## **ORIGINAL RESEARCH**

## Institutional Variation in 30-Day Complications Following Catheter Ablation of Atrial Fibrillation

Linh Ngo (D, MD; Anna Ali, BDS, MSc; Anand Ganesan (D, MBBS, PhD; Richard Woodman (D, PhD; Harlan M. Krumholz (D, MD, SM; Robert Adams, MBBS, MD; Isuru Ranasinghe, MBChB, MMed (Clin Epi) PhD

**BACKGROUND:** Complications are a measure of procedural quality, yet variation in complication rates following catheter ablation of atrial fibrillation (AF) among hospitals has not been systematically examined. We examined institutional variation in the risk-standardized 30-day complication rates (RSCRs) following AF ablation which may suggest variation in care quality.

**METHODS AND RESULTS:** This cohort study included all patients >18 years old undergoing AF ablations from 2012 to 2017 in Australia and New Zealand. The primary outcome was procedure-related complications occurring during the hospital stay and within 30 days of hospital discharge. We estimated the hospital-specific risk-standardized complication rates using a hierarchical generalized linear model. A total of 25 237 patients (mean age,  $62.5\pm11.4$  years; 30.2% women; median length of stay 1 day [interquartile range, 1–2 days]) were included. Overall, a complication occurred in 1400 (5.55%) patients (4.34% in hospital, 1.46% following discharge, and 0.25% experienced both). Bleeding (3.31%), pericardial effusion (0.74%), and infection (0.44%) were the most common complications while stroke/transient ischemic attack (0.24%), cardiorespiratory failure and shock (0.19%), and death (0.08%) occurred less frequently. Among 46 hospitals that performed  $\geq$ 25 ablations during the study period, the crude complication rate varied from 0.00% to 21.43% (median, 5.74%). After adjustment for differences in patient and procedural characteristics, the median risk-standardized complication rate was 5.50% (range, 2.89%–10.31%), with 10 hospitals being significantly different from the national average.

**CONCLUSIONS:** Procedure-related complications occur in 5.55% of patients undergoing AF ablations, although the risk of complications varies 3-fold among hospitals, which suggests potential disparities in care quality and the need for efforts to standardize AF ablation practices among hospitals.

Key Words: atrial fibrillation = catheter ablation = complication = institutional variation

**S** ince its inception in 1998,<sup>1</sup> catheter ablation of atrial fibrillation (AF) has rapidly evolved from an investigational procedure to a guidelines-recommended therapy for drug-refractory symptomatic AF.<sup>2</sup> Paralleling this change, worldwide surveys have shown a rapid increase in the number of AF ablations performed.<sup>3,4</sup> However, this complex and invasive procedure can cause serious complications such as bleeding, stroke, and cardiac tamponade, which may cause substantial harm to patients and may lead

to additional invasive treatments.<sup>5</sup> Reducing the risk of complications is therefore highly desirable to minimize patient harm and improve procedural safety.

Although the incidence of procedural complications following AF ablations has been extensively reported,<sup>6–10</sup> little is known about the variation in complication rate among hospitals, which may suggest differences in care quality. Several studies have compared procedural safety in high- versus low-volume ablation centers,<sup>8,9</sup> although variation in complication rates among

Correspondence to: Linh Ngo, MD, The University of Queensland Northside Clinical Unit, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD 4032, Australia. E-mail: linh.ngo@uq.edu.au

Supplemental Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.121.022009

For Sources of Funding and Disclosures, see page 10.

<sup>© 2022</sup> The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

## **CLINICAL PERSPECTIVE**

#### What Is New?

- Catheter ablation of atrial fibrillation (AF), although superior to medical therapy in restoring sinus rhythm, is associated with a risk of complications. While the incidence and types of complications have been extensively examined, it is uncertain whether complication rates vary among hospitals, which may imply differences in care quality.
- We found that 1 in 18 patients undergoing AF ablation experienced a procedural complication within 30 days of hospital discharge, with bleeding and pericardial effusion being the most common complications.
- More importantly, the risk of complications varied significantly among ablation centers. Using a hierarchical generalized linear model, a method widely used for profiling hospital performance, we found that the hospital-specific risk-standardized complication rate varied nearly 3-fold (range, 2.89%–10.31%) among 46 hospitals, with 10 having a risk-standardized complication rate significantly higher (6) or lower (4) than the national average (5.55%).

## What Are the Clinical Implications?

- There was a clinically meaningful and statistically significant institutional variation in complication rates following AF ablation, suggesting that the risk of complications may be related to care quality and modifiable by improving procedural technique (such as more frequent use of vascular ultrasound or intracardiac echocardiography) and by quality improvement initiatives such as clinical audits or safety checklists.
- This institutional variation might be unsurprising, as AF ablation is rapidly disseminating and disparities in the management of AF have been reported before.
- Routine implementation of process and outcomes measures, such as those recommended by the Heart Rhythm Society, across all ablation centers may standardize care, reduce variation, and improve quality.

## Nonstandard Abbreviations and Acronyms

CABANACatheter Ablation Versus Antiarrhythmic<br/>Drug Therapy for Atrial FibrillationRSCRrisk-standardized complication rate

individual hospitals has not been examined in the literature. Significant institutional variation has been reported for well-established procedures such as cardiac device implantation,<sup>11,12</sup> raising the possibility that similar variation may exist for AF ablation. Understanding the risk among individual hospitals is also important in the context of the recent studies reporting rising rates of mortality and complications following AF ablation<sup>7,8</sup> which have raised concern about disparities in procedural safety as this procedure disseminates more widely. Indeed, the 2017 consensus guidelines have called for observational data on procedure-related complication rates in the "real world" to inform patients and clinicians considering AF ablation and to inform hospitals and policymakers seeking to improve procedural quality.<sup>13</sup>

In this study, we used population-wide data from hospitals in Australia and New Zealand to determine the incidence of procedure-related complications following AF ablation occurring up to 30 days after discharge. We further estimated the hospital-specific risk-standardized complication rate to identify if there were meaningful differences in complication rates among hospitals that may suggest disparities in care quality.

## **METHODS**

Because of the sensitive nature of the data collected for this study, requests to access the data sets from qualified researchers trained in human subject confidentiality protocols may be sent to the Human Research Ethics Committee of each state and territory in Australia and the New Zealand Ministry of Health.

## **Data Source**

We used hospitalization data from all public and most (80%) of private-sector hospitals and day procedure centers using each Australian state and territory's Admitted Patient Collection and the New Zealand National Minimum Dataset (Hospital Events) from 2012 to 2017. These data sets record all in-patient and dayonly admissions, including all outpatient procedures, irrespective of age and payer. A standard set of variables is collected for each patient encounter, including patient demographic characteristics, primary and secondary diagnoses, all procedures performed, and the patient status at discharge. Both countries use the International Classification of Diseases, Tenth Revision, Australian Modification (ICD-10-AM) and the Australian Classification of Health Interventions for coding of diagnoses and procedures, respectively. Validation against medical records has shown >85% coding accuracy, with cardiovascular diagnoses and procedures being particularly well coded.<sup>14</sup> When such data were used for surveillance of adverse events in other fields, >90% agreement with clinicians was reported.<sup>15</sup> Within each state or territory in Australia, hospitalizations were linked to subsequent hospitalizations and each region's Registry of Deaths to track hospital readmission and postdischarge deaths. Greater than 99% accuracy is reported for the linkage of health records using probabilistic matching techniques based on multiple patient identifiers.<sup>16</sup> In New Zealand, hospital encounters are linked nationally using a unique National Health Index number, and all deaths are recorded in the National Health Index sociodemographic profile.

#### **Study Cohort**

We included patients >18 years old hospitalized with a primary diagnosis of AF (*ICD-10-AM* codes I48, I48.0-2, and I48.9) and underwent catheter ablation as defined by Australian Classification of Health Interventions procedure codes 38287-01, 38287-02 and 38290-01. The use of the AF diagnosis code together with catheter ablation code has shown high specificity (100%) and sensitivity (87.3%) in identifying AF ablation procedures.<sup>17</sup>

We excluded patients who had other arrhythmias as a secondary diagnosis to ensure the catheter ablation was for AF; had an implanted cardiovascular implantable electronic device (pacemaker, implantable cardioverter defibrillator, or cardiac resynchronization therapy pacemaker or defibrillator) during the index or previous admissions to avoid including patients undergoing atrioventricular nodal ablation for AF rate control: underwent open (surgical) ablation; were discharged against medical advice; had prior catheter ablation within 30 days since a complication may relate to the previous rather than the index ablation; or lacked at least 30 days follow-up after the procedure to assess complications. We also excluded acute (unplanned) hospitalizations to ensure that the complications were procedure related rather than attributable to the underlying acute illness. Table S1 provides a full description of diagnoses and procedure codes used to define inclusion and exclusion criteria.

#### Outcome

The primary outcome was the occurrence of  $\geq 1$  procedure-related complications identified from the prior literature, <sup>5,8–10</sup> expert clinical opinion, and empirical examination of patient records. Specific complications included (1) death, (2) cardiorespiratory failure and shock, (3) stroke or transient ischemic attack, (4) pericardial effusion, (5) hemothorax or pneumothorax, (6) bleeding *(hemorrhage or hematoma formation, internal organ bleeding [bleeding from the gastrointestinal, pulmonary, or urinary system], or requirement for blood transfusion), (7) vascular injury or intervention, (8) infection (<i>pneumonia, sepsis, or endocarditis*), (9) pericarditis, (10) acute myocardial infarction, (11) venous thromboembolism, (12) acute kidney injury, (13) complete atrioventricular block, and (14) complications requiring cardiac surgery.

Consistent with prior studies, we considered complications occurring in-hospital and within 30 days after discharge as procedure related.<sup>10</sup> In-hospital complications were identified on the basis of the secondary diagnoses and procedures performed during the hospital stay. Postdischarge complications were defined as postdischarge death or any readmission with a complication coded as the primary discharge diagnosis. Table S2 lists all relevant codes used to define complications.

## **Statistical Analysis**

Categorical variables are presented as frequencies and percentages. Continuous variables are presented as mean±SD or as median and interquartile range. The student *t* test or Mann-Whitney *U* test was used to test differences between groups for continuous variables, and the  $\chi^2$  or Fisher's exact test was used for categorical variables. When estimating rate of overall complications, patients who experienced multiple events were counted only once.

