complexes characterized using drug hydrophobicity εd and PE-
drug valence ratio Zp:Zd. [192]. 

2.3. Cyclic Copolymers 
2.3.1. Overview 

Cyclic polymer-based structures are challenging to synthesise and purify but show 
good potential as drug nanocarriers due to their special architecture and stimuli respon-
sive behaviors [193–201]. The relative size of the resulting copolymer assemblies is influ-
enced by the conformation of the different architectures. As the core-forming block of the 
cyclic diblock copolymer assembly is required to loop and cannot stretch without re-
striction, the value of radius of hydration (Rh) for a cyclic diblock micellar assembly is 
expected to be larger than that of the equivalent linear diblock for a given block composi-
tion (for example, for cyclic-PEO42-b-PBO8 Rh = 4.4 nm, while for linear PEO21-b-PBO8-
b-PEO21 Rh = 4.0 nm) [202]. Zhang et al. [203] reported that the hydrodynamic diameter 
of cyclic poly(ethylene glycol)-b-poly(ε-caprolactone) (PEGx-b-PCLy) micelles was ap-
proximately half that of linear PEGx-b-PCLy micelles. 

Different cyclic polymer materials are designed to be responsive to different stimuli 
such as photonic, thermal, electronic or chemical [201]. For example, polystyrene [204], 

Figure 5. (a) Computed protein–carrier structures made from poly(styrene sulfonate) (PSS) and
polyphosphate (PP), showing PSS5 (top left) and protein-PSS45 (top right) complexes. The polyanion
is shown in sticks, the protein is shown in surface representation and colored according to electrostatic
potential. The number of bound and unbound repeat units of PP (middle) or PSS (bottom) chains
(n is a degree of polymerization) is plotted underneath [191]. (b) Morphological phase diagram
of the PE–drug complexes characterized using drug hydrophobicity εd and PE-drug valence ratio
Zp:Zd. [192].

Lei et al. [192] combined mean-field theory and extensive molecular simulations to
study the phase behavior of the PE–drug complex in dilute, salt-free solution. They focused
on the morphologies of the complexes with varying drug hydrophobicity and different
PE–drug valence ratios. They obtained a phase diagram in which five different main
morphologies including the expanding state, the θ condition state (in which the chain
behaves exactly as predicted by the random walk or ideal chain model), the necklace state,
the sausage state and the compact globular state were identified (see Figure 5b). The benefit
of this phase diagram is the provided broad information on PE–drug complex response
to drug hydrophobicity and PE–drug valence ratios, which can be used in both drug
encapsulation and release processes. They found that the complexation is a first-order-like
phase transition controlled by the hydrophobic attraction between the drug molecules.
They also predicted that the stability and morphology of the complex was determined by
the valence ratio between the drug molecule and PE monomer. Finally, by exploring the
dynamics aspect of PE–drug complexation, they found that extremely hydrophobic drug
molecules could trap the complex in a non-equilibrium glass-like state. Their work can
provide guidelines to fabricate colloidal PE–drug complexes with “dialed-in” desirable
physical characteristics.
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2.3. Cyclic Copolymers
2.3.1. Overview

Cyclic polymer-based structures are challenging to synthesise and purify but show
good potential as drug nanocarriers due to their special architecture and stimuli responsive
behaviors [193–201]. The relative size of the resulting copolymer assemblies is influenced
by the conformation of the different architectures. As the core-forming block of the cyclic
diblock copolymer assembly is required to loop and cannot stretch without restriction,
the value of radius of hydration (Rh) for a cyclic diblock micellar assembly is expected
to be larger than that of the equivalent linear diblock for a given block composition (for
example, for cyclic-PEO42-b-PBO8 Rh = 4.4 nm, while for linear PEO21-b-PBO8-b-PEO21
Rh = 4.0 nm) [202]. Zhang et al. [203] reported that the hydrodynamic diameter of cyclic
poly(ethylene glycol)-b-poly(ε-caprolactone) (PEGx-b-PCLy) micelles was approximately
half that of linear PEGx-b-PCLy micelles.

