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Abstract: Expressing currents and their fluctuations at the terminals of a multi-probe conductor in
terms of the wave functions of carriers injected into the Fermi sea provides new insight into the
physics of electric currents. This approach helps us to identify two physically different contributions
to shot noise. In the quantum coherent regime, when current is carried by non-overlapping wave
packets, the product of current fluctuations in different leads, the cross-correlation noise, is deter-
mined solely by the duration of the wave packet. In contrast, the square of the current fluctuations in
one lead, the autocorrelation noise, is additionally determined by the coherence of the wave packet,
which is associated with the spread of the wave packet in energy. The two contributions can be
addressed separately in the weak back-scattering regime, when the autocorrelation noise depends
only on the coherence. Analysis of shot noise in terms of these contributions allows us, in particular,
to predict that no individual traveling particles with a real wave function, such as Majorana fermions,
can be created in the Fermi sea in a clean manner, that is, without accompanying electron–hole pairs.

Keywords: single-electron wave packet; shot noise; quantum transport

1. Introduction

Recently, the quantum tomography of a single-electron wave function was demon-
strated experimentally [1,2]. In both experiments, a periodic stream of single-electron
wave packets was mixed with a low-amplitude electrical probe signal at the electron wave
splitter, a quantum point contact, and the resulting electrical noise averaged over long
time was measured. However, if the fluctuations of an electrical current within one output
lead were measured in one experiment, the correlations of currents flowing within both
output leads were measured in another. In a sense, these works are the culmination of a
number of recent works where the cross-correlation noise was measured to count electrons
emitted per period [3,4] to demonstrate a tunable fermionic anti-bunching [4–7], and the
auto-correlation noise at high [8,9] and low [10,11] frequencies was measured to identify a
single-electron emission regime. These experimental advances motivate us to take a closer
look at how exactly the quantum properties of wave packets manifest themselves in the
measured electrical noise [12–14].

Note that tomography of the density profile of solitary electrons was successfully
realized in [15] using the measurement of the electrical current rather than noise.

Here, in contrast to previous works [16–32]—for a review, see in [33]—I will focus
on comparing auto- and cross-correlation noise. I will show that, in the case of a periodic
train of non-overlapping single-electron wave packets scattered off the wave splitter with
reflection probability R, there are two contributions to noise. These contributions can be
addressed separately by measuring both auto- and cross-correlation noise in the weak back-
scattering regime, R� 1. As I will show in the subsequent sections, for a single-electron
wave packet Ψ(t, x) = e−

i
h̄ µtψ(t, x) injected during one period into a one-dimensional

chiral Fermi sea and reflected into a detector at a wave splitter, see Figure 1, the auto-
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correlation, P ex
auto, and cross-correlation, Pcross, noise power, see Equation (10), at frequency

ω and at zero temperature are calculated as follows:

P ex
auto(ω) = R

e2

T0

∞∫
−∞

dτeiωτ Im C(τ)
πτ

, (1)

Pcross(ω) = −R
e2

T0
|N (ω)|2,

where the superscript ex (unnecessary for cross-correlation noise) indicates the excess over
the equilibrium value, e is an electron charge, T0 is a period, C(τ) is the integrated over
time coherence of the wave function envelope, [34,35]

C(τ) =

∞∫
−∞

dtψ∗(t + τ, xD)ψ(t, xD), (2)

and N (ω) is the Fourier transform of the wave packet density,

N (ω) =

∞∫
−∞

dτeiωτ |ψ(τ, xD)|2. (3)

In Equations (2) and (3), xD is the coordinate of the detector used to measure the current.
For simplicity, I assume that the coordinates of both detectors in the outgoing channels
α = 3 and α = 4 are the same. Below, I discard xD and use the following notation:
Ψ(t) ≡ Ψ(t, xD).

P      =  -  RTcross

P     =
 R      

      
 -   

R

auto

2

= 1

= 2 = 4

= 3

β

β

α

α

Figure 1. Shot noise, see Equation (10), of a single-electron wave packet injected on top of the Fermi
sea consists of two parts: One is determined by the density profile of the wave packet, shown as a
filled hump, and the other is determined by both the coherence of the wave packet, shown as a double
hump, and the Fermi sea, shown as a blue line. While the former contributes to both auto-correlation
noise, Pauto, and cross-correlation noise, Pcross, the latter contributes to Pauto only. The solid arrow
indicates the wave packet in incoming channel β = 1, shown as an empty hump. The filled circle
represents the wave splitter with reflection probability R and transmission probability T = 1− R.
The two dashed arrows point to the two outgoing leads α = 3 and α = 4.

Equation (1) is the main result of this work, which shows us that in the weak backscat-
tering regime, the auto-correlation noise and cross-correlation noise are determined by
essentially different quantities. One can say that they provide somehow complementary
information. The cross-correlation noise is sensitive merely to the shape of a wave packet,
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that is, to its duration in time, while the auto-correlation noise is rather sensitive to how
different parts of the wave packet correlate with each other. Such correlations are related to
the spread of the wave packet in energy, which is supported by the reasoning in [9] that
only those particles whose energy exceeds the Fermi energy by more than h̄ω contribute to
the auto-correlation noise at the frequency ω.

Below, I use three known wave functions of particles injected into the Fermi sea by
various electronic sources and calculate the corresponding auto- and cross-correlation noise
in accordance with Equation (1). These results provide additional evidence of the duality
of the information provided by both types of noise.

A Lorentzian voltage pulse, one per period, eV(t) = 2h̄Γτ

(
t2 + Γ2

τ

)−1, applied to
the Fermi sea with energy µ and at zero temperature creates a single-electron wave
packet [36,37], named a leviton [4]. This excitation should be understood in such a way
that the voltage pulse shakes the Fermi sea and excites just a single electron on its surface
[38]. The wave function of a leviton, ΨL(t) = e−

i
h̄ µtψL(t), has the following envelope

function [39],

ψL(t) =
1√
πΓτ

Γτ

t− iΓτ
. (4)

Here, the subscript τ indicates that Γτ is the half-width of the wave packet in time. I assume
Γτ � T0 to avoid overlap between the successive wave packets.

Using the above equation in Equation (1), I calculate

P ex,L
auto(ω) = −P L

cross(ω) = R
e2

T0
e−|ω|2Γτ . (5)

The fact that the auto- and cross-correlation noise show the same frequency dependence
is because there is only one time parameter in the problem, Γτ , which defines both the
characteristic energy of the wave packet, h̄/(2Γτ) [39], and the characteristic width in time
of the wave packet, 2Γτ .