To evaluate institutional variation in complication rates, we calculated the risk-standardized complication rate (RSCR) for each hospital using a hierarchical (2level) generalized linear model, adjusting for differences in hospital case mix and clustering of patients. This method has been widely used to quantify institutional variation in outcomes and public reporting.<sup>11,18–20</sup> First, we identified patient characteristics independently associated with the risk of complications using a logistic regression model. Candidate variables included age, sex, hospitalization for AF in the preceding year, prior AF ablation, ablation of both atria, and comorbidities with a statistically significant (P<0.25) association with complications. Comorbidities were identified using the Condition Category classification that grouped ICD-10-AM codes into 180 clinically meaningful conditions using secondary diagnosis codes from the index admission and primary and secondary diagnosis codes from admissions within the preceding 12 months<sup>21</sup> (see Table S3 for list of comorbidities used for model development). To select the final variables, we included all candidate variables and then applied purposeful backward elimination as described by Hosmer and Lemeshow<sup>22</sup> until the model contained only variables significant at P<0.05. Model performance was evaluated by estimating model discrimination (C-statistic) and calibration. In keeping with best-practice recommendations, model discrimination was validated by calculating the optimism-corrected C-statistic using bootstrapping resampling with 100 replications.<sup>23</sup> The optimism is estimated as the difference between model's performances in bootstrap and original samples, and the corrected C-statistic equates the difference between the original C-statistic (derived from modeling using the original data set) and the average optimism.<sup>24</sup>

We then used the hierarchical generalized linear model to estimate a random-intercept term that reflects each hospital's contribution to the risk of the outcome, based on its actual complication rate, the performance of other hospitals with similar case mix and its sample size. The RSCR is the ratio of predicted complication rate over the expected complication rate multiplied by the cohort average complication rate. The predicted complication rate was calculated on the basis of the hospital's case mix and the estimated random intercept, while the expected complications rate was calculated using the hospital's case mix and the cohort average rate. We used bootstrapping with 1000 replications to empirically construct the 95% CI for each hospital's RSCR using the percentile method. A hospital was classified as significantly different from the national average if the entire 95% CI was above or below the average rate. To ensure robust estimates of the RSCR, all hospital analyses were limited to those that performed at least 25 ablations during the study period. A detailed description of the RSCR calculation and bootstrapping algorithm is provided in Data S1.

A two-sided *P* value <0.05 was considered statistically significant. All analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC). The Human Research Ethics Committees of all Australian states and territories provided ethical approval to undertake the study with a waiver of informed consent to use deidentified patient data. Deidentified data from New Zealand were obtained under a data user agreement with the Ministry of Health.

## RESULTS

We identified 32 739 eligible patients with a primary diagnosis of AF undergoing catheter ablation. Of these, we excluded 7502 patients (see Figure 1 patient selection flow diagram), and the main reasons for exclusion were having a current or previous cardiovascular implantable electronic device (4104 patients) or unplanned hospitalizations (1972 patients). The final study cohort consisted of 25 237 patients who underwent AF ablation at 67 unique hospitals, of which 46 performed at least 25 procedures in the study period.

## **Cohort Characteristics**

The study cohort had a mean age of  $62.5\pm11.4$  years and 30.2% were women (Table 1). The median length of stay was 1 day (interquartile range, 1.0-2.0 days). Of these patients, 62.8% had a prior hospitalization for AF or atrial flutter, and 12.2% had a prior catheter ablation. Hypertension (11.3%) and diabetes (11.3%) were the most common cardiac and noncardiac comorbidities, respectively.

#### **Incidence of Complications**

Overall, procedural complications occurred in 1400 (5.55%) patients in-hospital or within 30 days of discharge (Table 2). Patients who experienced a complication were older (64.1 versus 62.5 years; P<0.001), were more likely to be women (35.5% versus 29.9%; P<0.001), and had higher rates of comorbidities such as hypertension (17.1% versus 10.9%), heart failure (11.6% versus 8.7%), coronary artery disease (13.2% versus 9.3%), chronic obstructive lung disease (2.4% versus 1.1%), and chronic kidney disease (5.9% versus 3.1%) compared with those who did not experience a complication (all P<0.001).

When specific complications were considered, bleeding was the most common complication, occurring in 3.31% of procedures. Of the bleeding events, 77.3% were attributable to postprocedural hemorrhage or hematoma, 17.1% was bleeding from internal organs (gastrointestinal, pulmonary, or urinary), and 15.3% required blood transfusion. Pericardial effusion was the second most common complication, which occurred in 0.74% of patients and 56.9% of these cases underwent pericardiocentesis. Death (0.08%), complications that required cardiac surgery (0.10%), and stroke or transient ischemic attack (0.24%) occurred infrequently.

Among patients who experienced a complication, 1095 (4.34%) had the complication during their hospital stay. Bleeding remained the most common complication (2.75%), with 10.4% of these patients requiring a blood transfusion. Pericardial effusion (0.66%) was the second most common, with 54.8% of these cases requiring drainage. Another 368 (1.46%) patients had procedural complications within 30 days of hospital discharge, with 0.25% of patients experiencing both in-hospital and postdischarge complications. Bleeding was the most common cause of a postdischarge complication (0.65%), followed by postprocedural infection (0.25%) and stroke/transient ischemic attack (0.13%). Procedure-related death occurred more frequently after discharge than during the index hospitalization (15 versus 6 deaths) and 5 of the 15 postdischarge deaths occurred in the community.

#### **Risk-Adjustment Model**

Patient age, female sex, history of ablation, ablation of both atria, year of ablation, and 5 comorbidities were independently associated with the risk of complications (Table S4) and were used for the hospital-level risk-adjustment. The logistic regression model had moderate discrimination (C-statistic of 0.604) and could predict a range of patient risk from 3.72% to 11.93% that closely approximated the observed risk, suggesting good model calibration (Hosmer-Lemeshow  $c^2$ =11.83; *P*=0.159) (Figure S1). Internal validation by



**Figure 1. Patient selection flow diagram.** AF indicates atrial fibrillation; and CA, catheter ablation.

bootstrapping with 100 replications revealed an average optimism of 0.005, corresponding to a corrected C-statistic of 0.599.

#### Hospital Variation in the RSCRs

Among the 46 hospitals that performed at least 25 procedures during the study period, the crude median complication rate was 5.74% and ranged from 0.00% to 21.43% (Table S5). After risk-standardization, the median RSCR was 5.50%, although the rate varied from 2.89% to 10.31% among hospitals (Figure 2A). Of these hospitals, 10 had complication rates significantly different from the cohort average, with 4 having

the entire 95% CI below the average rate (indicating a better-than-average complication rate) and 6 with the entire estimated 95% CI above the average (indicating worse-than-average complication rate). There was no correlation between RSCR and the hospital's annual ablation volume (Spearman correlation coefficient, -0.02; *P*=0.892; Figure 2B).

#### **Sensitivity Analysis**

We performed several analyses to test the robustness of our findings. As most existing studies report inhospital complications exclusively and because these events may be more closely related to procedural

| Table 1. | <b>Characteristics of the Study Cohort</b> |
|----------|--------------------------------------------|
|----------|--------------------------------------------|

| Variables                                          | Overall (N=25 237)<br>n (%) | Any complication (N=1400)<br>n (%) | No complication (N=23 837)<br>n (%) | <i>P</i> value |
|----------------------------------------------------|-----------------------------|------------------------------------|-------------------------------------|----------------|
| Patients' demographics                             | ·                           |                                    | ·                                   |                |
| Age (mean±SD)                                      | 62.5±11.4                   | 64.1±11.0                          | 62.5±11.4                           | <0.001         |
| Age group, y                                       |                             |                                    |                                     |                |
| 18–34                                              | 497 (2.0)                   | 20 (1.4)                           | 477 (2.0)                           | <0.001         |
| 35–49                                              | 2657 (10.5)                 | 121 (8.6)                          | 2536 (10.6)                         |                |
| 50-64                                              | 10 419 (41.3)               | 540 (38.6)                         | 9879 (41.4)                         |                |
| 65–79                                              | 10 438 (41.4)               | 627 (44.8)                         | 9811 (41.2)                         |                |
| ≥80                                                | 1226 (4.9)                  | 92 (6.6)                           | 1134 (4.8)                          |                |
| Female (%)                                         | 7621 (30.2)                 | 497 (35.5)                         | 7124 (29.9)                         | <0.001         |
| Median length of stay (IQR)                        | 1.0 (1.0–2.0)               | 2.0 (1.0–3.5)                      | 1.0 (1.0–2.0)                       | <0.001         |
| Cardiac history                                    |                             |                                    |                                     |                |
| Prior AF hospitalizations                          | 15 839 (62.8)               | 884 (5.6)                          | 516 (5.5)                           | 0.761          |
| Prior AF ablation                                  | 3088 (12.2)                 | 142 (10.1)                         | 2946 (12.4)                         | 0.014          |
| Hypertension                                       | 2842 (11.3)                 | 240 (17.1)                         | 2602 (10.9)                         | <0.001         |
| Heart failure                                      | 2239 (8.9)                  | 162 (11.6)                         | 2077 (8.7)                          | <0.001         |
| Valvular and rheumatic heart disease               | 919 (3.6)                   | 74 (5.3)                           | 845 (3.5)                           | 0.001          |
| Coronary artery disease                            | 2401 (9.5)                  | 185 (13.2)                         | 2216 (9.3)                          | <0.001         |
| Vascular disease                                   | 382 (1.5)                   | 28 (2.0)                           | 354 (1.5)                           | 0.125          |
| Noncardiac comorbidities                           |                             |                                    |                                     |                |
| Diabetes                                           | 2849 (11.3)                 | 153 (10.9)                         | 2696 (11.3)                         | 0.661          |
| Chronic obstructive lung disease                   | 304 (1.2)                   | 34 (2.4)                           | 270 (1.1)                           | <0.001         |
| Chronic kidney disease                             | 819 (3.3)                   | 82 (5.9)                           | 737 (3.1)                           | <0.001         |
| Stroke or TIA                                      | 318 (1.3)                   | 18 (1.3)                           | 300 (1.3)                           | 0.929          |
| Hematologic disorders                              | 1070 (4.2)                  | 154 (11.0)                         | 916 (3.8)                           | <0.001         |
| Pneumonia                                          | 508 (2.0)                   | 74 (5.3)                           | 434 (1.8)                           | <0.001         |
| Musculoskeletal and<br>connective tissue disorders | 1846 (7.3)                  | 155 (11.0)                         | 1691 (7.1)                          | <0.001         |
| Dementia and senility                              | 38 (0.2)                    | 5 (0.4)                            | 33 (0.1)                            | 0.040          |

AF indicates atrial fibrillation; IQR, interquartile range; and TIA, transient ischemic attack.