Different cyclic polymer materials are designed to be responsive to different stimuli
such as photonic, thermal, electronic or chemical [201]. For example, polystyrene [204],
poly(methyl methacrylate) [205] or polythiophene [206] derivatives can make photo re-
sponses in cyclic polymers. Thermo/chemo responses can take place via poly(aldehyde) [207],
and cyclic–linear topological transformation that can be triggered by poly(ethylene oxide)
(or polyethylene glycol) [207]. Additionally, in biomedical fields, the topology effects of
cyclic polymers was exploited to achieve controlled/improved biotransportation as well
as gene/DNA delivery [201]. For the former application, poly(acrylic acid) derivatives
grafted to polyethylene glycol [208] or oligopeptides [209] were incorporated into the cyclic
polymer structure, and for delivery, cationic derivatives of poly(methyl methacrylate) [210]
and polyethylene imine were used [211].

In the following, we discuss some of the most recent and promising predictive
modelling-based research that can guide future experimental efforts to self-assemble func-
tional cyclic polymer-based nanostructures.

Liu et al. [212] combined DPD with all-atom MD simulations based on the ABEEM
(atom-bond electronegativity equalization fluctuating charge force field model) polarizable
force field to study the self-assembly of linear and cyclic polystyrene (PS)-polyisoprene (PI)
di-block copolymers, PS290-PI110, in n-heptane. This work was the first try to combine DPD
simulations and all-atom MD simulations based on a polarizable force field, in an effort to
quantify the effect of architecture and blending on the self-assembly properties in solution.
The ABEEM polarizable force field provides a more accurate treatment of the intermolecular
interactions in the system than traditional nonpolarizable force fields [213]. Their results
demonstrate that the combination of DPD and MD with a polarizable force field can
efficiently bridge the gap between atomistic and mesoscopic simulations, and enables the
accessing of larger length scales and longer time scales while preserving atomic scale detail.
By comparing the self-assembly behavior of cyclic di-block copolymers with those of their
analogous linear block copolymers, they found the PS-PI cyclic block copolymers self-
assembled into cylindrical micelles, while spherical micelles with stable structures formed
from the linear PS-PI block copolymer with the same composition. In both structures,
the low-polarity PS blocks were distributed inside the micelle, forming a hydrophobic
core, and the high-polarity PI blocks spread around the surface, forming a protective shell.
According to their results, the self-assembled morphologies could be changed dramatically
by the addition of PS homopolymers; for cyclic copolymer from cylindrical micelles to
vesicle, and for the linear copolymer from spherical to cylindrical micelles

The self-assembly of microstructures from amphiphilic cyclic brush-copolymers in
solution was investigated by Yang [214] using DPD simulations. Cyclic brush copolymers
are innovative materials with a cyclic core hosting radiating polymer brushes producing
myriad polymer topologies. The authors could obtain a series of self-assembled structures,
such as rods, plates, vesicles, large compound vesicles, bilayers, and spheres from the
solutions by changing solvophilic/solvophobic side chain lengths, solvophilic/solvophobic
backbone lengths, and grafting densities. For example, in the case of vesicle structure, they
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found that increasing the solvophobic side chain length or solvophobic backbone length
decreases the cavity size and increases the membrane thickness, while the whole vesicle
sizes remained near-constant. They also pointed out that self-assembly of a plate structure
with larger thickness and narrower width required increased solvophobic side chain or
backbone lengths. Their most useful finding was that amphiphilic cyclic brush copolymers
with higher backbone asymmetry and larger grafting density can form morphologies with
more curved interfaces. This study can provide valuable guidance to design cyclic brush
copoloymers, as a complex functional material, to form different self-assembly structures
that could be useful in many applications including drug delivery, bioimaging and nano-
or microreactors.

2.3.2. The Informative Representative Example of Cyclodextrin

One of the remarkable cyclic polymers with exceptional properties is cyclodextrin
(CD) [215,216] that has high potential as a promising delivery platform for therapeutic
oligonucleotides [217–219] (see Table 2 to find some clinical studies on the CD based
drug delivery system). Cyclodextrins are natural cyclic oligosaccharides composed of six
(α-CD), seven (β-CD) or eight (γ-CD) glucopyranoside units linked by α-1,4-glycosidic
bonds [220], with hydrophilic primary and secondary faces and a hydrophobic cavity.
The hydroxyl groups on the ring structure provide the opportunity to functionalize and
provide amphiphilic, cationic, anionic, PEGylated and targeted CDs [217,221]. Herein, we
review the recent modeling research works on CDs self-assembly and interactions with
drug molecules.