In the next example, the shape and the energy distribution are not related so tight and
P ex

auto(ω) and −Pcross(ω) become different.
Let us consider a quantum level of half-width δ filled with one electron and tunnel-

coupled to a one-dimensional Fermi sea at zero temperature. The energy of a level raises at
a constant rapidity c, and crosses the Fermi level at t = 0 when an electron is injected into
the Fermi sea. Such regime of injection can be realized using the quantum capacitor [40–42].
The wave function of the injected electron was calculated in [43], Ψc(t) = e−

i
h̄ µtψc(t), with

ψ(c)(t) =
1√
πΓτ

∞∫
0

dxe−xe−ix t
Γτ eix2 τD

Γτ , (6)

where Γτ = δ/c is the crossing time, the time it takes for a raising widened quantum
level to cross the Fermi level, τD = h̄/(2δ) is the dwell time, an average time spent an
electron on a quantum level before escaping to the Fermi sea provided that such an escape
is possible, that is, after the quantum level has risen above the Fermi level. Note that if
τD � Γτ , then ψc, Equation (6), is essentially ψL, Equation (4). Notice, to get a stream of
electrons we need a set of levels. Subsequent crossings occur with a delay of T0 � Γτ , τD.
Now Equations (1) and (6) give us

P ex,c
auto(ω) = R

e2

T0
e−|ω|2Γτ , (7)

P c
cross(ω) = −R

e2

T0

e−|ω|2Γτ

1 + (ωτD)
2 .
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For this model, the crossing time 2Γτ is the only parameter that determines the energy
distribution, the same as for the source of levitons [44]. This is why the auto-correlation
noise is the same as in the first example.

However, the shape of the wave packet is different from that of a leviton. It is deter-
mined by both time parameters Γτ and τD. Namely, if the dwell time is comparable with the
crossing time, τD & Γτ , the density profile becomes larger than 2Γτ , asymmetric, and with
some wavy structure developing at later times. All this leads to additional suppression of
N (ω) and P c

cross(ω) with increasing frequency compared to the first example. In the case
when τD � Γτ , the dwell time, not the crossing time, determines how the cross-correlation
noise decreases with frequency.

The connection between the auto-correlation noise and energy becomes even more
transparent in the final example, where the dwell time is the only characteristic time.

The final (third) example is injection from a quantum dot with the equidistant ladder
of levels, which is suddenly raised by one level spacing ∆ at t = 0 [42,45]. The Fermi level
is exactly between the two successive levels. The probability of tunneling between the dot
and the Fermi sea is small. The wave function, Ψ∆(t) = e−

i
h̄ µtψ∆(t), has an envelope [35,46]

ψ∆(t) = θ(t)
e−iω0t
√

τD
e−

t
2τD . (8)

Here, θ(t) is the Heaviside step function and h̄ω0 = ∆/2. Notice, in this case, the wave
packet width is determined by the dwell time, while the energy of an injected electron is
h̄ω0, which is unrelated to τD.

For not too large frequencies, ω � ∆/h̄, the straightforward calculations based on
Equation (1) lead to the following result (see Appendix A for details):

P ex,∆
auto (ω) = R

e2

T0
, (9)

P∆
cross(ω) = −R

e2

T0

1

1 + (ωτD)
2 .

As the particles are injected far above the Fermi sea, ∆/2 � h̄ω, all of them contribute
to noise. As a result, there is no energy related suppression (for ω � ∆/h̄ and R � 1).
Therefore, the auto-correlation noise is independent on frequency. On the other hand,
the density profile has a finite width, τD. Therefore, the cross-correlation noise gets
suppressed at ω ≥ τ−1

D .
One more important conclusion can be drawn from Equation (1). In the case when

a single-particle envelope wave function, ψ, is real-valued, for example, as for Majorana
fermions [47,48], the corresponding contribution to the auto-correlation noise is identically
zero in the weak backscattering regime. I emphasize that this conclusion applies to traveling
single particles in the Fermi sea, and not to localized states.

For some injection protocols the auto-correlation noise is also zero for R = 1, see
in [49].

Note that the charge conservation impliesP ex
auto(0)+Pcross(0) = 0, see Appendix B.3 [14].

This fact imposes some indirect constraint on the wave function of a single-electron wave
packet that can be injected into a one-dimensional Fermi sea. In particular, no single
particle with a real wave function can be injected in a clean manner, that is, without ac-
companying electron–hole pairs. Indeed, as Equation (1) predicts, the cross-correlation
noise at zero frequency is not zero, Pcross(0) = −Re2/T0 6= 0. While in the case of a
real-valued wave function, the excess auto-correlation noise vanishes for any frequency,
P ex

auto(ω) = 0. To eliminate the apparent violation of charge conservation and ensure
P ex

auto(0) = −Pcross(0) 6= 0, we must assume that if such a particle is injected, then the
additional excitations are unavoidable created. The example is a half-leviton [50], a particle
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with a real wave function whose creation is accompanied by the creation of an electron–
hole cloud.

The rest of the paper is structured as follows. In Section 2, within the framework of
the Floquet scattering matrix approach, a connection is established between the correlation
functions of the electrical current, the auto- and cross-correlation noise power, and the
first-order correlation function of a periodic stream of electrons injected into a chiral Fermi
sea. This relationship allows a detailed analysis of the similarities and differences between
auto- and cross-correlation noise, which is illustrated in Section 3 using some examples.
The conclusion is given in Section 4. Some technical details of calculations are presented in
Appendices A–D.

2. Electrical Noise and Electron Correlation Function

In general, an external source is required to pass current through a conductor. The role
of the source can be played, for example, by a constant or time-dependent voltage applied
across a conductor; a time-dependent gate voltage, which changes the position of the
quantum levels of electrons in a part of the conductor; etc. If the characteristics of the source
are known, the current can be calculated. In the quantum coherent regime, when the current
is carried by individual electrons, the characteristics of carriers, for example, their wave
function, also can be calculated using the characteristics of the source. The measurements of
electrical current and its fluctuations were already used to acquire information on quantum
state of carriers [1,2,15]. Therefore, it is desirable to have a direct relation between the
electrical and electron characteristics without explicit recursion to the characteristics of
the source. Some efforts in this direction have already been made [44,50–52]. Below the
fluctuations of an electrical current are expressed in terms of the wave functions, more
precisely, in terms of the excess first-order correlation function [17,18,35,46] of electrons
responsible for those fluctuations.

To be specific, here I am interested in a quantum coherent conductor connected via
one-channel (chiral) leads [53] to several electron reservoirs in equilibrium. Some (or all)
incoming leads are fed by external sources working periodically with period T0.

Below, I use the theory of non-interacting electrons. This is justified by the fact that
such a theory has proved useful in describing the injection of single electrons [4,42], the re-
sults of quantum tomography of single electrons [1,2], and, in particular, the frequency-
dependent noise [8,9] of interest here.

2.1. Frequency-Dependent Noise

The correlation function of currents, Iα, Iα′ , flowing in leads α and α′ of a multi-terminal
conductor are defined as follows [14]:

Pαα′(ω) =

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ

{〈
Îα(t + τ) Îα′(t) + Îα′(t) Îα(t + τ)

〉
2

− Iα(t + τ)Iα′(t)

}
, (10)

where Îα and Iα =
〈

Îα

〉
are an operator in second quantization and a corresponding

measurable for a current in the lead α; the angular brackets 〈. . . 〉 denote the quantum
statistical average; for a periodic drive, T0 is a period, for a non-periodic drive T0 → ∞.
Note the difference in the factor of 2 compared to the definition used in [14].

