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Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease. PCOS
patients are characterized by hyperandrogenemia, anovulation, and metabolic
dysfunction. Hypothalamus–pituitary–ovary axis imbalance is considered as an
important pathophysiology underlying PCOS, indicating that central modulation,
especially the abnormal activation of hypothalamic GnRH neurons plays a vital role in
PCOS development. Increased GnRH pulse frequency can promote LH secretion, leading
to ovarian dysfunction and abnormal sex steroids synthesis. By contrast, peripheral sex
steroids can modulate the action of GnRH neurons through a feedback effect, which is
impaired in PCOS, thus forming a vicious cycle. Additionally, hypothalamic GnRH neurons
not only serve as the final output pathway of central control of reproductive axis, but also
as the central connection point where reproductive function and metabolic state inter-
regulate with each other. Metabolic factors, such as insulin resistance and obesity in
PCOS patients can regulate GnRH neurons activity, and ultimately regulate reproductive
function. Besides, gut hormones act on both brain and peripheral organs to modify
metabolic state. Gut microbiota disturbance is also related to many metabolic diseases
and has been reported to play an essential part in PCOS development. This review
concludes with the mechanism of central modulation and the interaction between
neuroendocrine factors and reproductive or metabolic disorders in PCOS development.
Furthermore, the role of the gut microenvironment as an important part involved in the
abnormal neuronal–reproductive–metabolic circuits that contribute to PCOS is discussed,
thus offering possible central and peripheral therapeutic targets for PCOS patients.

Keywords: polycystic ovary syndrome, hypothalamus–pituitary–ovary axis, ovarian dysfunction, metabolic
disorders, gut microbiota
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common reproductive
and endocrine disorder, affecting 6–10% women of reproductive
age worldwide (1). It is often characterized by menstrual disorder
and infertility, abnormal elevated androgen levels, as well as
polycystic ovary morphology (2). Metabolic disorders including
IR, obesity, and abnormal lipid metabolism are represented in a
considerably large part of PCOS patients. Besides, the long-term
risk of type 2 diabetes, cardiovascular diseases, obstetrical
complications, and endometrial cancer is significantly
increased in women with PCOS than in control (2). The
present therapy of PCOS mainly focuses on management of
symptoms and prevention of long-term complications, including
lifestyle modification, ovulation induction, anti-androgen
therapy, and treatment of metabolic disorders (3); etiological
treatment is still lacking.

Although it has been a long time since PCOS was discovered,
the pathophysiology of PCOS remains unclear. Familial
clustering and twin studies indicate the pivotal role genetic
factor played in the etiology of PCOS; GWAS also identified
PCOS’ candidate loci, which provide the studying bases for
mechanism research (4, 5). Follicle growth is a complicated
process which needs the coordination of LH and FSH,
androgen, estrogen, AMH, and other possible factors; follicle
growth is impaired in PCOS, leading to follicular arrest,
ovulatory dysfunction, and PCOM (6). Induced by inhibition
of aromatase activity, hyperandrogenemia and hyperinsulinemia
usually impact and facilitate each other and then promote PCOS
development (7). Rising pieces of evidence suggest the
correlation between gut microbiota and PCOS (8, 9); our
studies demonstrated that the gut microbiota–bile acid–IL-22
axis is involved in PCOS development via the crosstalk of gut
innate immune system and ovary function (9, 10), providing
strong evidence for the contribution of the gut microbiota in
PCOS pathogenesis, while other possible pathways involved in
gut microbiota need to be further explored.

In addition, HPO axis imbalance is considered as an
important pathophysiology underlying PCOS. Hypothalamic
GnRH neurons act as a central regulator of LH synthesis
because of abnormally increased GnRH pulse, LH pulse
frequency, and amplitude in women with PCOS, which further
enhance androgen synthesis in ovarian theca cell and promote
Abbreviations: PCOS, Polycystic ovary syndrome; GnRH, Gonadotropin-
releasing hormone; LH, Luteinizing hormone; PCOM, Polycystic ovary
morphology; IR, Insulin resistance; GWAS, Genome-wide association studies;
FSH, Follicle stimulating hormone; AMH, AntiMüllerian hormone; IL-22,
Interleukin-22; HPO axis, Hypothalamus–pituitary–ovary axis; CNS, Central
nervous system; IGF-1, Insulin-like growth factor 1; ARC, Arcuate nucleus;
AVPV/PeN, Anteroventral periventricular nucleus/periventricular nucleus
continuum; NKB, Neurokinin B; KNDy, Kisspeptin/NKB/dynorphin A; POMC,
Pro-opiomelanocortin; GABA, g-aminobutyric acid; E2, Estradiol; T,
Testosterone; AR, Androgen receptor; PNA, Prenatal androgen treated; ARKO,
AR knockout; PAMH, Prenatal AMH treated; SHBG, Sex hormone-binding
globulin; PVN, Paraventricular nucleus of hypothalamus; GLP-1, Glucagon-like
peptide-1; GLP-1R, GLP-1 receptor; SCFAs, Short-chain fatty Acids; PYY, Peptide
YY ; GF , Ge rm- f r ee ; GDCA, G ly codeoxycho l i c ac id ; TUDCA,
Tauroursodeoxycholic acid; ILC3s, Group 3 innate lymphoid cells.
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hyperandrogenemia, ovarian dysfunction, and metabolic
disorders in women with PCOS (3, 11). GnRH neurons also
mediate the effect of peripheral signals on CNS in PCOS
development. Here we summarize the mechanism that
abnormal neuronal–reproductive–metabolic circuits
contributes to PCOS pathogenesis and shed light on central
regulation of GnRH neurons mediated by gut microenvironment
via the gut–brain axis, thus providing new insights into PCOS
pathogenesis and treatment.
THE EFFECT OF GnRH IN PCOS
PATHOPHYSIOLOGY