Zheng et al. [222], investigated the host–guest interaction betweenα-CD and azobenzene-
containing amphiphile 1-[10-(4-phenylazophenoxy)decyl]pyridinium bromide (AzoC10),
which is a photoresponsive material and can undergo cis–trans photoisomerization in
response to UV and visible light. They used coarse-grained molecular dynamics (CGMD)
simulations with the modified MARTINI force field to investigate the assembly of cis-,
trans-AzoC10, and cis-, trans-AzoC10/α-CD into micelles in water. By analyzing the size
and shape of spontaneously assembled micelles, they realized that the shape of the obtained
aggregate depended on both the molecular structure and the monomer concentration in
the following way: both cis- and trans-AzoC10 aggregated into spherical micelles at low
concentrations, while at high concentrations, cis-AzoC10 showed co-existing disk-like
and spherical micelles but trans-AzoC10 formed co-existing worm-like and spherical mi-
celles. In mapping the dynamics of the aggregation, the authors divided the self-assembly
process into three stages: rapid nucleation; formation and growth of spherical micelles;
and formation of disk-like or worm-like micelles. In the self-assembly of cis-AzoC10/α-CD,
the hydrophobic azobenzene moieties aggregated to form the inner core of worm-like mi-
celles with outward-pointing hydrophilic pyridinium head groups. The worm-like micelles
were surrounded by α-CDs to shield the hydrophobic azobenzene group against water.
However, due to the bulky size of α-CD, some hydrophobic azobenzene groups were still
exposed and loosely packed. According to their results, cis-AzoC10/α-CD aggregated
into worm-like micelles at all concentrations, while in trans-AzoC10/α-CD, the loss of
amphiphilicity caused by axial configuration of the hydrophobic azobenzene moiety in the
α-CD cavity [223] destabilized the micelle structure.

Singh et al. [224] examined the dynamical self-assembly behavior of cation-functionalized
β-cyclodextrin (CD) derivatives around siRNA using classical MD simulations in water
with physiological salt ionic strength. They found the cationic CD molecules spontaneously
formed superstructures in solution, which assembled around siRNA to form a stable host
that stabilized siRNA via electrostatic interactions. They concluded that the superstructures
formed by the cationic CD molecules constitute an ideal platform to encapsulate negatively
charged siRNA molecules, which could provide a promising gene delivery vector (and
in future work, delivery of negatively charged proteins or other macromolecular drugs).
The cation CD lipid-like behavior in solution enabled creation of stable superstructures
(see Figure 6a), providing nanoscale molecular templates with highly controllable size and
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shape. Due to their amphiphilicity and ability to assemble into encapsulating superstruc-
tures, these types of self-assembled CD-based carriers can boost membrane permeability
and so improve transfection.
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Figure 6. (a) Representative computed self-assembled multimeric units of 39 cationic functionalized CD molecules around
siRNA [224]. (b) Computed di-oleoyl-glycerolipidyl-β-cyclodextrin–atazanavir (DOCD–ATAZ) (2:1) complex after 100 ns
of MD simulation (left) (top and side views) (ATAZ is represented in purple) and (right) average number of contacts
between DOCD moieties (lipid chains in orange and the CD moiety in blue) and ATAZ atoms for the MD simulation of
36 DOCD with 18 ATAZ [225]. (c) Coarse-grained models of the β-CD-copolymer (top), computed cross-section views of
β-CD-copolymer/gold nanoparticles at 1:3 molar ratio, corresponding density profiles of different layers (middle right)
and morphologies of micelles assembled with different building-block topologies (bottom) [226].

Furlan et al. [225] used MD simulation-guided experiments to study lipid-functionalized
β-CD (di-oleoyl-glycerolipidyl-β-cyclodextrin, DOCD) self-assembly and drug encapsu-
lation in the DOCD formed NPs. MD simulations predicted entrapment of atazanavir
(ATAZ), as the drug model, in the NPs of DOCD. In order to investigate DOCD–ATAZ inter-
actions, they implemented two types of MD simulation. The first one was a long simulation
of a system which contained two DOCD molecules with one ATAZ to examine whether a
complex of DOCD/ATAZ could form. The results showed that the ATAZ molecule was not
placed inside any of the two hydrophobic cavities (see Figure 6b), but rather became en-
trapped in lipid chains. In the second type of MD simulation, they evaluated the potential
changes in DOCD aggregation due to the presence of ATAZ, through simulation of a larger
model composed of 36 DOCD and 18 ATAZ molecules. Their results confirmed that ATAZ
molecules did not preferentially bind in the hydrophobic CD cavity but remained in close
contact with the CD moieties through side interactions (see Figure 6b). They concluded
that ATAZ molecules were more likely to interact with the DOCD lipid moieties than with
CD rings, based on the larger number of contacts between ATAZ and DOCD lipid chains
than between ATAZ and the CD macrocycle.