The current operator Îα is expressed in terms of creation and annihilation operators
â†

α(E), âα(E) of electrons with energy E incoming from the reservoir α and operators
b̂†

α(E), b̂α(E) of electrons with energy E scattered into the reservoir α [54]. In the wide band
limit, that is, when the relevant energy scales, such as a voltage applied, a temperature,
the energy quantum h̄Ω with Ω = 2π/T0, etc., are all small compared to the Fermi energy
µα, the current operator reads [55],

Îα(t) =
e
h

∫∫
dEdE′ei E−E′

h̄ t
{

b̂†
α(E)b̂α(E′)− â†

α(E)âα(E′)
}

. (11)
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In the case of a periodically driven conductor, the operators b̂α are related to various
operators âα via the elements of the unitary Floquet scattering matrix SF [56],

b̂α(E) = ∑
β

∞

∑
n=−∞

SF,αβ(E, En)âβ(En), (12)

where the short notation En = E + nh̄Ω is introduced. Charge conservation requires the
scattering matrix to be unitary, which means

∑
γ

∞

∑
n=−∞

S∗F,γα(En, Em)SF,γβ(En, E) = δαβδm,0,

(13)

∑
γ

∞

∑
n=−∞

S∗F,αγ(Em, En)SF,βγ(E, En) = δαβδm,0,

where δn,0 is the Kronecker delta.
Equation (12) allows to express the quantum-statistical average of the product of b-

operators in terms of that of a-operators. Because the reservoirs are in equilibrium, the latter
average is known. In the case of reservoirs of non-interacting electrons forming the Fermi
sea, we have

〈
â†

β(E)âβ(E′)
〉

= fβ(E)δ(E− E′), where fβ(E) is the Fermi distribution

function with temperature θβ and chemical potential µβ, and δ(E− E′) is the Dirac delta.

2× 2 Circuit

Our aim is to compare auto- and cross-correlation noise. The minimal circuit that
allows cross-correlation noise is an electronic wave splitter, a quantum point contact (QPC)
with two incoming, β = 1, 2, and two outgoing, α = 3, 4, channels, see Figure 1.

Below, I am interested in current fluctuations in outgoing channels, that is, α, α′ = 3, 4
in Equation (10). For this case, the general equation for noise within the Floquet scattering
matrix approach [57,58] gives us

P33(ω) =
e2

h

∫
dE
{

F33(E, E + h̄ω) +
∞

∑
n,m,q=−∞

2

∑
δ=1

2

∑
γ=1

Fγδ(Eq + h̄ω, E)

×S∗F,3δ(En, E)SF,3δ(Em, E)S∗F,3γ(Em + h̄ω, Eq + h̄ω)SF,3γ(En + h̄ω, Eq + h̄ω)
}

, (14a)

and

P34(ω) =
e2

h

∫
dE

∞

∑
n,m,q=−∞

2

∑
δ=1

2

∑
γ=1

Fγδ(Eq + h̄ω, E)S∗F,3δ(En, E)SF,4δ(Em, E)

×S∗F,4γ(Em + h̄ω, Eq + h̄ω)SF,3γ(En + h̄ω, Eq + h̄ω), (14b)

with

Fγδ(E1, E) =
fγ(E1) + fδ(E)

2
− fγ(E1) fδ(E). (15)

Let us also introduce excess noise, that is, an increase in noise due to the source, which is
defined as the following difference:

P ex
αα′(ω) = Pαα′(ω)−P o f f

αα′ (ω), (16)

where the upper index o f f indicates that the source is switched off.



Entropy 2021, 23, 393 7 of 27

I suppose a unitary 2× 2 scattering matrix of the QPC to be energy-independent,

SQPC =

( √
R i

√
T

i
√

T
√

R

)
, (17)

a real number 0 ≤ R ≤ 1 is the reflection probability, the transmission probability T = 1−R.
We need an energy independent SQPC in order to use noise to get information on injected
wave packets only. If the properties of the electronic circuit that connects the incoming
and outgoing channels do depend on energy, the outgoing signal also carries nontrivial
information about the circuit [59].

In addition, for the sake of simplicity, I suppose that the periodic source is present
only in the incoming channel β = 1. This source characterized by the Floquet scattering
amplitude, which is a matrix in an energy space with elements SF(E, En). The results
presented below can be directly generalized to the case when another source is added in
the second incoming channel, see Appendix B.4.

For the circuit with single source and single QPC, the elements of the total Floquet
scattering matrix are represented as follows:

SF,31(E, En) =
√

RSF(E, En),

SF,41(E, En) = i
√

TSF(E, En),

(18)

SF,32(E, En) = i
√

Tδn,0,

SF,42(E, En) =
√

Rδn,0.

All other elements are zero.

2.2. First-Order Correlation Function

To characterize a quantum state injected by the source into a ballistic one-dimensional
electronic waveguide, I use the first-order correlation function, G(1). This function is defined
as a quantum statistical average of the product of two field operators for electrons calculated
in the electronic wave-guide β just after the source, G(1)β (t1; t2) =

〈
Ψ̂†

β(t1)Ψ̂β(t2)
〉

[17].
Strictly speaking, this object is a 2× 2 matrix in the spin space. However, here I consider
the spin-polarized case and suppress the spin index.

When the source is placed in lead β = 1 and is characterized by the Floquet scattering
amplitude, SF(En, E), the corresponding correlation function is calculated as follows [51]:

vµG(1)1 (t + τ; t) =
1
h

∫
dE f1(E)e

i
h̄ Eτ

∞

∑
n,m=−∞

eiΩnτeiΩ(n−m)tS∗F(En, E)SF(Em, E). (19)

Here, vµ is a velocity of electrons at the Fermi level, which is originated from the density of
states being energy independent in the wide band limit used here.

When the source is switched off, SF(En, E) = δn,0, the above equation is reduced to
the correlation function of the Fermi sea in equilibrium, which depends on the difference
of times rather than on two times separately. I denote the equilibrium correlation function
by the complementary subscript 0 and obtain for lead β,

[
G(1)0,β (τ) ≡ G

(1)
0,β (t + τ; t)

]

vµG(1)0,β (τ) =
1
h

∫
dE fβ(E)ei E

h̄ τ =
eiτ

µβ
h̄

2πi

1/τθβ

sinh
(

τ/τθβ

) . (20)

Here, τθβ
= h̄/(πkBθβ) is the thermal coherence time for the reservoir, where the lead β is

attached to.
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The difference of correlation functions with the source being on and off is the excess
correlation function, which characterizes what is injected by the source into an electron
waveguide β = 1 [18],

G(1)
1 (t1; t2) = G(1)1 (t1; t2)− G

(1)
0,1 (t1 − t2). (21)

In the case when the source injects a single electron with wave function Ψ(t) per period,
the excess correlation function during that period takes on a very simple form, G(1)

1 (t1; t2) =

Ψ∗(t1)Ψ(t2). In the case of injection of N electrons, G(1)
1 (t1; t2) = ∑N

j=1 Ψ∗j (t1)Ψj(t2) [20].