technique and care quality, we repeated the RSCR estimation, limiting to in-hospital complications only. We found persisting variation in RSCR (median, 4.15%; range, 2.07%-10.20%), with 7 hospitals having higherthan-average and 3 having lower-than-average inhospital complication rates (Figure 2C). Seven of these 10 hospitals were also outliers based on the 30-day outcome. To determine the potential for unmeasured confounders to influence the results, we assessed the minimum strength of association that an unmeasured confounder would need to shift the interval estimate of the most outlying hospital (hospital 45 in Figure 2A-RSCR, 10.11%; 95% CI, 7.31%-13.29%) to cross the cohort average rate by calculating the E-value<sup>25</sup> for the lower 95% CI (7.31%), which yielded 1.97. This means that an unmeasured confounder would need to be 1.97 times more common in the outlier hospital compared with the national average and be associated with a

1.97-times higher rate of complications to explain away the difference so that the hospital is no longer an outlier, while a weaker confounder could not.<sup>25</sup> Moreover, to assess whether the observed variation could have occurred by chance, we repeated the analysis applying the Bonferroni correction, which tests the global null hypothesis that all hospitals have a risk-standardized outcome rate similar to the national average.<sup>26</sup> When a corrected P value of 0.001 (~0.05/46) was applied (equivalent to 99.9% CIs) and 10 000 bootstrapped samples were used, 2 hospitals remained significantly different than average (all above the national average), making it unlikely that the observed variation was attributable to chance. Finally, the funnel plot of RSCRs (Figure S2), an alternative methodology for displaying variation in performance, also showed 7 hospitals with RSCRs exceeding the 95% limit of the average complication rate.<sup>27</sup> These hospitals were also classified as

| Procedural complications                | Overall<br>N (%) | In-hospital<br>n (%) | Postdischarge<br>n (%) |
|-----------------------------------------|------------------|----------------------|------------------------|
| Primary outcome—any complication*       | 1400 (5.55)      | 1095 (4.34)          | 368 (1.46)             |
| Death                                   | 21 (0.08)        | 6 (0.02)             | 15 (0.06)              |
| Cardiorespiratory failure and shock     | 47 (0.19)        | 43 (0.17)            | 4 (0.02)               |
| Stroke/TIA                              | 60 (0.24)        | 28 (0.11)            | 34 (0.13)              |
| Pericardial effusion                    | 188 (0.74)       | 166 (0.66)           | 25 (0.10)              |
| Pericardiocentesis                      | 107 (0.42)       | 91 (0.36)            | 16 (0.06)              |
| Hemothorax/pneumothorax                 | 33 (0.13)        | 19 (0.08)            | 15 (0.06)              |
| Bleeding                                | 835 (3.31)       | 693 (2.75)           | 165 (0.65)             |
| Postprocedural hemorrhage/hematoma      | 645 (2.56)       | 582 (2.31)           | 74 (0.29)              |
| Internal organ bleeding <sup>†</sup>    | 143 (0.57)       | 105 (0.42)           | 40 (0.16)              |
| Blood transfusion                       | 128 (0.51)       | 72 (0.29)            | 61 (0.24)              |
| Vascular injury or intervention         | 56 (0.22)        | 32 (0.13)            | 26 (0.10)              |
| Postprocedural infection                | 112 (0.44)       | 50 (0.20)            | 62 (0.25)              |
| Pericarditis                            | 71 (0.28)        | 56 (0.22)            | 16 (0.06)              |
| Procedure-related AMI                   | 27 (0.11)        | 10 (0.04)            | 17 (0.07)              |
| Venous thromboembolism                  | 18 (0.07)        | 7 (0.03)             | 11 (0.04)              |
| Acute kidney injury                     | 73 (0.29)        | 66 (0.26)            | 7 (0.03)               |
| Complications requiring cardiac surgery | 25 (0.10)        | 15 (0.06)            | 10 (0.04)              |
| Complete atrioventricular block         | 55 (0.22)        | 53 (0.21)            | 4 (0.02)               |

#### Table 2. Incidence of Complications After Catheter Ablation of AF

AF indicates atrial fibrillation, AMI indicates acute myocardial infarction; and TIA, transient ischemic attack.

\*When estimating the primary outcome, patients with multiple complications were counted only once. For all other outcomes, patients may have >1 complication. Therefore, the incidence across rows or columns may not sum to group totals.

<sup>†</sup>Bleeding from the gastrointestinal, pulmonary, or urinary system. Intracranial bleeding was counted as stroke.

having a higher- (4 hospitals) and lower-than-average (3 hospitals) complication rate using the bootstrapping method. The calculated  $\varphi$  and  $\hat{\phi}$  were 1.51 and 1.13, respectively, suggesting that we could assume  $\varphi$ =1 and that adjustment for possible overdispersion was not needed.<sup>27</sup> But even if 10% winsorization is applied to adjust for possible overdispersion, the winsorized plot still shows 3 hospitals with RSCRs higher than the upper border of the 95% control limits (Figure S3). Collectively, these findings suggest that statistically significant and clinically meaningful institutional variation likely existed.

## DISCUSSION

In this population-wide study of 25 237 patients undergoing AF ablation, we found that about 1 in 18 patients experienced a procedure-related complication within 30 days of hospital discharge. However, the incidence of complications was highly dependent on the ablation center, with complication rates varying more than 3-fold among hospitals even after adjusting for differences in patient and procedure characteristics, implying institutional disparities in care processes and quality control measures. Of all complications, 76.3% were attributable to bleeding, pericardial effusion, and infection—complications that can be reduced or avoided with established interventions such as vascular ultrasound, intracardiac echocardiography, or prophylactic antibiotics. Collectively, these findings call for concerted clinical and policy intervention to inform patients, improve procedural safety, and standardize care among hospitals.

Population studies with unselected cohorts (all age, all payer) that capture the full range of ablation facilities are sparse. Most existing studies report in-hospital complications only7-9 and often fail to capture outpatient procedures,7-9 even though they could account for 37% to >90% of all AF ablations.<sup>28</sup> We extend the literature by providing estimates from a national cohort that includes both inpatient and outpatient procedures and captures all complications including those that occurred following discharge. Although comparisons of complication rates among studies are often challenging because of differences in designs, data sources, and definitions of complications, our overall complication rate of 5.55% is consistent with the 3.5% to 7.4% range reported in population studies, including the Get With The Guidelines AF Registry.<sup>6–10</sup> Our result is also comparable to the ≈6.9% rate reported in the multicenter CABANA (Catheter Ablation Versus Antiarrhythmic Drug Therapy for Atrial Fibrillation) trial.<sup>29</sup> Our rate, however, is higher than the 2.9% (95% Cl,



2.6%–3.2%) rate reported in a prior systematic review,<sup>5</sup> in which most included studies assessed in-hospital events only and may explain the discrepancy. Indeed,

we found that nearly 30% of complications presented after discharge, highlighting the need for continued vigilance for complications after discharge.

#### Figure 2. Institutional variation in the risk-standardized complication rate (RSCR).

**A**, shows the RSCR with the corresponding 95% CI of the 46 hospitals. **B**, presents RSCR based on hospital's annual ablation volume. **C**, shows the RSCR with the corresponding 95% CI when the outcome was limited to in-hospital complications only. Analysis was limited to hospitals that performed  $\geq$ 25 procedures during the study period with hospitals presented by ascending order of the RSCR in **A**, of hospital's annual ablation volume in **B**, and of risk-standardized in-hospital complication rate in **C**.

We also extend the literature by demonstrating the institutional heterogeneity in AF ablation outcomes by showing clinically meaningful and statistically significant variation in complication rates among hospitals. Prior studies have compared procedural safety among hospitals by volume-based grouping of ablation centers and found higher complications rates in low-volume strata,<sup>8,9</sup> yet such studies do not provide insights into the performance of individual hospitals. Our study quantified hospital performance individually and did not find a significant relationship between a hospital's ablation volume and its RSCR. The >3fold variation in overall complication rates suggests disparities in procedural quality among ablation centers. Such variation is perhaps unsurprising given the rapid dissemination of AF ablation and the highly heterogeneous nature of the procedure that relies on a wide variety of techniques, equipment, and resources. Indeed, marked institutional differences have been found in compliance with quality measures for AF management.<sup>30</sup> Thus, it is conceivable that similar variation in care quality may occur for AF ablation. Recently, the fifth Atrial Fibrillation Network/ European Heart Rhythm Association conference recommends defining and monitoring quality standards in AF care, including implementing a range of process and outcomes measures for AF ablation.<sup>31</sup> The Heart Rhythm Society has also recently developed harmonized outcomes measures for use in AF, including AF ablation.<sup>32</sup> Our findings firmly support implementing such measures across all ablation centers to standardize care and to guide targeted quality improvement efforts.

These findings have several additional implications for quality improvement efforts. Current consensus quidelines emphasize minimizing clinically important but rare complications such as atrioesophageal fistula formation.<sup>13</sup> While this is important, our results imply that efforts to improve patient safety should also focus on reducing more common complications such as bleeding, pericardial effusion, and infection, which constitute 76.3% of all complications. Moreover, these complications are potentially preventable with existing interventions. For example, uninterrupted dabigatran has been shown to be associated with significantly fewer major bleeding events compared with warfarin.<sup>33</sup> Similarly, good visualization during transseptal puncture by multiple fluoroscopic views or intracardiac ultrasound may help to avoid cardiac perforation.<sup>34</sup> Among patients

undergoing AF ablation under general anesthesia and routine urinary catheter placement, rates of urinary tract infection, which is significantly associated with risk of sepsis,<sup>35</sup> could be reduced by 80% with prophylactic antibiotics.<sup>36</sup> Moreover, the routine use of a urinary catheter could be safely avoided, as need-based catheterization is shown to be associated with nearly 8 times lower odds of experiencing adverse outcomes, including cystitis, hematuria, dysuria, and urethral damage, compared with routine use.<sup>37</sup> More broadly, implementing procedural safety checklists can reduce complications from cardiac catheterization procedures, including ablations.<sup>38</sup> From a policy perspective, our observations support reporting of hospital-specific complication rates to better inform decision making, guide guality improvement efforts, and standardize care among hospitals. Reporting hospital-specific rates may be particularly important for true informed consent, as the average complication rate may have little meaning when discussing procedural risk with patients in the context of marked variation among hospitals.