A mounting body of evidence supports that increased GnRH
pulse frequency and amplitude can promote LH synthesis over
FSH synthesis, leading to a high LH/FSH ratio in women with
PCOS (12). Elevating LH levels plays a vital role in the
development of reproductive and metabolic disorders, based
on the evidence listed below. First, LH promotes the synthesis
of androgen in ovarian theca cells , which leads to
hyperandrogenemia and arrested follicle development (11).
Second, increased LH pulse frequency impairs estrogen and
FSH synthesis, thus inhibiting follicle growth and ovulation.
Third, LH promotes ovarian secretion of IGF-1 which can
further promote LH binding and androgen synthesis in theca
cell, and finally contributes to the formation of polycystic ovaries
in PCOS patients (13). However, it’s still unclear whether the
abnormal GnRH function is primary dysfunction of
hypothalamus and pituitary or secondary to the complicated
effect of reproductive and metabolic disorder, as well as
unbalanced immune system and intestinal microenvironment
in PCOS patients.

Neuropeptide
Kisspeptin
Located in the hypothalamus, GnRH neurons serve as the final
output pathway of central control of the reproductive axis and
play a vital role in the control of puberty onset and gonadal
function (14). Kisspeptin is the key upstream regulator in GnRH
pulse formation: kisspeptin acts through G-protein-coupled
receptors GRP54, also known as Kiss1R, to activate
hypothalamic GnRH secretion (15); besides, they also transmit
peripheral steroid hormone information to the hypothalamus
and mediate the steroid feedback control of GnRH secretion (16,
17). Kisspeptin neurons are primarily located in the ARC and the
AVPV/PeN of the hypothalamus, while these two clusters of
kisspeptin neurons have different effects on the activation of
GnRH neurons. Co-expressed with NKB and dynorphin,
kisspeptin neurons in the ARC are usually described as one
member of the KNDy system that regulates GnRH pulse and LH
secretion, as kisspeptin can excite GnRH neurons and NKB work
as stimulatory factor and dynorphin as inhibitory factor of
kisspeptin production, then modulate downstream GnRH
secretion (18). Furthermore, KNDy neurons are involved in
the negative feedback regulation of estrogen to the HPO axis
May 2021 | Volume 12 | Article 667422

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Liao et al. Central Regulation of PCOS
through estrogen receptor (19). On the contrary, kisspeptin
neurons in AVPV/PeN are implicated in the formation of
estradiol-induced LH surge before ovulation (20). In summary,
kisspeptin is an important regulator in the circular regulation
from brain to gonads.

It has long been reported that hypothalamic kisspeptin levels
are increased in PCOS patients and PCOS animal models, which
is the master contributor to increased LH pulse secretion (19,
21). While Panidis et al. found that serum kisspeptin level in
PCOS patients was not significantly increased, and even
decreased when compared to control (22). As kisspeptin
mainly takes effect in the hypothalamus, so serum kisspeptin
may be less related to the activation of GnRH neurons and LH
pulse synthesis. Apart from NKB and dynorphin, a number of
metabolic regulators also contribute to the modulation of
kisspeptin neurons. Mice lacking both insulin and leptin
receptors in POMC neurons displayed PCOS phenotype,
including insulin resistance, elevated testosterone levels and
reduced fertility (23); besides, hypothalamic POMC neurons
send projections to kisspeptin neurons, indicating the possible
role of POMC–kisspeptin pathway in PCOS pathogenesis.

Kisspeptin may also take effect in the ovaries. Gaytán et al.
identified the expression of kisspeptin–GPR54 system genes in
the human and rat ovary for the first time (24), and ovarian
kisspeptin expression was positively regulated by gonadotropins
for the fact that KISS1 gene expression increased after puberty
onset. Furthermore, it seems that local kisspeptin system may
directly modulate ovarian function (25). Recently, Blasco et al.
compared the gene expression levels of KISS1/KISS1R, as well as
TAC3 and TACR3 (encoding NKB and its G-protein coupled
receptor NK3R respectively) in infertile patients and healthy
control and found that defected fertility may be associated with
the alteration of local KISS1/KISS1R expression in the ovaries
(26). Besides, the kisspeptin/KISS1R and NKB/NK3R systems
are decreased in PCOS mural granulosa cells and cumulus cells,
indicating that abnormal ovarian kisspeptin and NKB may
contribute to aberrant follicle development in PCOS patients
(27). However, the specific molecular mechanism underlying the
local effect of kisspeptin on PCOS ovarian function still needs to
be discovered.