2.3. Noise Power in Terms of G(1)

For non-interacting electrons, the correlation function G(1) contains complete informa-
tion about the system of electrons. In particular, all measurables can be expressed in terms
of correlation function, see, e.g., in [51] for some examples. Such expressions are notably
useful when transport is due to only a few electrons per period.

Here, I express the excess noise in terms of G(1) in the case when all incoming channels
have the same temperature θβ = θ and Fermi energy µβ = µ. Therefore, the equilibrium

electronic correlation functions are the same, G(1)0,β = G(1)0 . For more general case and for
details of calculations, see Appendix B.

First, let us substitute Equations (15) and (18) into Equation (14) and calculate the excess
noise, Equation (16). As a result, I find for the auto-correlation noise (see Equation (A20)),

P ex
33 (ω) = e2v2

µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ

{
− R2

∣∣∣G(1)
1 (t + τ; t)

∣∣∣2 − 2R ReG(1)
1 (t + τ; t)G(1)∗0 (τ)

}
, (22a)

and for the cross-correlation noise (see Equation (A24)),

P34(ω) = −RTe2v2
µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)

1 (t + τ; t)
∣∣∣2. (22b)

The above equations are the central result of this work.
Notice that when all reservoirs are in the same conditions, cross-correlation noise

disappears when the source is turned off. This is why the superscript ex is omitted.
The important difference between auto- and cross-correlation noise

(Equations (22a) and (22b)) is that the latter is determined solely by what is injected by the
source, while the former in addition depends explicitly on the properties of the Fermi sea.

The part of the noise that is determined by
∣∣∣G(1)

1

∣∣∣2 depends on the possible quantum
exchange [14] between the injected electrons. At zero temperature and when electrons are
injected one at a time without overlapping, this part of the noise is reduced to the product
of currents in Equation (10). In the wide band approximation used here, the electric current
is proportional to the density profile of the wave packet, hence Equation (1), the second line.

In contrast, the part of the noise that is determined by the product of G(1)
1 and G(1)0

takes into account the quantum exchange of an injected electron and electrons of the
Fermi sea. Such an exchange does not contribute to cross-correlation noise, unless the two
incoming Fermi seas are different, see Equation (A23).
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The formal difference between the auto- and cross-correlation noise becomes especially
pronounced in the weak back-scattering regime, R � 1, when we can discard the terms
∼ R2 in Equation (22) and get the following,

P ex
33 (ω) = −Re2v2

µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ2ReG(1)
1 (t + τ; t)G(1)∗0 (τ),

(23)

P34(ω) = −Re2v2
µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)

1 (t + τ; t)
∣∣∣2.

Notice that using Equation (20) for G(1)0 at zero temperature, θ = 0 ⇒ τθ → ∞, and for

a single-particle injection, G(1)(t + τ; t) = ei µ
h̄ τψ∗(t + τ)ψ(t), we arrive at Equation (1)

with P ex
auto = P ex

33 and Pcross = P34, where integration over t is extended to infinity, as the
duration of the wave packet is much less than the period T0.

3. Examples

In this section, I will consider two examples: one when auto- and cross-correlation
noise are perfectly anti-correlated at any frequency, and the other when they can be different.
The corresponding equations are valid for arbitrary R, and not only for R � 1, as in the
examples given in the introductory section.

3.1. Energy-Independent Source

In the case when the properties of the source do not change on the scale of the
energy of the injected particles, the corresponding Floquet scattering amplitude can be
represented as a Fourier coefficient of a certain energy-independent scattering amplitude,

SF(En, E) =
∫ T0

0
dt
T0

e2πin t
T0 S(t) [46,56]. In a one-dimensional case, unitarity implies that

S(t) is a pure phase factor, that is, |S(t)|2 = 1. For example, if a voltage V(t) plays the role
of a source, then this phase factor reads S(t) = exp

(
i e

h̄

∫ t dt′V(t′)
)

.

In such a case, Equation (19) gives us G(1)1 (t1; t2) = S∗(t1)S(t2)G
(1)
0,1 (t1 − t2). Note

that G(1)0,1 describes the Fermi sea in equilibrium at temperature θ1. Using this result in
Equation (22), and taking into account that

G(1)
1 (t1; t2) = {S∗(t1)S(t2)− 1}G(1)0,1 (t1 − t2), (24)

we find that the excess auto- and cross-correlation noise are perfectly anti-correlated at any
frequency,

P ex
33 (ω) + P34(ω) = 0, (25)

not only at zero frequency, ω = 0, as the charge conservation requires [14]. An example
was shown in Equation (5).

For R = 1, when cross-correlation noise does not exist, that is, formally P34 = 0,
the above equation tells us that whatever emitted by the source under consideration is
silent on any frequency, the excess auto-correlation noise is zero, P ex

33 (ω) = 0. In particular,
any voltage applied to a ballistic channel produces no excess noise at any frequency. Note
that for a generic source injecting electrons into a ballistic waveguide, a similar conclusion
can be drawn for noise only at zero frequency, see Equation (A25). Note that in the case
of R = 1, zero excess auto-correlation noise tells us nothing about the number of excited
particle–hole pairs. In order to count the number of excitations, we need a wave-splitter
with R < 1.
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Some general conclusions can be made regarding the effect of temperature on noise.
Indeed, Equations (20) and (24) allow us to relate the excess correlation function at zero
(the extra subscript 0) and non-zero (the extra subscript θ) temperatures as follows:

G(1)
1,θ (t + τ; t) =

τ/τθ

sinh(τ/τθ )
G(1)

1,0 (t + τ; t). (26)

Then, I use the above equation in Equations (22a) and (22b), utilize the inverse Fourier
transformation with respect to ω, and express the noise at temperature θ, P ex

θ , in terms of
the noise at zero temperature, P ex

0 , as follows,

P ex
θ (ω) =

∞∫
−∞

dτeiωτ

(
τ/τθ

sinh(τ/τθ )

)2 ∞∫
−∞

dω′

2π
e−iω′τP ex

0
(
ω′
)
. (27)

Here, I introduce P ex ≡ P ex
33 = −P34 according to Equation (25).

3.2. Injection from a Quantum Level Raising at a Constant Rapidity

Now, let us consider a single-electron injection from a source, whose properties
depend on energy. The corresponding scattering amplitude and the wave function of
the injected electron were discussed in [43] at zero temperature and in [60] at nonzero
temperatures. In this case, the auto- and cross-correlation noises do not stick together
unless at zero frequency.