Several limitations should be considered when interpreting our results. Administrative data are less granular than data collected specifically for research, however, validation studies have reported good accuracy (>85%) of diagnoses and procedures coding.<sup>14</sup> We also focused on coding definitions used by prior studies to minimize the risk of erroneous coding influencing our results.<sup>5,8–10</sup> Data were available from all regions at up to 2017 only, after which new advances in techniques and technology may have occurred and impacted the contemporary complication rates. Similar to other population studies, atrio-esophageal fistula, pulmonary vein stenosis, and phrenic nerve injury could not be reliably identified using administrative data because of a lack of specific codes.<sup>8-10</sup> These complications can also present beyond 30 days; thus, our study is likely to underestimate the true complication rate. Nevertheless, atrio-esophageal fistula is rare and may be captured under other categories such as sepsis, stroke, or death,<sup>39</sup> while only a few cases with pulmonary vein stenosis and phrenic nerve injury cause symptoms or require treatment.<sup>40,41</sup> We also could not distinguish between different types of ablation used, although no technique is proven to have a superior safety profile.<sup>42,43</sup> Data regarding ablation lesions were also not available, and patients may have had additional ablations other than pulmonary vein isolation. Nevertheless, our sensitivity analyses suggest

that the observed variation is unlikely to be explained either by chance or an unmeasured confounder.

#### CONCLUSIONS

Complications following catheter ablation of AF occur in  $\approx 1$  in 18 patients undergoing ablation, although the rate of complications is highly variable among hospitals, suggesting that clinically meaningful differences may exist in procedural quality and after-care practices. Concerted clinical and policy efforts are needed to better inform patients, to improve care practices, and to standardize outcomes across ablation centers.

#### **ARTICLE INFORMATION**

Received June 25, 2021; accepted December 15, 2021.

#### Affiliations

School of Clinical Medicine, The University of Queensland, Australia (L.N., I.R.); Department of Cardiology, The Prince Charles Hospital, Queensland, Australia (L.N., I.R.); Cardiovascular Centre, E Hospital, Hanoi, Vietnam (L.N.); Discipline of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia (A.A., R.A.); Department of Cardiovascular Medicine, Flinders Medical Centre, South Australia, Australia (A.G.); College of Medicine and Public Health (A.G., R.A.); and Flinders Centre for Epidemiology and Biostatistics, College of Medicine and Public Health (R.W.), Flinders University, South Australia, Australia; Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT (H.M.K.); Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT (H.M.K.); Department of Health Policy and Management, Yale School of Public Health, New Haven, CT (H.M.K.); and Respiratory and Sleep Services, Southern Adelaide Local Health Network, South Australia, Australia (R.A.).

#### Acknowledgments

The authors thank the following Data-Linkage Units for their assistance and considerable in-kind support: New South Wales & Australian Capital Territory: Centre for Health Record Linkage; South Australia and Northern Territory: SA-NT DataLink; Queensland: Statistical Services Branch, Queensland Department of Health; Tasmania: Tasmanian Data Linkage Unit; Victoria: Centre for Victorian Data Linkages, Victorian Department of Health; Western Australia: Data Linkage Branch, Western Australian Department of Health, and the involved data collections: Death Registrations, Hospital Morbidity Data Collection; New Zealand: Ministry of Health.

#### Sources of Funding

This work was supported by the National Heart Foundation of Australia (ID 101186).

#### **Disclosures**

Dr Ngo was a recipient of the Hospital Research Foundation Postgraduate Scholarship and a Research Training Program Scholarship from the University of Queensland during the course of this study. Dr Ali is a recipient of a Divisional Scholarship from the University of Adelaide. Drs Ganesan and Ranasinghe are recipients of a National Heart Foundation of Australia Future Leader Fellowship (IDs 101188 and 101186, respectively). In the past 3 years, Harlan Krumholz received expenses and/or personal fees from UnitedHealth, Element Science, Aetna, Reality Labs, Tesseract/4Catalyst, the Siegfried and Jensen Law Firm, Arnold and Porter Law Firm, Martin/Baughman Law Firm, and F-Prime. He is a co-founder of Refactor Health and HugoHealth, and is associated with contracts, through Yale New Haven Hospital, from the Centers for Medicare & Medicaid Services and through Yale University from Johnson & Johnson. The remaining authors have no disclosures to report.

#### **Supplemental Material**

Data S1 Tables S1–S5 Figures S1–S3

#### REFERENCES

- Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. *N Engl J Med.* 1998;339:659–666. doi: 10.1056/NEJM199809033391003
- Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan G-A, Dilaveris PE, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). *Eur Heart J*. 2021;42:373–498. doi: 10.1093/ eurheartj/ehaa612
- Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Packer D, Skanes A. Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. *Circulation*. 2005;111:1100–1105. doi: 10.1161/01.CIR.00001 57153.30978.67
- Cappato R, Calkins H, Chen SA, Davies W, lesaka Y, Kalman J, Kim YH, Klein G, Natale A, Packer D, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. *Circ Arrhythm Electrophysiol.* 2010;3:32–38. doi: 10.1161/ CIRCEP.109.859116
- Gupta A, Perera T, Ganesan A, Sullivan T, Lau DH, Roberts-Thomson KC, Brooks AG, Sanders P. Complications of catheter ablation of atrial fibrillation: a systematic review. *Circ Arrhythm Electrophysiol.* 2013;6:1082–1088. doi: 10.1161/CIRCEP.113.000768
- Loring Z, Holmes DN, Matsouaka RA, Curtis AB, Day JD, Desai N, Ellenbogen KA, Feld GK, Fonarow GC, Frankel DS, et al. Procedural patterns and safety of atrial fibrillation ablation. *Circ Arrhythm Electrophysiol*. 2020;13:e007944. doi: 10.1161/CIRCEP.119.007944
- Cheng EP, Liu CF, Yeo I, Markowitz SM, Thomas G, Ip JE, Kim LK, Lerman BB, Cheung JW. Risk of mortality following catheter ablation of atrial fibrillation. *J Am Coll Cardiol.* 2019;74:2254–2264. doi: 10.1016/j. jacc.2019.08.1036
- Tripathi B, Arora S, Kumar V, Abdelrahman M, Lahewala S, Dave M, Shah M, Tan B, Savani S, Badheka A, et al. Temporal trends of inhospital complications associated with catheter ablation of atrial fibrillation in the United States: an update from nationwide inpatient sample database (2011–2014). J Cardiovasc Electrophysiol. 2018;29:715–724. doi: 10.1111/jce.13471
- Steinbeck G, Sinner MF, Lutz M, Muller-Nurasyid M, Kaab S, Reinecke H. Incidence of complications related to catheter ablation of atrial fibrillation and atrial flutter: a nationwide in-hospital analysis of administrative data for Germany in 2014. *Eur Heart J*. 2018;39:4020–4029. doi: 10.1093/eurheartj/ehy452
- Samuel M, Almohammadi M, Tsadok MA, Joza J, Jackevicius CA, Koh M, Behlouli H, Verma A, Pilote L, Essebag V. Population-based evaluation of major adverse events after catheter ablation for atrial fibrillation. *JACC Clin Electrophysiol.* 2017;3:1425–1433. doi: 10.1016/j. jacep.2017.04.010
- Ranasinghe I, Labrosciano C, Horton D, Ganesan A, Curtis JP, Krumholz HM, McGavigan A, Hossain S, Air T, Hariharaputhiran S. Institutional variation in quality of cardiovascular implantable electronic device implantation: a cohort study. *Ann Intern Med.* 2019;171:309–317. doi: 10.7326/M18-2810
- Dodson JA, Reynolds MR, Bao H, Al-Khatib SM, Peterson ED, Kremers MS, Mirro MJ, Curtis JP. Developing a risk model for in-hospital adverse events following implantable cardioverter-defibrillator implantation: a report from the NCDR (National Cardiovascular Data Registry). J Am Coll Cardiol. 2014;63:788–796. doi: 10.1016/j.jacc.2013.09.079
- Calkins H, Hindricks G, Cappato R, Kim Y-H, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, et al. 2017 HRS/EHRA/ ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. *J Arrhythmia*. 2017;33:369–409. doi: 10.1016/j.joa.2017.08.001
- Henderson T, Shepheard J, Sundararajan V. Quality of diagnosis and procedure coding in ICD-10 administrative data. *Med Care*. 2006;44:1011–1019. doi: 10.1097/01.mlr.0000228018.48783.34
- Ng J, Andrew P, Muir P, Greene M, Mohan S, Knight J, Hider P, Davis P, Seddon M, Scahill S, et al. Feasibility and reliability of clinical coding surveillance for the routine monitoring of adverse drug events in New Zealand hospitals. *New Zealand Med J*. 2018;131:46–60.
- 16. Holman CD, Bass AJ, Rouse IL, Hobbs MS. Population-based linkage of health records in Western Australia: development of a health services

research linked database. Aust N Z J Public Health. 1999;23:453–459. doi: 10.1111/j.1467-842X.1999.tb01297.x

- Singh SM, Webster L, Calzavara A, Wijeysundera HC. Validation of algorithms to identify invasive electrophysiology procedures using administrative data in Ontario, Canada. *Med Care*. 2017;55:e44–e50. doi: 10.1097/MLR.00000000000274
- Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand SL. An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with an acute myocardial infarction. *Circulation*. 2006;113:1683–1692. doi: 10.1161/CIRCULATIONAHA.105.611186
- Krumholz HM, Wang Y, Mattera JA, Wang Y, Lein FH, Ingber MJ, Roman S, Normand SLT. An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with heart failure. *Circulation*. 2006;113:1693–1701. doi: 10.1161/CIRCU LATIONAHA.105.611194
- Ranasinghe I, Parzynski CS, Searfoss R, Montague J, Lin Z, Allen J, Vender R, Bhat K, Ross JS, Bernheim S, et al. Differences in colonoscopy quality among facilities: development of a post-colonoscopy risk-standardized rate of unplanned hospital visits. *Gastroenterol.* 2016;150:103–113. doi: 10.1053/j.gastro.2015.09.009
- Pope GC, Kautter J, Ellis RP, Ash AS, Ayanian JZ, Lezzoni LI, Ingber MJ, Levy JM, Robst J. Risk adjustment of medicare capitation payments using the CMS-HCC model. *Health Care Financ Rev.* 2004;25:119–141. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC4194896/pdf/hcfr-25-4-119.pdf
- 22. Hosmer DW, Lemeshow S. Applied Logistic Regression. 1989.
- Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. *J Clin Epidemiol.* 2001;54:774–781. doi: 10.1016/S0895-4356(01)00341-9
- Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. *Ann Intern Med*. 2015;162:W1–W73. doi: 10.7326/M14-0698
- VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value introducing the E-value. Ann Intern Med. 2017;167:268–274. doi: 10.7326/M16-2607
- Andrade C. Multiple testing and protection against a type 1 (false positive) error using the Bonferroni and Hochberg corrections. *Indian J Psychol Med.* 2019;41:99–100. doi: 10.4103/JJPSYM.JJPSYM\_499\_18
- Spiegelhalter DJ. Funnel plots for comparing institutional performance. Stat Med. 2005;24:1185–1202. doi: 10.1002/sim.1970
- Bollmann A, Konig S, Basedow F, Hindricks G, Walker J. Early mortality after catheter ablation of atrial fibrillation. J Am Coll Cardiol. 2020;75:1243–1244. doi: 10.1016/j.jacc.2019.11.066
- Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Poole JE, Noseworthy PA, Rosenberg YD, Jeffries N, Mitchell LB, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. *JAMA*. 2019;321:1261–1274. doi: 10.1001/jama.2019.0693
- Hsu JC, Reynolds M, Song Y, Doros G, Lubitz S, Gehi A, Turakhia M, Maddox T. Variations in quality measure compliance in prescriptions for atrial fibrillation patients among outpatient cardiology practices: insights

from the NCDR pinnacle registry<sup>®</sup>. J Am Coll Cardiol. 2019;73:377. doi: 10.1016/S0735-1097(19)30985-4