Galanin
Found in 1983, neuropeptide galanin is widely distributed in the
brain and peripheral organs. Galanin signals through G-protein
coupled receptor GAL1-3 which is expressed by ARC GnRH
neurons, indicating that galanin is implicated in the modulation
of GnRH. Besides, galanin is also implicated in the regulation of
glucose metabolism and thermogenesis (28, 29), which makes it a
molecular motif integrating metabolism and neuroendocrine-
reproduction axis. However, the role galanin played in PCOS
development remains unclear. Recently, Azin et al. explored the
effect of galanin on estradiol valerate-induced PCOS rat.
Intraperitoneal injection of galanin induced increased FSH
levels and decreased LH and insulin levels, thus alleviating the
metabolic disorders in PCOS rat. Furthermore, serum TNF-a
and IL-6 levels were significantly increased in PCOS group,
which was reversed with galanin treatment (29). Altinkaya
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compared serum galanin levels in 44 women with PCOS and
44 age-matched controls and found that women with PCOS were
characterized by lower galanin levels than controls (30),
indicating that supplementation of galanin may be a new
therapeutic approach for PCOS, which still needs more
evidence to support.

Neurotransmitters
Neurotransmitters, especially GnRH-regulatory neurotransmitters
can be important in the pathogenesis of PCOS (31). Although
GABA is usually considered as an inhibitory neurotransmitter in
the brain, compelling evidence suggests its stimulatory effect on
GnRH neurons (32). It is reported that the number of GABAergic
synapses onto KNDy neurons increased significantly in prenatal
testosterone exposed ewes, which means that GABA can activate
KNDy neurons as well as GnRH neurons, thus elevating the pulse
frequency of GnRH and LH in PCOS (33). Furthermore, higher
cerebrospinal fluid GABA levels are observed in women with
PCOS, along with increased circulating levels of E2 and T (34).
Silva et al. investigated the effect of acute stimulation and chronic
activation of GABA neurons on LH synthesis and found that both
ways can increase LH levels. Besides, chronic activation of GABA
neurons induces PCOS-like phenotypes in mice, including high
circulating testosterone levels, irregular estrous cycle, and
decreased corpora lutea number (32). In addition, the
hypothalamic GABA neurons showed less expression of
progesterone receptor in PCOS mice, which impairs GABA-
mediated feedback effect of progesterone on GnRH neurons (35).
OVARIAN HORMONES MODULATE THE
ACTION OF GnRH NEURONS

PCOS patients are characterized by aberrant sex hormone levels;
hyperandrogenemia is the most consistent characterization
observed in women with PCOS. Besides, aromatase is inhibited
in PCOS granulosa cell, leading to aberrant estrogen levels.
Abnormally increased AMH levels are also observed in PCOS
patients (36); all these sex hormones substantially affect neuronal
activity in the brain, which forms a vicious circle, thus promoting
ovarian dysfunction and reproductive disorders in women
with PCOS.

Androgen
Acting via AR, androgen is involved in both intra- and extra-
ovarian mechanisms of PCOS pathogenesis. It is reported that
AR is hyperactivated in the hypothalamus, ovary, skeletal
muscle, and adipose cells in women with PCOS (37), which
means the action of androgen in those tissues may mediate
PCOS development. Mounting evidence identifies that androgen
is implicated in manipulating hypothalamic GnRH neuron
activity, as increased LH pulse frequency and amplitude are
observed in both PCOS patients and PCOS animal models. In
addition, DHT treatment in ovariectomized and estradiol-
treated mice increased the connectivity of GABAergic neurons
and GnRH neurons, which was inhibited by progesterone
treatment (38), indicating the possible role of androgen in
May 2021 | Volume 12 | Article 667422
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modulating the negative feedback regulation of progesterone on
GnRH neurons, and then increasing GnRH pulse frequency
and amplitude.

In addition, Kiss1 gene expression and LH pulse frequency
are increased in PNA mice, which means that KNDy neurons
can be another central target of androgen. ARKO mice exhibit
impaired GnRH synthesis pattern and decreased Kiss1 gene
expression in anteroventral periventricular nucleus, leading to
deficient preovulatory estrogen and LH surge, which is consistent
with the reduction of ovarian corpora lutea numbers in ARKO
mice (39). To investigate the precise mechanism of AR-mediated
androgen action on GnRH synthesis, Cheng et al. generated
neuron-specific AR knockout mice (NeurARKO) and found
similar neuroendocrine feature to ARKO mice. In terms of
ovarian follicle dynamics, increased follicle atresia and reduced
ovulation were found in NeurARKO mice (40). Although the
effect of androgen on peripheral tissue and organs is implicated
in PCOS pathogenesis, the effect of androgen on central nervous
system plays a pivotal role in PCOS development, because there
is little difference in GnRH synthesis pattern and ovarian follicle
dynamics between ARKO mice and NeurARKO mice.