At zero temperature, the excess correlation function is vµG(1)
1 (t + τ; t) = ei µ

h̄ τψ(c)∗

(t + τ)ψ(c)(t), where ψ(c) is shown in Equation (6). Using this equation in Equations (22a)
and (22b) and assuming that the width of the wave packet is small compared to the period,
max(Γτ , τD)� T0, I find (see Appendix C for details),

P ex
33 (ω) = R

e2

T0

T + (ωτD)
2

1 + (ωτD)
2 e−|ω|2Γτ ,

P34(ω) = −R
e2

T0

T

1 + (ωτD)
2 e−|ω|2Γτ . (28)

At R� 1 (T ≈ 1), Equation (7) is reproduced.
The above equations are illustrated in Figure 2 in the case of 2Γτ � τD, when the

difference between them is most pronounced. As I have already discussed in the introduc-
tion after Equation (7), the excess auto-correlation noise and the cross-correlation noise
demonstrate significantly different dependencies on frequency. The cross-correlation noise
(its absolute value) decreases monotonically with frequency, see Figure 2, a red dashed line.
In contrast, the excess auto-correlation noise is non-monotonically dependent on frequency,
which is a manifestation of the existence of two contributions. The first contribution, which
is responsible for the quadratic increase at low frequencies, is similar to the cross-correlation
noise, compare the first term in Equations (22a) and (22b), while the second contribution is
different. This contribution dominates in the limit of T → 1 and at high frequencies, see a
black solid line in Figure 2.
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Figure 2. The excess auto- (solid lines) and cross-correlation (a red dashed line) noise is shown as
a function of the frequency ω at zero temperature, see Equation (28). The cross-correlation noise,
P ≡ P34, is given in units of RTe2/T0. The excess auto-correlation noise, P ≡ P ex

33 , is given in units
of Re2/T0 for T = 0.999 (a black line), T = 0.7 (a blue line), T = 0.4 (a green line), and T = 0.1 (an
orange line). The parameter 2Γτ/τD = 0.1.

At non-zero temperature, θ > 0, auto- and cross-correlation noise is modified by the
same factor, P ex

33,θ(ω) = η(ω, θ)P ex
33 (ω) and P34,θ(ω) = η(ω, θ)P34(ω) (see Appendix D

for details), where

η(ω, θ) = e|ω|2Γτ

∞∫
−∞

dx
π

eixω2Γτ

x2 + 1

(
x2Γτ/τθ

sinh(x2Γτ/τθ )

)2
. (29)

The thermal coherence time τθ is defined after Equation (20).
Interestingly, the above equation is independent of the dwell time τD = h̄/(2Γτc),

where c is a rapidity, see Equation (6). Therefore, the same factor η(ω, θ) applies for the
case of τD = 0, which is the case for the source of levitons of half-width Γτ . However, this
analogy is not complete.

Namely, for the case of levitons, the noise at non-zero temperatures can be expressed
directly in terms of the noise at zero temperature, see Equation (27). On the contrary, for the
case of electrons emitted from the quantum level, this is generally not the case due to factors
that depend on ωτD. Yet, in the weak backscattering regime, R� 1, the auto-correlation
noise obeys Equation (27), because it has no such factors, see Equation (7).

The temperature-dependent factor η(ω, θ), Equation (29), is shown in Figure 3 for sev-
eral frequencies ω. Remarkably, the maximum occurs at ωτθ ∼ 1, which is independent of
properties of the source. The non-monotonic temperature behavior at non-zero frequencies
is due to two counteracting effects, both due to the fact that the quantum state of electrons
injected at non-zero temperatures is a mixed quantum state [51].

The first effect, which leads to noise suppression, comes from the fact that each
component of a mixed state is scattered independently at the wave splitter. As a result,
the effect of charge quantization becomes less pronounced, and shot noise decreases with
increasing temperature. At θ � θ0, where the characteristic temperature, θ∗, is determined
by the energy of an injected electron, kBθ0 = h̄/(2πΓτ), the shot noise decays as θ0/θ [61].

Suppression of a zero-frequency shot noise with temperature has been reported
in [3,7,62,63]. For the source of levitons, this effect was predicted in [19].
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Figure 3. The factor η(ω, θ), Equation (29), is shown as a function of the temperature θ for
ω = n/(2Γτ) with n = 0 (blue), n = 1 (green), n = 2 (black), n = 3 (orange), and n = 4 (red).
The parameter θ0 is such a temperature when the thermal coherence length is equal to the width of
the wave packet: θ0 = h̄/(πkB2Γτ).

The second effect, leading to an increase in noise, is associated with an effective
broadening of the energy distribution of injected particles due to the broadening of the
probability density of the components of the mixed state with increasing temperature,
p(ε) = −∂ f1(ε)/∂ε, see Equation (A40). As a result, the injected particle is more likely to
be able to emit energy h̄ω in order to contribute to noise at frequency ω [9]. This increase
reaches saturation at 4kBθ ∼ h̄ω, which leads to the maxima in Figure 3.

4. Conclusions

The finite-frequency fluctuations of an electric current in multi-terminal conductors
were analyzed at zero as well as non-zero temperatures. The focus was on the quantum
coherent regime, when the current is carried by non-overlapping single-particle wave
packets periodically injected into a unidirectional, chiral wave guide.

To highlight similarities and differences between auto- and cross-correlation noise,
the fluctuations of an electric current were expressed in terms of the wave functions of
injected electrons, bypassing the use of explicit source characteristics. Two contributions
to shot noise have been identified. The first, which depends on the possible quantum
exchange between the injected electrons, determines the cross-correlation noise and part
of the auto-correlation noise. In the case of single-particle injection at zero temperature,
this part is determined by the density profile of the injected wave packets. The second
contribution, which depends on the quantum exchange of an injected electron and electrons
of the Fermi sea, contributes only to the auto-correlation noise. This part is determined by
the coherence of the injected wave packets multiplied by the coherence of the Fermi sea.

At zero frequency, the charge conservation tightly links both contributions to shot
noise. Such a connection allows us to make some general conclusions related to the
properties of excitations that can be injected/created in the Fermi sea. In particular, no
excitations with a real wave function can be created in the Fermi sea without accompanying
electron–hole pairs, which follows from the fact that otherwise Equation (1) would be
incompatible with the conservation of charge [14]. At non-zero frequencies, the two
contributions in question are generally different. They can be addressed separately by
measuring both auto- and cross-correlation noise in the weak backscattering regime, R� 1.

For several experimentally available single-electron sources for which the wave func-
tion was calculated, I calculated and compared auto- and cross-correlation noise. For the
family of so-called energy-independent sources, the source of leviton [4] is an example,
the contribution related to the density profile and the contribution related to the coherence
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of the wave packet turn out to be the same, see Equation (5). Therefore, the auto- and
cross-correlation noises are the same (up to the minus sign) at any frequency, not only
at zero frequency as the charge conservation requires, see Equation (25). For another
source, which relies on tunneling [42], the two contributions are manifestly different, see
Equations (7) and (9) for different working regimes of the source.

I analyzed the effect of temperature on shot noise in the case when electrons are
injected on top of the Fermi. It turns out that temperature affects both contributions equally,
see Equation (29) for the temperature-dependent factor. As one of the contributions to
shot noise depends on the quantum state of electrons in the Fermi sea, I conclude that
temperature affects the quantum state of both the electrons in the Fermi sea and the injected
electrons in the same way. Namely, a pure state at zero temperature becomes a mixed
state at non-zero temperatures [51]. At zero frequency, changing the quantum state from
pure to mixed leads to noise suppression, while at non-zero frequencies, the temperature
dependence of noise is non-monotonic, see Figure 3. The temperature-dependent factor
peaks when the thermal coherence time becomes of the order of the inverse of the frequency
at which the noise is measured. Importantly, the position of this maximum does not depend
on the properties of the sources of electrons under consideration.