- Kirchhof P, Breithardt G, Bax J, Benninger G, Blomstrom-Lundqvist C, Boriani G, Brandes A, Brown H, Brueckmann M, Calkins H, et al. A roadmap to improve the quality of atrial fibrillation management: proceedings from the fifth Atrial Fibrillation Network/European Heart Rhythm association consensus conference. *EP Europace*. 2015;18:37– 50. doi: 10.1093/europace/euv304
- Calkins H, Gliklich RE, Leavy MB, Piccini JP, Hsu JC, Mohanty S, Lewis W, Nazarian S, Turakhia MP. Harmonized outcome measures for use in atrial fibrillation patient registries and clinical practice: endorsed by the Heart Rhythm Society board of trustees. *Heart Rhythm*. 2019;16:e3– e16. doi: 10.1016/j.hrthm.2018.09.021
- Calkins H, Willems S, Gerstenfeld EP, Verma A, Schilling R, Hohnloser SH, Okumura K, Serota H, Nordaby M, Guiver K, et al. Uninterrupted dabigatran versus warfarin for ablation in atrial fibrillation. *N Engl J Med*. 2017;376:1627–1636. doi: 10.1056/NEJMoa1701005
- Scanavacca MI. How to prevent, recognize and manage complications of AF ablation? *Rev Port Cardiol.* 2017;36:43–49. doi: 10.1016/j. repc.2017.09.005
- Cluckey A, Perino AC, Fan J, Askari M, Nasir J, Marcus GM, Baykaner T, Narayan SM, Wang PJ, Turakhia MP. Urinary tract infection after catheter ablation of atrial fibrillation. *Pacing Clin Electrophysiol.* 2019;42:951– 958. doi: 10.1111/pace.13738
- Lewandowski DE, Pierce D, Barnett A, Sampene E, Safdar N, Field ME, Wright JM. Impact of antibiotic prophylaxis on catheter-associated urinary tract infections during atrial fibrillation ablation. *J Interv Card Electrophysiol.* 2018;51:183–187. doi: 10.1007/s10840-018-0325-3
- Ahmed AS, Clark BA, Joshi SA, Nair GV, Olson JA, Padanilam BJ, Patel PJ. Avoiding bladder catheters during atrial fibrillation ablation. JACC: Clin Electrophysiol. 2020;6:185–190. doi: 10.1016/j.jacep.2019.10.003
- Lindsay AC, Bishop J, Harron K, Davies S, Haxby E. Use of a safe procedure checklist in the cardiac catheterisation laboratory. *BMJ Open Quality*. 2018;7:e000074. doi: 10.1136/bmjoq-2017-000074
- Han HC, Ha FJ, Sanders P, Spencer R, Teh AW, O'Donnell D, Farouque O, Lim HS. Atrioesophageal fistula: clinical presentation, procedural characteristics, diagnostic investigations, and treatment outcomes. *Circ Arrhythm Electrophysiol.* 2017;10. doi: 10.1161/ CIRCEP.117.005579
- Teunissen C, Velthuis BK, Hassink RJ, van der Heijden JF, Vonken EPA, Clappers N, Doevendans PA, Loh P. Incidence of pulmonary vein stenosis after radiofrequency catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2017;3:589–598. doi: 10.1016/j.jacep.2017.02.003
- Miyazaki S, Usui E, Kusa S, Taniguchi H, Ichihara N, Takagi T, Iwasawa J, Kuroi A, Nakamura H, Hachiya H, et al. Prevalence and clinical outcome of phrenic nerve injury during superior vena cava isolation and circumferential pulmonary vein antrum isolation using radiofrequency energy. *Am Heart J.* 2014;168:846–853. doi: 10.1016/j.ahj.2014.09.011
- Chen YH, Lu ZY, Xiang Y, Hou JW, Wang Q, Lin H, Li YG. Cryoablation vs. radiofrequency ablation for treatment of paroxysmal atrial fibrillation: a systematic review and meta-analysis. *Europace*. 2017;19:784–794. doi: 10.1093/europace/euw330
- Zhang Z, Letsas KP, Zhang N, Efremidis M, Xu G, Li G, Liu T. Linear ablation following pulmonary vein isolation in patients with atrial fibrillation: a meta-analysis. *PACE*. 2016;39:623–630. doi: 10.1111/pace.12841

# SUPPLEMENTAL MATERIAL

Data S1.

#### **Supplemental Methods**

#### **Risk-Standardized Complication Rate Calculation Algorithm**

We fitted a hierarchical generalized linear model (HGLM), which accounts for the clustering of observations within hospitals. We assume the outcome is a known exponential family distribution and is related linearly to the covariates via a known linked function, *h*. For our model, we assumed a binomial distribution and a logit link function. Further, we accounted for the clustering within facility by estimating a facility-specific effect,  $\alpha_i$ , which is assumed to follow a normal distribution with mean  $\mu$  and variance  $\tau^2$ , the between-facility variance component. The HGLM is defined by the following equations:

$$h(Y_{ij}) = \alpha_i + \beta \mathbf{Z}_{ij}$$
(1)  

$$\alpha_i = \mu + \omega_i; \ \omega_i \sim N(0, \tau^2)$$
(2)  

$$i = 1 \dots I; \ j = 1 \dots n_j$$

Where  $Y_{ij}$  denotes the outcome (equal to 1 if patient has a complication, 0 otherwise) for the *j*th patient who had an AF ablation at the *i*-th hospital;  $\mathbf{Z}_{ij} = (Z_{1ij}, Z_{2ij}, ..., Z_{pij})$  is a set of *p* patient-specific covariates derived from the data; and *I* denotes the total number of hospitals and  $n_i$  the number of ablations performed at hospital *i*. The hospital-specific intercept of the *i*th hospital,  $\alpha_i$ , defined above, is comprised of  $\mu$ , the adjusted average intercept over all hospitals in the sample and  $\omega_i$  the facility-specific intercept deviation from  $\mu$ . A point estimate of  $\omega_i$ , greater or less than 0, determines if hospitals performance is worse or better compared to the adjusted average outcome.

The HGLM was estimated using SAS version 9.4 (SAS Institute Inc., Cary, NC) GLIMMIX procedure. To estimate the covariance matrix, we used the default estimation technique (Residual Log Pseudo-Likelihood).

#### Provider Performance Reporting

Using the HGLM defined by Equations (1) - (2), we estimate the parameters  $\hat{\mu}$ ,  $\{\hat{\alpha}_1, \hat{\alpha}_2, ..., \hat{\alpha}_I\}$ ,  $\hat{\beta}$ , and  $\hat{\tau}^2$ . We calculate a standardized complication rate,  $s_i$ , for each hospital by computing the ratio of the number of predicted complications to the number of expected complications, multiplied by the unadjusted overall complication rate,  $\bar{y}$ . Specifically, we calculate:

Predicted 
$$\hat{y}_{ij}(Z) = h^{-1}(\hat{\alpha} + \hat{\beta} Z_{ij})$$
 (3)

$$\hat{e}_{ij}(Z) = h^{-1}(\hat{\mu} + \hat{\beta} Z_{ij})$$
(4)

$$\hat{s}_{i}(Z) = \frac{\sum_{j=1}^{n_{i}} \hat{y}_{ij}(Z)}{\sum_{j=1}^{n_{i}} \hat{e}_{ij}(Z)} \times \overline{y}$$
(5)

If the "predicted" number of complications is higher (lower) than the "expected" number of complications, then that facility's  $\hat{s}_i$  will be higher (lower) than the unadjusted average.

## **Outlier** Evaluation

Because the statistic described in Equation (5) is a complex function of parameter estimates, we use re-sampling and simulation techniques to derive an interval estimate to determine if a hospital is performing better than, worse than, or no different from its expected rate. A hospital is considered as better than expected if its entire confidence interval falls below the expected rate, and considered worse if the entire confidence interval falls above the expected rate. It is considered no different if the confidence interval overlaps the expected rate.

More specifically, we use a bootstrapping procedure to compute confidence intervals. Because the theoretical-based standard errors are not easily derived, and to avoid making unnecessary assumptions, we use the bootstrap to empirically construct the sampling distribution for each hospital-level risk-standardized rate. The bootstrapping algorithm is described below.

## Bootstrapping Algorithm

Let *I* denote the total number of hospitals in the sample. We repeat steps 1 - 4 below for b = 1, 2, ... B times:

- 1. Sample *I* hospitals with replacement.
- 2. Fit the hierarchical logistic regression model using all patients within each sampled hospital. We use as starting values the parameter estimates obtained by fitting the model to all hospitals. If some hospitals are selected more than once in a bootstrapped sample, we treat them as distinct so that we have *I* random effects to estimate the variance components. At the conclusion of Step 2, we have:
  - a.  $\hat{\beta}^{(b)}$  (the estimated regression coefficients of the risk factors).
  - b. The parameters governing the random effects, hospital adjusted outcomes, distribution,  $\hat{\mu}^{(b)}$  and  $\hat{\tau}^{2(b)}$ .
  - c. The set of hospitals-specific intercepts and corresponding variances:

 $\{\hat{\alpha}_{i}^{(b)}, \, v\hat{ar}(\alpha_{i}^{(b)}); \, i = 1, 2, ..., l\}$ 

- 3. We generate a hospitals random effect by sampling from the distribution of the hospitalspecific distribution obtained in Step 2c. We approximate the distribution for each random effect by a normal distribution. Thus, we draw  $\alpha_i^{(b^*)} \sim N(\hat{\alpha}_i^{(b)}, \hat{var}(\hat{\alpha}_i^{(b)}))$  for the unique set of hospitals sampled in Step 1.
- 4. Within each unique hospital *i* sampled in Step 1, and for each case *j* in that hospital, we calculate  $\hat{y}_{ij}^{(b)}$ ,  $\hat{e}_{ij}^{(b)}$ , and  $\hat{s}_i(Z)^{(b)}$  where  $\hat{\beta}^{(b)}$  and  $\hat{\mu}^{(b)}$  are obtained from Step 2 and  $\hat{\alpha}_i^{(b^*)}$  is obtained from Step 3.