On the other hand, prenatal androgen treated animal models
are more often used for research investigating neuroendocrinal
pathogenesis in PCOS, considering the high intrauterine
androgen environment during pregnancy in women with
PCOS, indicating that androgen and androgen activated GnRH
synthesis may drive PCOS development since embryo, and this
effect consistently exists till adulthood, leading to PCOS in
offspring. So, the modulation of androgen on GnRH neurons
during pregnancy can be quite important in PCOS development.

Anti-Müllerian Hormone
It is well known that AMH facilitates the modulation of ovarian
follicle growth and now is widely used as a predictor of ovarian
reserve in clinical work. In women with PCOS, AMH levels are
increased due to accumulation of small antral follicles in the
ovary (41). On the other hand, AMH can decrease FSH receptor
and aromatase expression in granulosa cells (42), which impairs
follicle growth and leads to follicular arrest, thus forming a
vicious cycle. Apart from the effect on ovary, AMH also takes
effect on HPO axis. AMH has high affinity to AMH receptor
AMHR2, both AMH and AMHR2 are expressed in GnRH
neurons (43, 44). Cimino et al. found that AMH can induce
LH secretion via stimulating hypothalamic GnRH neurons
directly, which needs further research to confirm in PCOS.
Recently, Tata et al. found that serum AMH levels are
significantly elevated in pregnant women with PCOS than in
control women, and they use PAMH mice to investigate the
effect of elevated intrauterine AMH levels on neuroendocrine
and reproductive function in offspring. It turns out that PAMH
mice have significantly higher LH pulse frequency and
circulating testosterone levels, as well as longer ano-genital
distance which reflects androgenic impregnation, while
prenatal GnRH antagonist treatment can reverse the
neuroendocrine and reproductive abnormalities in PAMH
mice. Besides, GnRH antagonist treatment can normalize the
neuroendocrine and reproductive disorders in adult PAMHmice
Frontiers in Endocrinology | www.frontiersin.org 4
(45), which further confirmed the stimulatory effect of AMH on
GnRH neurons.

In conclusion, acting as a stimulator of hypothalamic GnRH
neurons, AMH treatment, both pre- and postnatal treatments,
can increase LH pulse frequency and induce reproductive
disorder like PCOS, and this provides new evidence for the
therapeutic effect of GnRH antagonist in women with PCOS.
METABOLIC REGULATION OF GnRH
SYNTHESIS IN PCOS

Insulin Resistance
Insulin resistance plays a pivotal role in the pathogenesis of
PCOS, the direct consequence of which is abnormally elevated
insulin levels. According to human and animal studies
concerning the effect of insulin in PCOS development, insulin
is considered as a co-effector of gonadotropins. Insulin can
promote testosterone biosynthesis in human ovarian theca cell
and reduce SHBG production (46), thus contributing to
hyperandrogenism in women with PCOS. In addition, insulin
can stimulate LH secretion directly (47), leading to aberrant
reproductive function in PCOS. As mentioned before,
hypothalamic POMC neurons express both insulin receptor
and leptin receptor, and knock-out of insulin receptor and
leptin receptor in POMC neurons induced PCOS phenotype,
indicating the insulin and leptin can be powerful regulators of
both kisspeptin and POMC neurons, which further promote
PCOS development (23).

Leptin plays a vital role in the central regulation of food intake
and energy expenditure, as well as glucose metabolism, which
makes leptin an important adipose-derived hormone in
promoting insulin resistance. Besides, leptin may contribute to
the effect of central and peripheral insulin resistance on obesity;
these two pathophysiological changes often work together to
promote metabolic disorders in metabolic diseases (48, 49).
PCOS patients can be described as leptin resistance, as
circulating leptin levels are higher in PCOS patients than in
control, which is related to IR in PCOS patients (50, 51),
suggesting that leptin may be implicated in the pathogenesis of
PCOS. However, down-regulated hypothalamic leptin receptor
expression is observed in PNA mice; additionally, leptin receptor
is co-localized with kisspeptin and NKB in the ARC of PNA
mice, indicating the possible interaction between leptin and
kisspeptin/NKB. Further studies show that central
administration of leptin can significantly stimulate
hypothalamic Kiss1 gene expression, as well as LH secretion,
which can be suppressed by pretreatment with kisspeptin
antagonist Kp-234 (52). This study provides a new insight into
PCOS pathogenesis by shedding lights on the stimulatory effect
of increased leptin levels on KNDy neurons and LH secretion.