Funding: This research was funded by the Ministry of Education and Science of Ukraine, project
No. 0119U002565.

Acknowledgments: I acknowledge the warm hospitality and support of Tel Aviv University. I am
grateful to Pascal Degiovanni for stimulating discussions.
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Appendix A. Auto-Correlation Noise from Equation (9)

After substituting Equation (8) into Equation (1), the first line, I get

P ex
auto(ω) = R

e2

T0

∞∫
0

dt
τD

∞∫
−t

dτeiωτ sin(ω0τ)

πτ
e−

t+τ/2
τD . (A1)

To integrate with respect to t, I split the integration area into two and interchange the order
of integration,

∞∫
0

dt
∞∫
−t

dτ =

∞∫
0

dτ

∞∫
0

dt +
0∫

−∞

dτ

∞∫
−τ

dt.

Then, I have

P ex
auto(ω) = R

e2

T0
η(ω), (A2)

η(ω) =

∞∫
0

dτ cos(ωτ)e−
τ

2τD
2 sin(ω0τ)

πτ
.

The suppression factor η(ω) is shown in Figure A1.



Entropy 2021, 23, 393 14 of 27

0.0 0.5 1.0 1.5 2.0
Ω�Ω0

0.2

0.4

0.6

0.8

1.0
ΗHΩL

Figure A1. A frequency-dependent suppression factor η(ω), Equation (A2). The frequency ω is
given in units of ω0 = ∆/(2h̄), see Equation (8). The product ω0τD = 20.

Let us first consider the case of ω = 0, when

η(0) =

∞∫
0

dτe−
τ

2τD
2 sin(ω0τ)

πτ
. (A3)

The integrand in the above equation has two factors, exponentially decaying and oscillating.
The wave function ψ∆, Equation (8), was calculated in the limit of ω0τD � 1 [35,46].
Therefore, the period of oscillations is much smaller then the time of decay. Therefore,
namely, the fast oscillating factor determines an integral. The other, slowly decaying term
can be calculated merely at τ = 0. Thus, by using a textbook integral

∞∫
0

dτ
sin(ω0τ)

τ
=

π

2
,

I arrive at η(0) = 1.
For non-zero frequencies, I represent the factor η(ω) as follows:

η(ω) =

∞∫
0

dτe−
τ

2τD
sin([ω0 + ω]τ) + sin([ω0 −ω]τ)

πτ
. (A4)

At small frequencies, ω � ω0, I can neglect ω compared to ω0, both sinuses becomes the
same, and I recover η(ω � ω0) = η(0) = 1. With this result, I reproduce Equation (9),
the first line.

At ω = ω0, the second sinus nullifies, and the result is halved, η(ω0) = 0.5. At higher
frequencies, ω > ω0, the two sinuses contribute the same, but with opposite sign, and the
noise gets suppressed, η(ω) = 0. The transition from one to zero happens to occur within
the region of order τ−1

D near ω = ω0 (that is, near h̄ω = ∆/2) in full agreement with the
previous findings [9,64]. Here, I demonstrated that the wave function ψ∆(t), Equation (8),
carries information about this noise suppression effect.

The calculations leading from Equation (1), the second line to Equation (9), and
the second line with the wave function from Equation (8) are rather straightforward.
Importantly, the cross-correlation noise gets suppressed at much smaller frequencies of
order τ−1

D � ω0.
Note that Equation (9) was calculated for the case of weak scattering into the detector,

R � 1. In contrast, in the opposite limiting case, R = 1, according to Equation (22a),
the autocorrelation noise, the quantum jitter noise [8], is given by the combination of two
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contributions to noise. As a result, it becomes suppressed not only at large frequencies,

ω > ω0, but also at small frequencies: P ex
33 (0 < ω � ω0)

∣∣
R=1 = e2

T0

(ωτD)2

1+(ωτD)2 .

Appendix B. Relation between an Electrical Noise and an Electron Correlation Function

Here, I generalize the results of Section 2.3 to the case when the input channels have
different temperatures and Fermi energies. For this, it is convenient to separate the terms
linear and bilinear in the Fermi functions f1 and f2 in Equation (14a) and (14b) . I will
distinguish such terms via the upper index l and b, respectively,

P33(ω) =
e2

h

∫
dEF33(E, E + h̄ω) + P l

33(ω) + P b
33(ω),

(A5)

P34(ω) = P l
34(ω) + P b

34(ω).

Appendix B.1. Auto-Correlation Nose

Let us first consider P33. Substituting Equation (18) into Equation (14a) and (14b),
I find

P33(ω) =
e2

h

∫
dE
{

F33(E, E + h̄ω) +
∞

∑
n,m,q=−∞

R2 f11(Eq + h̄ω, E)S∗F(En, E)SF(Em, E)S∗F(Em + h̄ω, Eq + h̄ω)SF(En + h̄ω, Eq + h̄ω)

+TR f12(Eq + h̄ω, E)δn0δm0S∗F(Em + h̄ω, Eq + h̄ω)SF(En + h̄ω, Eq + h̄ω)

+RT f21(Eq + h̄ω, E)S∗F(En, E)SF(Em, E)δnqδmq + T2 f22(Eq + h̄ω, E)δn0δm0δnqδmq

}
. (A6)

Then, I use Equation (15) and calculate a linear in Fermi functions f1 and f2 part,

P l
33(ω) =

e2

2h

∫
dE
{

R f1(E) + R f1(E + h̄ω) + T f2(E) + T f2(E + h̄ω)
}

. (A7)

In the course of calculations, I utilized unitarity of the Floquet scattering matrix, see
Equation (13). For a single-channel SF, unitarity implies the following:

∞

∑
n=−∞

S∗F(En, Em)SF(En, E) = δm,0, (A8)

∞

∑
n=−∞

S∗F(Em, En)SF(E, En) = δm,0.

As an example, let us consider the very first term we need to calculate,

e2

2h

∫
dE

∞

∑
n,m,q=−∞

R2 f1(Eq + h̄ω)S∗F(En, E)SF(Em, E)

×S∗F(Em + h̄ω, Eq + h̄ω)SF(En + h̄ω, Eq + h̄ω).

To simplify it, I shift Eq → E under integration over energy and shift q→ −q, n− q→ n,
m− q→ m under the corresponding sums,

e2

2h

∫
dE

∞

∑
n,m,q=−∞

R2 f1(E + h̄ω)S∗F(En, Eq)SF(Em, Eq)

×S∗F(Em + h̄ω, E + h̄ω)SF(En + h̄ω, E + h̄ω).
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Then, the sum over q gives us ∑q S∗F(En, Eq)SF(Em, Eq) = δn,m, which is used to sum over,

say, m. The remaining sum over n gives ∑n|SF(En + h̄ω, E + h̄ω)|2 = 1. Therefore, what
left is e2

2h

∫ ∞
0 dER2 f1(E + h̄ω). Other terms are calculated by analogy.