Ninety-five percent interval estimates (or alternative interval estimates) for the hospitalstandardized outcome can be computed by identifying the 2.5<sup>th</sup> and 97.5<sup>th</sup> percentiles of randomly half of the B estimates (or the percentiles corresponding to the alternative desired intervals).

The methods outline above are similar to methods we have previously used to profile institutional variation in procedural outcomes (Reference 20 in the main text).

| Cable S1. ICD-10 AM and ACHI codes used to identify patients undergoing catheter | r |
|----------------------------------------------------------------------------------|---|
| ublation of atrial fibrillation.                                                 |   |

| GROUP     | DISEASE/PROCEDURE                          | ICD10-AM/ACHI codes                  |
|-----------|--------------------------------------------|--------------------------------------|
| Inclusion | Atrial fibrillation                        | I48, I48.0, I48.1, I48.2, I48.9      |
|           | Catheter ablation of arrhythmia circuit or | 38287-01                             |
|           | focus, not elsewhere classified            |                                      |
|           | Catheter ablation of arrhythmia circuit or | 38287-02                             |
|           | focus involving left atrial chamber        |                                      |
|           | Catheter ablation of arrhythmia circuit or | 38290-01                             |
|           | focus involving both atrial chambers       |                                      |
| Exclusion | Atrial flutter                             | I48.3, I48.4                         |
|           | Pre-excitation syndrome                    | I45.6                                |
|           | Supra-ventricular tachycardia              | I47.1                                |
|           | Ventricular tachycardia                    | I47.2, I49.0                         |
|           | Premature beats                            | I49.1, I49.2, I49.3, I49.4           |
|           | Other arrhythmias                          | I47, I47.0, I48, I49.8, I49.9, R00.0 |
|           | Presence of a cardiac device               | Z95.0                                |
|           | Pacemaker implantation                     | 38353-00                             |
|           | Cardiac defibrillator implantation         | 38393-00                             |
|           | Open ablation                              | 38287-03, 38287-04, 38290-02         |

| COMPLICATIONS                     | ICD-10 AM or ACHI codes | Code description                                                                             |
|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------|
| Cardiopulmonary failure and shock |                         |                                                                                              |
| Cardiac arrest                    | I46                     | Cardiac arrest                                                                               |
|                                   | I46.0                   | Cardiac arrest with successful resuscitation                                                 |
|                                   | I46.9                   | Cardiac arrest, unspecified                                                                  |
|                                   | I46.1                   | Sudden cardiac death, so described                                                           |
| Acute respiratory failure         | J96.0                   | Acute respiratory failure                                                                    |
|                                   | J96.00                  | Acute respiratory failure, type I                                                            |
|                                   | J96.01                  | Acute respiratory failure, type II                                                           |
|                                   | J96.09                  | Acute respiratory failure type unspecified                                                   |
| Shock                             | R57.x                   | Cardiogenic shock                                                                            |
|                                   | T81.1                   | Shock during or resulting from a procedure, not elsewhere classified                         |
|                                   | T88.2                   | Shock due to anaesthesia                                                                     |
|                                   | T78.2                   | Anaphylactic shock, unspecified                                                              |
|                                   | T80.5                   | Anaphylactic shock due to serum                                                              |
|                                   | T88.6                   | Anaphylactic shock due to adverse effect of correct drug or medicament properly administered |
| Cardiorespiratory resuscitation   | 92052-00                | Cardiopulmonary resuscitation                                                                |
| Stroke/Transient ischemic attack  |                         |                                                                                              |
| Stroke                            | I64                     | Stroke, not specified as haemorrhage or infarction                                           |
|                                   | I63                     | Cerebral infarction                                                                          |
|                                   | I63.0                   | Cerebral infarction due to thrombosis of precerebral arteries                                |
|                                   | I63.1                   | Cerebral infarction due to embolism of precerebral arteries                                  |
|                                   | I63.2                   | Cerebral infarction due to unspecified occlusion or stenosis of precerebral arteries         |
|                                   | I63.3                   | Cerebral infarction due to thrombosis of cerebral arteries                                   |
|                                   | I63.4                   | Cerebral infarction due to embolism of cerebral arteries                                     |
|                                   | I63.5                   | Cerebral infarction due to unspecified occlusion or stenosis of cerebral arteries            |
|                                   | I63.6                   | Cerebral infarction due to cerebral venous thrombosis, nonpyogenic                           |
|                                   | I63.8                   | Other cerebral infarction                                                                    |
|                                   | I63.9                   | Cerebral infarction, unspecified                                                             |
|                                   | I61                     | Intracerebral haemorrhage                                                                    |

Table S2. Diagnoses and procedure codes used to identify in-hospital and post-discharge complications.

| I61.0 | Intracerebral haemorrhage in hemisphere, subcortical             |
|-------|------------------------------------------------------------------|
| I61.1 | Intracerebral haemorrhage in hemisphere, cortical                |
| I61.2 | Intracerebral haemorrhage in hemisphere, unspecified             |
| I61.3 | Intracerebral haemorrhage in brain stem                          |
| I61.4 | Intracerebral haemorrhage in cerebellum                          |
| I61.5 | Intracerebral haemorrhage, intraventricular                      |
| I61.6 | Intracerebral haemorrhage, multiple localised                    |
| I61.8 | Other intracerebral haemorrhage                                  |
| I61.9 | Intracerebral haemorrhage, unspecified                           |
| I62   | Other nontraumatic intracranial haemorrhage                      |
| I62.0 | Subdural haemorrhage (acute)(nontraumatic)                       |
| I62.1 | Nontraumatic extradural haemorrhage                              |
| I62.9 | Intracranial haemorrhage (nontraumatic), unspecified             |
| I60   | Subarachnoid haemorrhage                                         |
| I60.0 | Subarachnoid haemorrhage from carotid siphon and bifurcation     |
| I60.1 | Subarachnoid haemorrhage from middle cerebral artery             |
| I60.2 | Subarachnoid haemorrhage from anterior communicating artery      |
| I60.3 | Subarachnoid haemorrhage from posterior communicating artery     |
| I60.4 | Subarachnoid haemorrhage from basilar artery                     |
| I60.5 | Subarachnoid haemorrhage from vertebral artery                   |
| I60.6 | Subarachnoid haemorrhage from other intracranial arteries        |
| I60.7 | Subarachnoid haemorrhage from intracranial artery, unspecified   |
| I60.8 | Other subarachnoid haemorrhage                                   |
| I60.9 | Subarachnoid haemorrhage, unspecified                            |
| G45   | Transient cerebral ischaemic attacks and related syndromes       |
| G45.0 | Vertebro-basilar artery syndrome                                 |
| G45.1 | Carotid artery syndrome (hemispheric)                            |
| G45.2 | Multiple and bilateral precerebral artery syndromes              |
| G45.3 | Amaurosis fugax                                                  |
| G45.4 | Transient global amnesia                                         |
| G45.8 | Other transient cerebral ischaemic attacks and related syndromes |
| G45.9 | Transient cerebral ischaemic attack, unspecified                 |

Transient ischemic attack

| Pericardial effusion              |                         |                                                                                      |
|-----------------------------------|-------------------------|--------------------------------------------------------------------------------------|
| Pericardial effusion              | I31.2                   | Haemopericardium, not elsewhere classified                                           |
|                                   | I31.3                   | Pericardial effusion (noninflammatory)                                               |
| Pericardiocentesis                | 3835900                 | Pericardiocentesis                                                                   |
|                                   | 3845000                 | Transthoracic drainage of pericardium                                                |
|                                   | 3845001                 | Thoracoscopic drainage of pericardium                                                |
|                                   | 3845200                 | Subxyphoid drainage of pericardium                                                   |
| Haemothorax or pneumothorax       |                         |                                                                                      |
| Haemothorax                       | J94.2                   | Haemothorax                                                                          |
| Pneumothorax                      | J93                     | Pneumothorax                                                                         |
|                                   | J93.2                   | Iatrogenic pneumothorax                                                              |
|                                   | J93.8                   | Other pneumothorax                                                                   |
|                                   | J93.9                   | Pneumothorax, unspecified                                                            |
| Thoracentesis                     | 3880000                 | Diagnostic thoracentesis                                                             |
|                                   | 3880300                 | Therapeutic thoracentesis                                                            |
|                                   | 3880600                 | Insertion of intercostal catheter for drainage                                       |
| Atrio-oesophageal fistula         |                         |                                                                                      |
| Oesophageal perforation           | K22.3                   | Perforation of oesophagus                                                            |
| Mediastinitis                     | J85                     | Abscess of lung and mediastinum                                                      |
|                                   | J85.3                   | Abscess of mediastinum                                                               |
| Any bleeding                      |                         |                                                                                      |
| Post-procedural                   | R58                     | Haemorrhage, not elsewhere classified                                                |
| haemorrhage/hematoma              | T81.0                   | Haemorrhage and haematoma complicating a procedure, not elsewhere classified         |
|                                   | Y60.5                   | Unintentional cut, puncture, perforation or haemorrhage during heart catheterisation |
| Internal organ bleeding (bleeding | K92.2                   | Gastrointestinal haemorrhage, unspecified                                            |
| from the gastro-intestine,        | 198.3                   | Esophageal varices with bleeding                                                     |
| pulmonary, or urinary system)     | K22.6                   | Gastro-oesophageal laceration-haemorrhage syndrome                                   |
|                                   | K25.0, 25.2, 25.4, 25.6 | Gastric ulcer with haemorrhage                                                       |
|                                   | K26.0, 26.2, 26.4, 26.6 | Duodenal ulcer with haemorrhage                                                      |
|                                   | K27.0, 27.2, 27.4, 27.6 | Peptic ulcer with haemorrhage                                                        |
|                                   | K28.0, 28.4, 28.6       | Gastrojejunal ulcer with haemorrhage                                                 |