Obesity
Obesity is another manifestation of metabolic syndrome in
PCOS, while the relationship between obesity and PCOS is
much more complex. Firstly, the vicious circle of mutual
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reinforcing relationship between obesity and insulin and leptin
resistance plays an important role in PCOS pathogenesis (49, 53).
Hypothalamic leptin resistance has been identified to increase
weight gain; at the same time, enhanced leptin secretion by
adipocytes further contributes to induce leptin resistance, thus
promoting PCOS development (54). In addition, growing piece
of evidence show that kisspeptin also mediate obesity-related
effect on reproductive function. To figure out the effect of
bariatric surgery (a kind of treatment for PCOS patients to lose
weight) on hypothalamic kisspeptin expression, Wen et al.
performed sleeve gastrectomy (SG) for PCOS rat. After SG,
metabolic disorders in PCOS rat including impaired glucose
tolerance, decreased insulin sensitivity, and adiponectin levels
are reversed, which is accompanied by decreased KISS1 gene
expression in ARC, indicating that over-activated kisspeptin
neurons can mediate metabolic regulation of central nervous
system, then contribute to metabolic induced reproductive
dysfunction in PCOS (55). Interestingly, Wen et al. also found
that after SG, there is no significant loss of body weight in PCOS
rat, which means that body weight may not implicate in the
regulation of KISS1 gene expression. A recent study further
confirmed this hypothesis, for the difference of kisspeptin
levels between normal-weight PCOS patients and over-weight
PCOS patients is insignificant (56). Thus, alternative obesity-
related pathway mediating central control of reproductive
function needs to be explored.

Growing pieces of evidence suggest that activated sympathetic
nervous system takes part in PCOS and obesity pathogenesis (57,
58). Interaction between sympathetic nervous activation and
obesity also implicates in PCOS pathogenesis, while the
underlying mechanism remains unclear. Adiponectin is an
adipocytokine known to play a pivotal role in the regulation of
insulin sensitivity, as well as the control of ovarian follicle growth
and early embryo development (34, 59). A systemic review
identified the lower circulating adiponectin levels in women with
PCOS, which are related to IR but not to BMI (60), indicating that
there is little correlation between obesity and adiponectin levels in
PCOS patients. Instead of the relationship with IR, Shorakae et al.
mainly focus on adiponectin’s regulation of sympathetic function
(61). Muscle sympathetic nerve activity is increased in women with
PCOS, along with decreased high molecular weight adiponectin
levels. That is to say, similar to other diseases, sympathetic
stimulation can reduce adiponectin levels in PCOS. Adiponectin
may contribute to PCOS development via regulation of insulin
resistance and sympathetic nerve activity. Recently, Heras et al.
found that increased hypothalamic ceramide levels were involved
in an alternative PVN-ovarian sympathetic innervation pathway,
rather than the classical GnRH dependent pathway, thus
promoting obesity-induced precious puberty (62), which
provided new insights for the effect of obesity and sympathetic
nervous system activation in PCOS pathogenesis.

Overall, obesity is common in PCOS patient, and lifestyle
modifications including weight reduction are the primary
treatment to improve metabolic dysfunction and infertility in
women with PCOS. While the exact role of obesity or obesity
related sympathetic activation in PCOS development still needs
to be explored.
Frontiers in Endocrinology | www.frontiersin.org 5
IMPACT OF INTESTINAL MICROBIOME
ON PCOS PATHOPHYSIOLOGY

The imbalance of gut microenvironment is closely related to the
pathogenesis of different kinds of diseases (63). In addition, the
crosstalk between gut and brain has long been appreciated (64).
This part mainly focuses on the possible mechanism of gut
hormones and gut microbiota disturbance affecting the
pathogenesis of PCOS through the gut–brain axis.

Gut Hormone
Gut hormones are vital mediators in bidirectional
communication of the gut–brain axis and are implicated in
different kinds of metabolic diseases. GLP-1 is mainly
synthesized by intestinal L cells and acts through G protein-
coupled GLP-1R which is found in many tissues in the human
body, including brain and reproductive system. A growing body
of evidence shows that GLP-1 is now widely used in women
suffering PCOS, and the clinical effects of GLP-1 include
improvement of ovulation, elevation of menstrual frequency,
and promotion of pregnancy rate in women with PCOS (65–67).
In terms of sex hormone, liraglutide decreased free testosterone
and androstenedione levels and increased SHBG levels in women
with PCOS (66). Besides, GLP-1 is recommended as a
therapeutic option for obese women with PCOS for its
significant weight loss effect. Although GLP-1 has been widely
recognized in PCOS treatment, the underlying mechanism
remains vague now.

The interaction between GLP-1 and hypothalamic GnRH
neurons has long been discovered. Outeiriño-Iglesias et al.
investigated the effect of GLP-1 on LH synthesis and found
that acute administration of GLP-1significantly increases the
amplitude of LH surge before ovulation in adult rats, while
GLP-1R agonist Exendin-4 can block the stimulatory effect of
GLP-1 on LH synthesis (68). Interestingly, liraglutide, a GLP-1R
agonist, is able to depolarize ARC kisspeptin neurons directly but
cannot reverse the inhibition of ARC kisspeptin neurons after
48 h fast (69), which means that GLP-1 cannot maintain LH
synthesis alone. In addition, GLP-1 can activate GnRH neurons
directly via GLP-1R, as well as modulation of stimulatory
presynaptic GABAergic inputs to GnRH neurons (70). Overall,
GLP-1 is identified as a stimulator of GnRH neurons via
modulation of kisspeptin neurons and GABAergic neurons,
indicating that GLP-1 may take part in the modulation of
GnRH and LH synthesis, thus contributing to PCOS development.