The bilinear in Fermi functions f1 and f2 part reads,

P b
33(ω) = − e2

h

∫
dE

∞

∑
n,m,q=−∞

{
RT f2(Eq + h̄ω) f1(E)S∗F(En, E)SF(Em, E)δnqδmq +

R2 f1(Eq + h̄ω) f1(E)S∗F(En, E)SF(Em, E)S∗F(Em + h̄ω, Eq + h̄ω)SF(En + h̄ω, Eq + h̄ω)

+TR f1(Eq + h̄ω) f2(E)δn0δm0S∗F(Em + h̄ω, Eq + h̄ω)SF(En + h̄ω, Eq + h̄ω)

+T2 f2(Eq + h̄ω) f2(E)δn0δm0δnqδmq

}
. (A9)

Let us represent P b
33(ω) = ∑4

j=1 Bj and calculate various terms separately. The first term is

B1 = − e2

h

∫
dE

∞

∑
n,m,q=−∞

R2 f1(Eq + h̄ω) f1(E)S∗F(En, E)S∗F(Em + h̄ω, Eq + h̄ω)

×SF(Em, E)SF(En + h̄ω, Eq + h̄ω) = −R2v2
µe2

T0/2∫
−T0/2

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)1 (t + τ; t)

∣∣∣2, (A10)

where G(1)1 is the first-order correlation function of the Fermi sea incoming from the first
channel and modified by the source, see Equation (19). To prove the last line, I compute
the time integral explicitly:

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)1 (t + τ; t)

∣∣∣2 =

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ
∫ dE

h
f1(E)e−

i
h̄ Eτ

∞

∑
n,m=−∞

e−iΩnτ

×e−iΩ(n−m)tSF(En, E)S∗F(Em, E)
∫ dE′

h
f1
(
E′
)
e

i
h̄ E′τ

∞

∑
q,`=−∞

eiΩqτeiΩ(q−`)tS∗F
(

E′q, E′
)

SF
(
E′`, E′

)
=

(the integration over t gives q− ` = n−m, which I use to sum up over ` = q− n + m)

=

∞∫
−∞

dτeiωτ
∫ dE

h
f1(E)e−

i
h̄ Eτ

∞

∑
n,m,q=−∞

e−iΩnτ

SF(En, E)S∗F(Em, E)
∫ dE′

h
f1
(
E′
)
e

i
h̄ E′τeiΩqτS∗F

(
E′q, E′

)
SF

(
E′q−n+m, E′

)
.

The integration over τ gives hδ
(

h̄ω− En + E′q
)

, which I use to integrate out En = E′q + h̄ω,

∼ f1

(
E′q−n + h̄ω

)
f1
(
E′
)
S∗F
(

E′q, E′
)

SF

(
E′q−n+m, E′

)
×S∗F

(
E′q−n+m + h̄ω, E′q−n + h̄ω

)
SF

(
E′q + h̄ω, E′q−n + h̄ω

)
.

Additionally I shift q− n→ q,

∼ f1

(
E′q + h̄ω

)
f1
(
E′
)
S∗F
(

E′q+n, E′
)

SF

(
E′q+m, E′

)
×S∗F

(
E′q+m + h̄ω, E′q + h̄ω

)
SF

(
E′q+n + h̄ω, E′q + h̄ω

)
,
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and finally, I shift q+ n→ n and q+m→ m and get the same integrand as in Equation (A10)
(up to E′ → E),

∼ f1

(
E′q + h̄ω

)
f1
(
E′
)
S∗F
(
E′n, E′

)
SF
(
E′m, E′

)
×S∗F

(
E′m + h̄ω, E′q + h̄ω

)
SF

(
E′n + h̄ω, E′q + h̄ω

)
.

Other terms are calculated in the same way,

B2 = − e2

h

∫
dE

∞

∑
q=−∞

RT f2(Eq + h̄ω) f1(E)
∣∣SF(Eq, E)

∣∣2
= −RTv2

µe2
T0/2∫
−T0/2

dt
T0

∞∫
−∞

dτeiωτG(1)1 (t + τ; t)G(1)∗0,2 (τ), (A11)

B3 = − e2

h

∫
dE

∞

∑
q=−∞

TR f1(Eq + h̄ω) f2(E)
∣∣SF(E + h̄ω, Eq + h̄ω)

∣∣2
= −TRv2

µe2
T0/2∫
−T0/2

dt
T0

∞∫
−∞

dτeiωτG(1)0,2 (τ)G
(1)∗
1 (t + τ; t), (A12)

B4 = − e2

h

∫
dET2 f2(E + h̄ω) f2(E) = −T2v2

µe2
T0/2∫
−T0/2

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)0,2 (τ)

∣∣∣2.1 (A13)

Putting all the terms together I get

P b
33(ω) = −v2

µe2
T0∫

0

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣RG(1)1 (t + τ; t) + TG(1)0,2 (τ)

∣∣∣2. (A14)

Note that when the second channel is also fed by a source, we need to replace the correlation
function of the Fermi sea in equilibrium, G(1)0,2 , by the one modified by the source, G(1)2 .

Strictly speaking, both P l
33(ω), Equation (A7), and P b

33(ω), Equation (A14) diverge
due to the infinite number of electrons that make up the Fermi sea, which contribute to
them. However, their sum is finite. This sum is not zero even if the source is switched off.
Therefore, to see the effect of injected electrons, we need to look at the excess noise. For
this, I first calculate the noise when the source is off, P o f f

33 , and then calculate the excess

noise as the difference, P ex
33 = P33 −P

o f f
33 .

Appendix B.1.1. Equilibrium Noise, P o f f
33

For the sake of simplicity, I assume all the reservoirs have the same Fermi energy,
µα = µ, ∀α but possibly different temperatures. If necessary, the constant bias Vα at lead α,
that is, µα = µ + eVα, can be accounted for via an energy-independent scattering amplitude

Sα = ei eVα
h̄ t.
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To demonstrate that the equilibrium auto-correlation noise is not zero, I proceed as
follows. I replace G1 by G0,1 in Equation (A14) for P b

33, use Equation (A7) for P l
33, which

remains unchanged, use the following equation (see Equation (A13) and alike),

1
h

∫
dE
{

Fαβ(E, E + h̄ω)−
fα(E) + fβ(E + h̄ω)

2

}
=

= −v2
µ

T0/2∫
−T0/2

dt
T0

∞∫
−∞

dτeiωτG(1)0,α (τ)G
(1)∗
0,β (τ), (A15)

and get the total equilibrium noise according to Equation (A5),

P o f f
33 (ω) =

e2

h

∫
dE

{
F33(E, E + h̄ω) + R2F11(E + h̄ω, E) + TRF21(E + h̄ω, E)

+RTF12(E + h̄ω, E) + T2F22(E + h̄ω, E)

}
. (A16)