Zhang et al. [226] performed DPD simulations to study the formation process of uni-
molecular micelles from a β-CD-based star-like architecture created using a complex organic
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block co-polymer (poly(lactide)-block-poly(2-(dimethylamino) ethyl multimethacrylate)-
block-poly[oligo(2-ethyl-2-oxazoline)methacrylate)(PLA-b-PDMAEMA-b-PEtOxMA). Their
results predicted the formation of thermodynamically stabilized unimolecular micelles,
which could stay as unimolecular micelles within a certain concentration range, indicating
their potential to maintain a constant particle size and a stable structure in vivo. This would
be a useful feature of an efficient drug transporter material. To prepare unimolecular mi-
celles, a reasonable design of star-like copolymer is required. Parameters like hydrophobic
or pH-sensitive chains length, shorter hydrophilic backbones length or hydrophilic side
chain grafting density, and number of polymer arms, can shift the hydrophilic–lipophilic
interaction balance, and non-prudent material choices can easily disrupt the formation
of unimolecular micelles. The authors further examined encapsulation of small gold
nanoparticles into the β-CD-based polymeric unimolecular micelles, with DPD simulations
revealing that Au nanoparticles tended to distribute only in the middle PDMAEMA layer.

3. Conclusions

Here we have reviewed the latest knowledge available on three types of polymers with
unusual architectures including dendritic polymers, polyelectrolytes and cyclic polymers
with a focus on the potential applications of their self-assembled NPs in drug delivery. Ide-
ally, stimuli responses, drug encapsulation/release, and carrier disassembly mechanisms
should be encoded at the molecular level. Let us compare the self-assembly mechanisms
of the three reviewed NP platforms: Drugs can be encapsulated by dendritic polymers
through adsorption/conjugation on the polymer surface or penetrate into the voids, which
are both enthalpy driven processes (van der Waals and (or) electrostatic driven), by contrast,
the main mechanism of drug encapsulation in polyelectrolyte NPs is complex formation
which is electrostatically driven, and in cyclic polymer NPs, drugs can be encapsulated in
the core of the formed micelles through an enthalpy driven process. However, it should be
emphasized that the size and shape of the final formed NPs are the direct consequence of
the architecture of the polymers (entropy contribution) plus their chemical composition
(enthalpy contribution). As discussed above, NP chemical compositions can be tunable for
the desired drug and the administration method, by functionalization of the polymers with
different charged/neutral functional groups/blocks. There are different parameters related
to shape and charge of these polymers that can individually or collectively direct the encap-
sulation mechanism, stimuli responses and disassembly mechanism. This can be achieved
by changing enthalpy or entropy contribution significance through turning the following
structural parameters: (1) generation, terminal groups, flexibility, surface charge, length of
arms, number of arms, and surface tension for dendritic polymers; (2) ionic strength, chain
flexibility, backbone hydrophobicity and degree of polymerization for polyelectrolytes, and
(3) degree of polymerization of backbone, backbone flexibility, hydrophobic/hydrophilic
block length ratio, branch length (for brushed cyclic polymers), hydrophobic/hydrophilic
branch length ratio, backbone or branch (for brushed cyclic polymers) functionalization
for cyclic polymers. Understanding the effects of these parameters in NP-mediated drug
delivery can inform rational design of smart multifunctional polymer-based NPs drug
delivery systems. We summarized the achievements of some recent research studies related
to the effect of some of the above-mentioned parameters in Table 3.
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Table 3. Summary of the molecular shape and charge effects on the NPs morphology for drug delivery application.

Molecular Features Effect Simulation Method Refs.

Molecular Shape/Property Charge

Dendritic
polymers

• Flexibility: The more flexible
dendrimer architecture could
achieve more conformational
rearrangement of its surface
functional groups to optimize
induced-fit with DNA.

MD [143]

• Generation: Large charged
dendrimers have more charges
which would strengthen the rigidity
of the dendrimers through
electrostatic repulsion, resulting in a
less induced-fit with DNA.

• Charge: The rigidity of the
dendrimers with charged
functionalized groups on
their surface is higher than
neutral ones, which affects
the self-assembly structure.