Except for the regulation of metabolism and LH synthesis,
GLP-1 is also a vital mediator of the influence of gut microbiota
on host. Gut microbiota fragmentation of non-digestible
carbohydrates is known to promote glucose metabolism,
increase satiety, and reduce food intake, thus maintaining
energy balance (71, 72). Additionally, GLP-1 secretion was
augmented by supplementation of dietary fibers, and this
process was mediated by SCFAs: as the metabolites of dietary
fibers, SCFAs promoted GLP-1 secretion via receptors (GPR-41/
43) expressed by intestinal enteroendocrine L cells (73–75). So
GLP-1 may play an important role in gut microbiota dysbiosis
related diseases. Hwang et al. found that antibiotics-induced
May 2021 | Volume 12 | Article 667422

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Liao et al. Central Regulation of PCOS
reduction of Firmicutes and Bacteroidetes significantly
augmented serum GLP-1 levels and GLP-1 expression, thus
improving insulin resistance in diet-induced-obesity mice (76).
Overall, GLP-1 participated in PCOS pathogenesis through
multiple ways; therapeutics targeting GLP-1 secretion can be
promising for PCOS treatment.

Gut Microbiota Dysbiosis
Considering the close relationship between gut microbiota and
host diseases, the relationship between gut microbiota and PCOS
is now attracting more and more attention. It is reported that
alpha diversity in PCOS patient is decreased, which may be
related to reproductive dysfunction and metabolic dysregulation
(8). On the contrary, aberrant sex hormone in PCOS patients
may have an impact on gut microbiota as well, which makes it
complex to find out the true role of microbiota in
PCOS development.

It has been widely reported that the gut microbiota is capable
of producing neurotransmitters including dopamine,
noradrenaline, serotonin, and GABA (77). As described before,
GABA is a powerful neurotransmitter that activates GnRH
neurons and increases GnRH pulse frequency and amplitude,
thus promoting PCOS development. Furthermore, it’s reported
that high-fat diet leads to reduced levels of Bacteroides, which
reduce GABA levels in rat prefrontal cortex and alleviate
depressive-like behavior (78). This indicates that the gut
microbiota may modulate neurotransmitter levels in the
central nervous system and then change the function of
downstream neurons and the emotional state of host. While
evidence indicating that microbial-derived neurotransmitter act
directly on central neurons is still lacking, the effect of microbial-
derived GABA on PCOS neuroendocrine disorder remains
unclear. Qi et al. found that the abundance of B. vulgatus is
increased in PCOS patients (9), which is associated with aberrant
hormone levels like high androgen, LH levels, and increased LH/
FSH ratio, and this is usually considered as the result of
activating GnRH neurons. The relationship between B.
vulgatus and GABA levels has not been researched; however,
GABA may be a dot that connects B. vulgatus and
neuroendocrine disorders in PCOS. Besides, there are some
kinds of GABA-producing bacteria found to be increased and
positively correlated with serum LH levels and LH/FSH ratio,
which provide a perspective to understand the underlying
mechanism of gut–brain axis in PCOS development (79).

Gut microbial metabolites and microbiota-regulated
metabolic process also play a vital role in the gut–brain axis.
As the most examined gut microbial metabolites, SCFAs have
been implicated in maintaining intestinal barrier integrity and
host immune homeostasis (64, 80). In addition, SCFAs are
involved in gut–brain crosstalk; supplementation of SCFAs can
alleviate increased blood–brain barrier permeability in GF mouse
and modulate histone acetylation in the cortex of GF mouse.
Although it seems like SCFAs play a negative role in the
development of Parkinson’s disease (81), SCFAs are more
thought to be beneficial to host homeostasis. Zhang et al.
found that there is a significant decrease in PCOS patients’
intes t ina l SCFA leve l s , whi le supply ing probiot ic
Frontiers in Endocrinology | www.frontiersin.org 6
Bifidobacterium lactis V9 can rescue the decreased SCFA levels
in PCOS patients (82). Besides, the colonization of
Bifidobacterium lactis V9 is related to decreased LH and LH/
FSH levels. Furthermore, they explored the correlation among
the identified MGS, metabolic parameters, SCFAs, and sex
hormones and found that the colonization of Bifidobacterium
lactis V9 promotes the growth of SCFA-producing microbiotas,
thus promoting PYY and ghrelin secretion, which may act on
hypothalamus GnRH neurons and mediate the beneficial effect
of microbial derived SCFAs in alleviating neuroendocrine
disorders of PCOS patients.