|                                   | K29.0    | Acute haemorrhagic gastritis                                                        |
|-----------------------------------|----------|-------------------------------------------------------------------------------------|
|                                   | K62.5    | Haemorrhage of anus and rectum                                                      |
|                                   | K66.1    | Hemoperitoneum                                                                      |
|                                   | K92.0    | Hematemesis                                                                         |
|                                   | K92.1    | Melena                                                                              |
|                                   | R04.0    | Epistaxis                                                                           |
|                                   | R04.1    | Haemorrhage from throat                                                             |
|                                   | R04.2    | Haemoptysis                                                                         |
|                                   | R04.8    | Haemorrhage from other sites in respiratory passages                                |
|                                   | R04.9    | Haemorrhage from respiratory passages, unspecified                                  |
|                                   | N02.x    | Recurrent and persistent haematuria                                                 |
|                                   | R31.0    | Unspecified haematuria                                                              |
|                                   | D62      | Acute post haemorrhagic anaemia                                                     |
| Bleeding requiring blood          | Z51.3    | Blood transfusion without reported diagnosis                                        |
| transfusion                       | 13706-01 | Administration of whole blood                                                       |
|                                   | 13706-02 | Administration of packed cells                                                      |
| Vascular injury                   |          |                                                                                     |
| Vascular injury                   | I72.4    | Aneurysm and dissection of artery of lower extremity                                |
|                                   | I77.0    | Arteriovenous fistula, acquired                                                     |
|                                   | T81.7    | Vascular complications following a procedure, not elsewhere classified              |
| Surgical repair                   | 33142-00 | Repair of false aneurysm in femoral artery                                          |
|                                   | 33139-00 | Repair of false aneurysm in iliac artery                                            |
|                                   | 34121-00 | Repair of simple arteriovenous fistula of extremity with restoration of continuity  |
|                                   | 34121-01 | Repair of complex arteriovenous fistula of extremity with restoration of continuity |
| Vascular intervention             | 45027-01 | Administration of agent into vascular anomaly                                       |
|                                   | 33116-00 | Endovascular repair of aneurysm                                                     |
| <b>Post-procedural infections</b> |          |                                                                                     |
| Sepsis                            | T81.42   | Sepsis following a procedure                                                        |
|                                   | U90      | Healthcare associated infections                                                    |
|                                   | U90.0    | Healthcare associated Staphylococcus aureus bacteraemia                             |
| Pneumonia                         | J13      | Pneumonia due to Streptococcus pneumoniae                                           |
|                                   | J14      | Pneumonia due to Haemophilus influenzae                                             |

|                                | J15           | Bacterial pneumonia, not elsewhere classified           |
|--------------------------------|---------------|---------------------------------------------------------|
|                                | J15.0         | Pneumonia due to Klebsiella pneumoniae                  |
|                                | J15.1         | Pneumonia due to Pseudomonas                            |
|                                | J15.2         | Pneumonia due to staphylococcus                         |
|                                | J15.3         | Pneumonia due to streptococcus, group B                 |
|                                | J15.4         | Pneumonia due to other streptococci                     |
|                                | J15.5         | Pneumonia due to Escherichia coli                       |
|                                | J15.6         | Pneumonia due to other Gram-negative bacteria           |
|                                | J15.7         | Pneumonia due to Mycoplasma pneumoniae                  |
|                                | J15.8         | Other bacterial pneumonia                               |
|                                | J15.9         | Bacterial pneumonia, unspecified                        |
|                                | J18           | Pneumonia, organism unspecified                         |
|                                | J18.0         | Bronchopneumonia, unspecified                           |
|                                | J18.1         | Lobar pneumonia, unspecified                            |
|                                | J18.2         | Hypostatic pneumonia, unspecified                       |
|                                | J18.8         | Other pneumonia, organism unspecified                   |
|                                | J18.9         | Pneumonia, unspecified                                  |
| Endocarditis                   | 133           | Acute and subacute endocarditis                         |
|                                | 133.0         | Acute and subacute infective endocarditis               |
|                                | I33.9         | Acute endocarditis, unspecified                         |
|                                | I38           | Endocarditis, valve unspecified                         |
| Pericarditis                   |               |                                                         |
| Pericarditis                   | I30           | Acute pericarditis                                      |
|                                | I30.0         | Acute nonspecific idiopathic pericarditis               |
|                                | I30.1         | Infective pericarditis                                  |
|                                | I30.8         | Other forms of acute pericarditis                       |
|                                | I30.9         | Acute pericarditis, unspecified                         |
|                                | I24.1         | Dressler's syndrome                                     |
| Post-procedural acute myocardi | al infarction |                                                         |
| Acute myocardial infarction    | I21           | Acute myocardial infarction                             |
|                                | I21.0         | Acute transmural myocardial infarction of anterior wall |
|                                | I21.1         | Acute transmural myocardial infarction of inferior wall |

|                                     | I21.2    | Acute transmural myocardial infarction of other sites      |
|-------------------------------------|----------|------------------------------------------------------------|
|                                     | I21.3    | Acute transmural myocardial infarction of unspecified site |
|                                     | I21.4    | Acute subendocardial myocardial infarction                 |
|                                     | I21.9    | Acute myocardial infarction, unspecified                   |
| Venous thromboembolism              |          |                                                            |
| Pulmonary embolism                  | I26      | Pulmonary embolism                                         |
|                                     | I26.0    | Pulmonary embolism with mention of acute cor pulmonale     |
|                                     | I26.8    | Iatrogenic pulmonary embolism                              |
|                                     | I26.9    | Pulmonary embolism without mention of acute cor pulmonale  |
| Deep vein thrombosis                | I82      | Other venous embolism and thrombosis                       |
|                                     | I82.2    | Embolism and thrombosis of vena cava                       |
|                                     | I82.3    | Embolism and thrombosis of renal vein                      |
|                                     | I82.8    | Embolism and thrombosis of other specified veins           |
|                                     | I82.9    | Embolism and thrombosis of unspecified vein                |
| Post-procedural acute kidney injury | 7        |                                                            |
| Acute kidney injury                 | N99.0    | Postprocedural kidney failure                              |
|                                     | N17      | Acute kidney failure                                       |
|                                     | N17.0    | Acute kidney failure with tubular necrosis                 |
|                                     | N17.1    | Acute kidney failure with acute cortical necrosis          |
|                                     | N17.2    | Acute kidney failure with medullary necrosis               |
|                                     | N17.8    | Other acute kidney failure                                 |
|                                     | N17.9    | Acute kidney failure, unspecified                          |
| Complete atrioventricular block     |          |                                                            |
| Complete heart block                | I44.2    | Atrioventricular block, complete                           |
| Complications requiring cardiac sur | rgery    |                                                            |
| Coronary artery bypass graft        | 38497-00 | Coronary artery bypass, using 1 saphenous vein graft       |
|                                     | 38497-01 | Coronary artery bypass, using 2 saphenous vein grafts      |
|                                     | 38497-02 | Coronary artery bypass, using 3 saphenous vein grafts      |
|                                     | 38497-03 | Coronary artery bypass, using $>= 4$ saphenous vein grafts |
|                                     | 38497-04 | Coronary artery bypass, using 1 other venous graft         |
|                                     | 38497-05 | Coronary artery bypass, using 2 other venous grafts        |
|                                     | 38497-06 | Coronary artery bypass, using 3 other venous grafts        |

|                                | 38497-07 | Coronary artery bypass, using $\geq 4$ other venous grafts                         |
|--------------------------------|----------|------------------------------------------------------------------------------------|
|                                | 38500-00 | Coronary artery bypass, using 1 LIMA graft                                         |
|                                | 38503-00 | Coronary artery bypass, using $\geq 2$ LIMA grafts                                 |
|                                | 38500-01 | Coronary artery bypass, using 1 RIMA graft                                         |
|                                | 38503-01 | Coronary artery bypass, using $\geq 2$ RIMA grafts                                 |
|                                | 38500-02 | Coronary artery bypass, using 1 radial artery graft                                |
|                                | 38503-02 | Coronary artery bypass, using $\geq 2$ radial artery grafts                        |
|                                | 38500-03 | Coronary artery bypass, using 1 epigastric artery graft                            |
|                                | 38503-03 | Coronary artery bypass, using $\geq 2$ epigastric artery grafts                    |
|                                | 38500-04 | Coronary artery bypass, using 1 other arterial graft                               |
|                                | 38503-04 | Coronary artery bypass, using $\geq 2$ other arterial grafts                       |
|                                | 38500-05 | Coronary artery bypass, using 1 composite graft                                    |
|                                | 38503-05 | Coronary artery bypass, using $\geq 2$ composite grafts                            |
|                                | 90201-00 | Coronary artery bypass, using 1 other graft, not elsewhere classified              |
|                                | 90201-01 | Coronary artery bypass, using 2 other grafts, not elsewhere classified             |
|                                | 90201-02 | Coronary artery bypass, using 3 other grafts, not elsewhere classified             |
|                                | 90201-03 | Coronary artery bypass, using $\geq 4$ other grafts, not elsewhere classified      |
|                                | 38456-19 | Other intrathoracic procedures on arteries of heart without cardiopulmonary bypass |
| Surgeries with cardiopulmonary | 38653-01 | Other intrathoracic procedures on atrium with cardiopulmonary bypass               |
| bypass                         | 38653-02 | Other intrathoracic procedures on ventricle of heart with cardiopulmonary bypass   |
|                                | 38653-03 | Other intrathoracic procedures on septum with cardiopulmonary bypass               |
|                                | 38653-04 | Other intrathoracic procedures on aortic valve with cardiopulmonary bypass         |
|                                | 38653-05 | Other intrathoracic procedures on mitral valve with cardiopulmonary bypass         |
|                                | 38653-06 | Other intrathoracic procedures on tricuspid valve with cardiopulmonary bypass      |
|                                | 38653-07 | Other intrathoracic procedures on pulmonary valve with cardiopulmonary bypass      |
|                                | 38653-08 | Other intrathoracic procedures on arteries of heart with cardiopulmonary bypass    |
|                                | 38600-00 | Cardiopulmonary bypass, central cannulation                                        |
|                                | 38603-00 | Cardiopulmonary bypass, peripheral cannulation                                     |
|                                | 38627-01 | Adjustment of cannula for cardiopulmonary bypass                                   |
|                                | 38653-00 | Other intrathoracic procedures on heart with cardiopulmonary bypass                |

In-hospital complications were identified by procedure codes and secondary diagnoses of the index hospitalisation. Post-discharge complications were identified by the procedure codes and the primary discharge diagnosis of hospital readmissions. ACHI = Australian Classification of Health Interventions; AMI = acute myocardial infarction; ICD10-AM = International Classification of Diseases,  $10^{th}$  Revision, Australian Modification.