DPD [134]

• Surface branch length: The lower
hydrophilic branches are in an
amphiphilic hyperbranched
copolymer, formation of
membranes/vesicles/vesosomes-
shaped nanoparticles can be more
probable by tuning the solvent
selectivity of the polymer blocks,
while increasing the branches’
lengths provide the chance of small
micellar aggregates formation.

DPD [148]

• Surface branch length in a rigid-core
dendrimer: With increases in the
branches’ lengths (decreasing
hydrophobicity), vesicle, rod
micelles and spherical micelles
can form.

DPD [152]

Polyelectrolytes

• Degree of polymerization: In a
polyelectrolyte/protein complex the
short charged chains efficiently
coated the protein, while the long
chains interacted with the protein
mainly through the charged loops
and tails, keeping the proteins in
their native state and protecting
against aggregation.

MD [191]

• Charge: To encapsulate
hydrophobic drug molecules
in an efficient globular
polyelectrolyte-drug complex
structure, a high
monomer/drug charge ratio
is required.

CGMD [192]
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Table 3. Cont.

Molecular Features Effect Simulation Method Refs.

Molecular Shape/Property Charge

Cyclic
polymers

• Hydrophobicity/Hydrophilicity: In
a cyclic copolymer, self-assembled
morphologies could be changed
from cylindrical micelles to vesicle
by increasing
hydrophobicity/hydrophilicity
(hydrophobic block length/
hydrophilic block length).

DPD [200]

• Surface branch length: In a cyclic
brush copolymer, by increasing the
hydrophilic branches length, regular
core-shell micelles from.

• By increasing hydrophobic branch
length to protect the hydrophobic
blocks against solvents, plate-like
structures or vesicles can be
observed, as well as the final
self-assembled morphology.

DPD [213]

4. Future Outlook

In this focused review article, we summarized and discussed the latest exciting de-
velopments in the self-assembly of smart multifunctional polymer-based nanoparticles
(NPs), through the lens of advances in predictive modelling-led design. We have identified
some important challenges and opportunities for further progress, and we hope that our
perspective will stimulate more modelling-guided investigations into the synthesis, self-
assembly, and applications of smart polymer-based NPs. In our opinion, the future of the
self-assembly of smart polymer-based NPs lies in:

(1) Screening studies with new polymer compositions: Construction of smart polymer-
based NPs with rationally selected new polymer compositions. This can be done using
copolymerization or post-synthesis modification. The so-called functional monomers
can be conjugated molecules, biomolecules, or inorganic nanostructures. In this way,
the obtained self-assembled NPs with new compositions may self-assemble into some
new types of superstructures and morphologies with potentially useful functions.

(2) Hybrid organic–inorganic materials: Self-assembled hybrid organic and inorganic
smart NPs may provide a new generation of nanocarriers that interact controllably
with biological material while exhibiting also useful electronic, magnetic and optical
properties.

(3) Multiphasic systems: The scope of smart polymer-based NPs shall be expanded from
the binary system to ternary or even multicomponent system by improving the types
of monomers that take part in the click polymerization simultaneously. Appropri-
ately parametrized and benchmarked high-throughput computational screens could
rapidly accelerate this process.

(4) Multifunctional architectures: Employing smart multifunctional copolymer/polymer
combinations may provide new types of architecture for smart drug delivery-based
NPs, which can be engineered by changing parameters related to the relative con-
centration, size, composition and chemistry of the components, molecular symmetry,
and relative flexibility/mechanical/thermal properties of the components. All the
effective parameters governing the self-assembly can be examined via multi-scale
molecular simulations to provide a comprehensive guide to “shortest path” experi-
ments.



Pharmaceutics 2021, 13, 141 20 of 28

(5) Expansion of molecular simulation protocols towards accelerated materials screen-
ing: This would allow reliable prediction of the self-assembly behavior of smart drug
delivery-based NPs, utilizing emerging methods that can rapidly explore large space–
time scales [227].

(6) Other applications besides drug delivery: Taking full advantage of smart NPs self-
assemblies to employ their unique characteristics in other applications, such as poly-
merization, protective coatings and miniaturized electronic devices.

In summary, the self-assembly of smart polymer-based NPs is a nascent, rapidly de-
veloping field. We believe that focused fundamental research will create immense opportu-
nities for their deployment, particularly in the development of atomistically-benchmarked
simulation methods that can approach micrometer length and millisecond time scales.
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