As a class of microbial metabolites, bile acids are attracting
more and more attention for their serious impact on regulating
host immune cell function and modulating host metabolic status,
as well as brain function. PCOS is known as a metabolic
syndrome with reproductive disorder, aberrant bile acid
metabolism may also participate in PCOS development, as
Zhang et al. have reported that increased circulating
conjugated primary bile acid levels are positively correlated
with hyperandrogenemia in women with PCOS (83). On the
other hand, Qi et al. found that serum and intestinal secondary
bile acid GDCA and TUDCA levels are significantly decreased in
PCOS patients (9). Furthermore, GDCA and TUDCA levels were
negatively correlated with B. vulgatus and bile salt hydrolase
(bsh) gene abundance, both of which are increased in women
with PCOS. So abnormal bile acid metabolism induced by gut
microbiota disturbance can be a key segment in PCOS
development. In terms of the underlying mechanism,
microbial-derived bile acids can activate ILC3s and their
secretion of IL-22, thus improving insulin resistance in PCOS
patients. Moreover, supplementation of GDCA can decrease
serum testosterone levels in DHEA-induced PCOS-like mouse,
indicating that bile acid may act through multiple ways to
improve PCOS, so bile acids may act through the
hypothalamus to regulate sex hormone levels directly.
CONCLUSION

PCOS is the most common endocrine disorder in women of
reproductive age, aberrant HPO axis is at the center of PCOS
pathogenesis (Figure 1). Kisspeptin and GABA are involved in
the upstream regulation of GnRH neurons activity, which forms
the final common pathway of central regulation of PCOS
development. The direct stimulatory effect of androgen and
AMH on GnRH neurons is considered as potential key
mechanism involved in the origins of the neuroendocrine
dysfunctions of PCOS. Besides, metabolic disorders including
insulin resistance and leptin resistance also contribute to
abnormalities of GnRH neurons in PCOS. However, obesity is
more likely to be involved in the sympathetic activation in PCOS
development. Gut hormone GLP-1 has long been recommended
as treatment for obese women with PCOS; it is also identified as a
stimulator of GnRH neurons via modulation of kisspeptin
neurons and GABAergic neurons. Moreover, gut microbial
derived neurotransmitter GABA may take effect in
hypothalamic GnRH neurons and thus promoting PCOS
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development. Metabolites of the gut microbiota, including
SCFAs and bile acids, are effective regulators of GnRH
neurons function.

Considering the vital role HPO axis played in PCOS
pathogenesis, therapeutics targeting the HPO axis can be
effective. Kisspeptin peptides kisspeptin-10 and kisspeptin-54 can
increase LH levels in healthy women to promote ovulation (84, 85).
With longer terminal half-life time, MVT-602, a novel KISS1R
agonist, has longer duration of kisspeptin targeted action of
stimulating GnRH synthesis and sustaining peak GnRH levels,
consequently promoting LH synthesis in women with PCOS.
Frontiers in Endocrinology | www.frontiersin.org 7
Besides, estradiol pretreatment before administration of MVT-
602 can increase both LH and FSH peak levels to that observed
in preovulatory follicular phase, which means that supplementation
of estradiol and MVT-602 is a promising treatment for in vitro
fertilization of PCOS women. It seems that this still belongs to
symptomatic treatment; while considering the central role of GnRH
in PCOS pathogenesis, therapeutics targeting GnRH neurons can
improve endocrine disorders, which further improves metabolic
disorders and gut microbiota dysbiosis in PCOS.

Therapeutics improving metabolic disorders including
sensitization of tissues to insulin and bariatric surgery to lose
FIGURE 1 | Central regulation of PCOS. Hypothalamic GnRH pulse mediates regulation of LH and FSH synthesis, which plays an important role in PCOS
pathophysiology. This process is modulated by central regulators including KNDy neurons, POMC neurons, and neurotransmitters. In addition, peripheral factors
including abnormal ovarian hormone levels, metabolic disorders, and gut microbiota dysbiosis also contribute to PCOS development by acting on their receptors
expressed in hypothalamic neurons. Moreover, central regulators and peripheral factors interact with each other and form an abnormal neuronal–reproductive–
metabolic circuit, thus promoting PCOS development. GnRH, Gonadotropin-releasing hormone; KNDy neurons, kisspeptin/NKB/dynorphin A neurons; POMC
neurons, Pro-opiomelanocortin neurons; GABA, g-aminobutyric acid; GLP-1, Glucagon-like peptide-1; IR, Insulin receptor; LepR, Leptin receptor; AR, Androgen
receptor; GLP-1R, Glucagon-like peptide-1 receptor; AMHR, Anti-Müllerian hormone receptor; LH, Luteinizing hormone; FSH, Follicle stimulating hormone; AMH,
Anti-Müllerian hormone; SHBG, Sex hormone-binding globulin; IL-22, Interleukin 22; SCFAs, Short-chain fatty acids.
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weight can in turn influence GnRH and sex hormone secretion,
thus alleviating PCOS. Although the way that peripheral nervous
system is implicated in PCOS pathogenesis remains unclear,
reduced sympathetic activity is observed in heat-treated obese
PCOS women, as well as decreased cardiovascular risk profiles
(86). In addition, acupuncture with electrical stimulation also
reduces endocrine and reproductive dysfunction in women with
PCOS by modulating sympathetic activity (87). However, further
research is needed to clarify the underlying mechanism.