| Variables | Description                                                          | P value |
|-----------|----------------------------------------------------------------------|---------|
| CC2       | Septicemia/Shock                                                     | 0.012   |
| CC3       | Central Nervous System Infection                                     | 0.195   |
| CC6       | Other Infectious Diseases                                            | < 0.001 |
| CC7       | Metastatic Cancer and Acute Leukemia                                 | 0.001   |
| CC8       | Lung, Upper Digestive Tract, and Other Severe Cancers                | 0.001   |
| CC9       | Lymphatic, Head and Neck, Brain, and Other Major Cancers             | 0.023   |
| CC15      | Diabetes with Renal or Peripheral Circulatory Manifestation          | < 0.001 |
| CC19      | Diabetes without Complication                                        | 0.159   |
| CC21      | Protein-Calorie Malnutrition                                         | 0.000   |
| CC22      | Other Significant Endocrine and Metabolic Disorders                  | 0.009   |
| CC23      | Disorders of Fluid/Electrolyte/Acid-Base Balance                     | < 0.001 |
| CC24      | Other Endocrine/Metabolic/Nutritional Disorders                      | < 0.001 |
| CC28      | Acute Liver Failure/Disease                                          | 0.004   |
| CC29      | Other Hepatitis and Liver Disease                                    | 0.001   |
| CC33      | Inflammatory Bowel Disease                                           | 0.080   |
| CC34      | Peptic Ulcer, Hemorrhage, Other Specified Gastrointestinal Disorders | 0.061   |
| CC36      | Other Gastrointestinal Disorders                                     | 0.000   |
| CC39      | Disorders of the Vertebrae and Spinal Discs                          | 0.031   |
| CC41      | Osteoporosis and Other Bone/Cartilage Disorders                      | 0.124   |
| CC43      | Other Musculoskeletal and Connective Tissue Disorders                | < 0.001 |
| CC45      | Disorders of Immunity                                                | 0.080   |
| CC46      | Coagulation Defects and Other Specified Hematological Disorders      | < 0.001 |
| CC47      | Iron Deficiency and Other/Unspecified Anemias and Blood Disease      | < 0.001 |
| CC48      | Delirium and Encephalopathy                                          | 0.076   |
| CC49      | Dementia                                                             | 0.045   |
| CC53      | Drug/Alcohol Abuse, Without Dependence                               | 0.248   |
| CC58      | Depression                                                           | 0.239   |
| CC60      | Other Psychiatric Disorders                                          | 0.164   |
| CC69      | Spinal Cord Disorders/Injuries                                       | 0.009   |
| CC70      | Muscular Dystrophy                                                   | 0.089   |
| CC75      | Coma, Brain Compression/Anoxic Damage                                | 0.193   |
| CC76      | Mononeuropathy, Other Neurological Conditions/Injuries               | 0.006   |
| CC77      | Respirator Dependence/Tracheostomy Status                            | 0.031   |
| CC79      | CardioRespiratory Failure & Shock                                    | 0.005   |
| CC80      | Congestive Heart Failure                                             | < 0.001 |
| CC81      | Acute Myocardial Infarction                                          | 0.018   |
| CC82      | Unstable Angina and Other Acute Ischemic Heart Disease               | 0.105   |
| CC83      | Angina Pectoris/Old Myocardial Infarction                            | < 0.001 |
| CC84      | Coronary Atherosclerosis/Other Chronic Ischemic Heart Disease        | < 0.001 |
| CC85      | Heart Infection/Inflammation, Except Rheumatic                       | 0.020   |
| CC86      | Valvular and Rheumatic Heart Disease                                 | 0.001   |

| CC89  | Hypertensive Heart and Renal Disease or Encephalopathy      | < 0.001 |
|-------|-------------------------------------------------------------|---------|
| CC91  | Hypertension                                                | < 0.001 |
| CC93  | Other Heart Rhythm and Conduction Disorders                 | < 0.001 |
| CC94  | Other and Unspecified Heart Disease                         | 0.001   |
| CC98  | Cerebral Atherosclerosis and Aneurysm                       | 0.094   |
| CC102 | Speech, Language, Cognitive, Perceptual Deficits            | 0.151   |
| CC104 | Vascular Disease with Complications                         | 0.041   |
| CC106 | Other Circulatory Disease                                   | 0.033   |
| CC108 | Chronic Obstructive Pulmonary Disease                       | < 0.001 |
| CC109 | Fibrosis of Lung and Other Chronic Lung Disorders           | 0.004   |
| CC110 | Asthma                                                      | 0.004   |
| CC111 | Aspiration and Specified Bacterial Pneumonias               | 0.098   |
| CC113 | Viral and Unspecified Pneumonia, Pleurisy                   | 0.000   |
| CC114 | Pleural Effusion/Pneumothorax                               | 0.007   |
| CC115 | Other Lung Disorders                                        | < 0.001 |
| CC120 | Diabetic and Other Vascular Retinopathies                   | 0.033   |
| CC124 | Other Eye Disorders                                         | 0.054   |
| CC127 | Other Ear, Nose, Throat, and Mouth Disorders                | 0.001   |
| CC128 | Kidney Transplant Status                                    | 0.031   |
| CC131 | Renal Failure                                               | < 0.001 |
| CC134 | Incontinence                                                | 0.019   |
| CC135 | Urinary Tract Infection                                     | 0.055   |
| CC136 | Other Urinary Tract Disorders                               | 0.004   |
| CC139 | Other Female Genital Disorders                              | 0.194   |
| CC142 | Miscarriage/Abortion                                        | 0.195   |
| CC143 | Completed Pregnancy With Major Complications                | 0.013   |
| CC144 | Completed Pregnancy With Complications                      | 0.006   |
| CC145 | Completed Pregnancy Without Complications (Normal Delivery) | 0.033   |
| CC146 | Uncompleted Pregnancy With Complications                    | 0.080   |
| CC147 | Uncompleted Pregnancy With No or Minor Complications        | 0.006   |
| CC152 | Cellulitis, Local Skin Infection                            | 0.122   |
| CC156 | Concussion or Unspecified Head Injury                       | 0.028   |
| CC158 | Hip Fracture/Dislocation                                    | 0.242   |
| CC160 | Internal Injuries                                           | < 0.001 |
| CC162 | Other Injuries                                              | < 0.001 |
| CC164 | Major Complications of Medical Care and Trauma              | 0.001   |
| CC165 | Other Complications of Medical Care                         | 0.024   |
| CC166 | Major Symptoms, Abnormalities                               | < 0.001 |
| CC167 | Minor Symptoms, Signs, Findings                             | < 0.001 |
| CC179 | Post-Surgical States/Aftercare/Elective                     | 0.003   |
|       | Female sex                                                  | < 0.001 |
|       | Age                                                         | 0.011   |
|       | Ablation of both atria                                      | 0.002   |
|       | Hypertension                                                | < 0.001 |
|       |                                                             |         |

| Haematological disorders                         | < 0.001 |
|--------------------------------------------------|---------|
| History of pneumonia                             | < 0.001 |
| Musculo-skeletal and connective tissue disorders | < 0.001 |

Comorbidities are defined using the Condition Categories (CC) classification system (18). P

value derived from bivariate analysis with an outcome of major complications as the dependent

variable.

Table S4. Variables included in the risk-adjustment model.

| Variables                                       | OR   | SE   | P value | 95% CI      |
|-------------------------------------------------|------|------|---------|-------------|
| Female                                          | 1.22 | 0.07 | 0.001   | 1.08 - 1.36 |
| Age                                             | 1.01 | 0.00 | 0.002   | 1.00 - 1.01 |
| Year of ablation                                | 0.96 | 0.16 | 0.013   | 0.93 - 0.99 |
| History of ablation in the preceding year       | 0.77 | 0.07 | 0.003   | 0.64 - 0.92 |
| Ablation of both atria                          | 1.32 | 0.08 | < 0.001 | 1.18 - 1.47 |
| Hypertension                                    | 1.34 | 0.11 | < 0.001 | 1.15 - 1.56 |
| Haematological disorders                        | 2.46 | 0.24 | < 0.001 | 2.03 - 2.98 |
| History of pneumonia                            | 2.09 | 0.29 | < 0.001 | 1.60 - 2.73 |
| Musculoskeletal and connective tissue disorders | 1.33 | 0.12 | 0.002   | 1.11 - 1.59 |
| Other lung disorders                            | 1.40 | 0.19 | 0.013   | 1.07 - 1.83 |

OR = adjusted odd ration, CI = confidence intervals, SE = standard error

Table S5. Crude hospital's complication rates.

| Complications                           | Median (Range)         |  |  |  |
|-----------------------------------------|------------------------|--|--|--|
| Primary outcome                         | 5.74% (0.00% - 21.43%) |  |  |  |
| Mortality                               | 0.00% (0.00% - 1.08%)  |  |  |  |
| Cardiorespiratory failure               | 0.00% (0.00% - 1.68%)  |  |  |  |
| Stroke/TIA                              | 0.17% (0.00% - 1.20%)  |  |  |  |
| Pericardial effusion                    | 0.69% (0.00% - 4.82%)  |  |  |  |
| Haemothorax/pneumothorax                | 0.00% (0.00% - 3.57%)  |  |  |  |
| Bleeding                                | 3.75% (0.00% - 17.86%) |  |  |  |
| Vascular injury                         | 0.07% (0.00% - 2.56%)  |  |  |  |
| Infections                              | 0.43% (0.00% - 2.56%)  |  |  |  |
| Pericarditis                            | 0.00% (0.00% - 1.94%)  |  |  |  |
| Procedure-related AMI                   | 0.00% (0.00% - 1.20%)  |  |  |  |
| Venous thromboembolism                  | 0.00% (0.00% - 1.20%)  |  |  |  |
| Acute kidney injury                     | 0.00% (0.00% - 4.00%)  |  |  |  |
| Complications requiring cardiac surgery | 0.00% (0.00% - 3.57%)  |  |  |  |
| Complete AV block                       | 0.00% (0.00% - 3.53%)  |  |  |  |

AMI = acute myocardial infarction, AV = atrioventricular, TIA = transient ischemic attack.



Figure S1. Model calibration per decile of patient's risks.

 $\blacksquare$  Observed risk  $\triangle$  Expected risk



Figure S2. Funnel plot of hospital's risk-standardized complication rates without Winsorisation.



Figure S3. Funnel plot of hospital's risk-standardized complication rate with 10% Winsorisation.