Treatment targeting the gut microbiota is an emerging
therapeutic for metabolic diseases. It is reported that the gut
microbiota A. muciniphila increased thermogenesis of brown
adipocytes and GLP-1 secretion in HFD mice, thus improving
glucose homeostasis (88). High-fiber diet elevated GLP-1 levels
in patients with type 2 diabetes via promoting the growth of
SCFA-producing gut microbiota, and finally improved glucose
regulation (89). Fecal bacteria transplantation shows great
potential for metabolic disease treatment. A double-blind study
was performed to figure out the effect of FMT obese patients.
Patients who received FMT capsules presented bile acid profiles
comparable to those of lean people (90). The gut microbiota-
mediated effect is not just in the gut. Probiotics supplementation
increased colonic GLP-1 levels and cerebral GLP-1 receptor
expression in mice model of Parkinson disease, indicating
that probiotics supplementation could improve cerebral
function through the gut microbiota–gut–brain axis (91). Gut
microbiota related GABA was implicated in the development of
seizure and schizophrenia (92, 93). So, the therapeutic effect of
gut microbial-derived metabolites and probiotics in various
diseases has been confirmed. Although the effect of gut
microbiota-related treatment in women with PCOS still needs
further study, fecal bacteria transplantation and supplementation
of probiotics all show great potential for PCOS treatment.

In conclusion, the mechanism underlying PCOS pathogenesis
is complicated, so is the relationship between neuroendocrine
defects, metabolic disorders, and intestinal microbiota dysbiosis
in PCOS pathophysiology. In terms of the causal relationship
between the central defects and peripheral factors implicated in
PCOS pathogenesis, one supposes that reproductive and
metabolic disorders lead to defects in the brain of PCOS
women, since the effect of exposure to excessive androgen and
insulin during pregnancy cannot be ignored for the fact that
PCOS mouse model can be established only by androgen
injection to pregnant mouse. The other favors the idea that
abnormal activation of GnRH neurons is the causality of
reproductive and metabolic disorders, as increased GABAergic
wiring to hypothalamic GnRH neurons occurred before PCOS
mice exhibited disease phenotypes (87). It seems to make
sense because of the significant therapeutic effect of inhibiting
GnRH neurons in PCOS. But it is still unclear when and how
the over-activation of GnRH neurons is formed in the brain,
which needs further research studies. Actually, it’s more
accurate to say that it is the abnormal neuroendocrine–
reproductive–metabolic circuit that plays an important role in
the pathogenesis of PCOS.

As a rising research field, the gut microbiota is implicated in
the development of various diseases through the gut–brain axis,
Frontiers in Endocrinology | www.frontiersin.org 8
gut-liver axis, etc. While direction of the regulation of these
pathways remains unclear, one takes the view that the change
of the gut microbiota is the cause of metabolic disorders and
neuroendocrine defects, for gut microbiota transplantation can
transfer donor phenotypes to recipients (94). The other takes
the different view that it’s just association rather than causality
because the composition of gut microbiota is closely related to
dietary history, and the gut microbiota transplantation
experiments are mainly applied in germ-free mouse which
exhibit different intestinal function. However, microbial
fingerprinting model was established based on long-term
investigation of the compositional and genomic stability of gut
microbes, indicating that the gut microbiota composition and
metabolites may influence host phenotype in a stable and chronic
way. The debate may continue, and more experiments are
needed (95).

PCOS is a heterogeneous and complex disorder in women
of reproductive age, the pathophysiology of which is not clearly
understood yet. Classic theory presumed that the abnormal
activation of hypothalamus GnRH neurons and excessive
ovarian androgen synthesis are the core of pathogenic
mechanism in PCOS. With research studies are getting deeper,
the important role of metabolic disorders and gut microbiota
dysbiosis in PCOS pathogenesis has been identified. To some
extent, reproductive and metabolic disorders and gut microbiota
dysbiosis contribute to the impairment of local ovarian function,
and their effect on activating GnRH synthesis drives the
development of PCOS. However, it’s hard to define the
accurate onset time and location of this complex syndrome.
Abnormal exposure to AMH, androgen, or insulin during
pregnancy can promote PCOS development, and the
underlying mechanism of which lies in the hyper-secretion of
GnRH. Therefore, primary defects in the brain may be the direct
cause of PCOS; at the same time, metabolic disorders, local
ovarian hormone and gut microbiota dysbiosis can act on GnRH
neurons, thus cooperatively promoting PCOS development.
Overall, these important insights provide us with a new
perspective that the brain plays a key role in the origin of
PCOS and opens new avenues for investigating therapeutic
interventions for women with PCOS.
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