Then, I transform

Fαβ(E, E + h̄ω) + Fβα(E, E + h̄ω) = Fαα(E, E + h̄ω) + Fββ(E, E + h̄ω) + Φαβ,

Φαβ =
[

fα(E)− fβ(E)
][

fα(E + h̄ω)− fβ(E + h̄ω)
]
,

and integrate over energy using the following equations,

∫
dEFαα(E, E + h̄ω) =

h̄ω

2
coth

h̄ω

2kBθα
, (A17)

Ξ
(

θα, θβ, ω
)

=
1

kB

(
θα + θβ

) ∫ dEΦαβ =

=
2θα

θα + θβ

1∫
0

dx
x
(
[xΩ]

θα
θβ
−1
− 1
)([ x

Ω
] θα

θβ
−1
− 1
)

(1 + xΩ)

(
1 + [xΩ]

θα
θβ

)(
1 + x

Ω
)(

1 +
[ x

Ω
] θα

θβ

) ,

where Ω = e−
h̄ω

2kBθα and kB is the Boltzmann constant. Finally, I represent P o f f
33 as follows,

P o f f
33 (ω) =

e2

h
kB

{
θ3ξ

(
h̄ω

2kBθ3

)
+ Rθ1ξ

(
h̄ω

2kBθ1

)

+Tθ2ξ

(
h̄ω

2kBθ2

)
+ RT(θ1 + θ2)Ξ(θ1, θ2, ω)

}
, (A18)

where ξ(x) = x coth x.
The term with factor Ξ(θ1, θ2, ω) describes the auto-correlation thermal noise due to

both terminals. It is shown in Figure A2.
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Figure A2. The joint two terminal contribution to the thermal noise Ξ
(

θα, θβ, ω
)

, see Equations (A17)

and (A18), is shown as a function of frequency at θα/θβ = 1.1 (blue), 2 (green), 5 (black), 10 (orange),
and 20 (red).

Note that Ξ
(
θα, θβ, ω

)
is zero at θα = θβ, and as a function of ω it changes a sign from

positive to negative with increasing ω. This sign change occurs around h̄ω = kB
(
θα + θβ

)
.

At this temperature/frequency, the joint two terminal contribution to thermal noise van-
ishes.

Appendix B.1.2. Excess Noise, P ex
33

I express the excess auto-correlation noise directly in terms of electron correlation
functions Gβ and G0,β. For this I note that the electronic source affects P b

33, Equation (A14),

but leaves P l
33, Equation (A7), unchanged. Therefore, P ex

33 = P b
33 −P

b,o f f
33 ,

P ex
33 (ω) = e2v2

µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ

{∣∣∣RG(1)0,1 (t + τ; t) + TG(1)0,2 (τ)
∣∣∣2

−
∣∣∣RG(1)1 (t + τ; t) + TG(1)0,2 (τ)

∣∣∣2}. (A19)

When both incoming channels are at the same temperature, θ1 = θ2 ≡ θ, and have the
same Fermi energies, µ1 = µ2 ≡ µ, that is, their equilibrium correlation functions are the
same, G0,1 = G0,2 ≡ G0, the above equation is simplified (see Equation (22a)).

P ex
33 (ω) = e2v2

µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ

{
− R2

∣∣∣G(1)
1 (t + τ; t)

∣∣∣2
−2R ReG(1)

1 (t + τ; t)G(1)∗0 (τ)

}
, (A20)

where

G(1)
1 (t + τ; t) = G(1)1 (t + τ; t)− G(1)0,1 (τ). (A21)

is the excess first-order correlation function injected by the source.
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Appendix B.2. Cross-Correlation Nose

The cross-correlation noise in terms of G(1) was given in [51],

P34(ω) = −RTe2v2
µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)1 (t + τ; t)− G(1)0,2 (τ)

∣∣∣2. (A22)

The excess cross-correlation noise, P ex
34 = P34 −P

o f f
34 , reads

P ex
34 (ω) = RTe2v2

µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ

{∣∣∣G(1)0,1 (τ)− G
(1)
0,2 (τ)

∣∣∣2
−
∣∣∣G(1)1 (t + τ; t)− G(1)0,2 (τ)

∣∣∣2}. (A23)

If both incoming channels are under the same conditions, G0,1 = G0,2 ≡ G0, then, unlike
the auto-correlation noise, the cross-correlation noise has no equilibrium contribution and
it is expressed solely in terms of the excess correlation function G(1) (see Equation (22b)):

P34(ω) = P ex
34 (ω) = −RTe2v2

µ

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ
∣∣∣G(1)

1 (t + τ; t)
∣∣∣2. (A24)

Appendix B.3. The Excess Noise Conservation at Zero Frequency

Conservation of charge imposes strong restrictions on zero frequency noise [14].
Namely, in the case under consideration, P ex

33 (0) and P ex
34 (0) are perfectly anti-correlated,

such that

P ex
33 (0) + P ex

34 (0) = 0. (A25)

To show this, let us use Equations (A19) and (A23) in the above equation and obtain

T0/2∫
−T0/2

dt
T0

∞∫
−∞

dτ
∣∣∣G(1)1 (t + τ; t)

∣∣∣2 =

T0∫
0

dt
T0

∞∫
−∞

dτ
∣∣∣G(1)0,1 (τ)

∣∣∣2. (A26)

Then, I use Equations (19) and (20) and calculate the right hand side in the above equation,

r.h.s. =
1

hv2
µ

∫
dE f 2

1 (E), (A27)

and the left hand side,

l.h.s. =
1

hv2
µ

∫
dE ∑

n,m,q
f1

(
Eq

)
f1(E)S∗F(En, E)SF(Em, E)S∗F

(
Em, Eq

)
SF

(
En, Eq

)
. (A28)

Using the unitarity of the Floquet scattering amplitude of the source in the above equation,
see Equations (13) and (A8), I sum over n and m and get the following:

l.h.s. =
1

hv2
µ

∫
dE f 2

1 (E) = r.h.s. , (A29)

that is, Equation (A26) is proven.



Entropy 2021, 23, 393 21 of 27

Appendix B.4. Noise and the Outgoing Correlation Matrix of a Linear Electronic Circuit

To generalize equations that relate electrical noise to electron correlation functions to
the case with several sources and/or with several outgoing channels, it is instructive to
combine correlation functions of all incoming channels into a square matrix Ĝ(1)in , and of all

outgoing channels into a square matrix Ĝ(1)out, see in [44] for details. Their dimensions are
equal to the number of incoming and outgoing channels, respectively. Let us denote by Ŝ
the scattering matrix of a stationary electronic circuit connecting incoming and outgoing
channels. If Ŝ is independent of energy, the incoming and outgoing correlation matrix are
related as follows, Ĝ(1)out(t1; t2) = Ŝ∗Ĝ(1)in (t1; t2)ŜT , where the upper index ∗ means complex

conjugation, and T means transposition. As the incoming channels are not correlated, Ĝ(1)in
is diagonal.

In the case of a single QPC considered in this work, G(1)in,11 = G(1)1 , G(1)in,22 = G(1)2 ,
and two other elements are zero. The circuit’s scattering matrix is given in Equation (17),
Ŝ = ŜQPC. Then, the outgoing correlation matrix reads

Ĝ(1)out =

 RG(1)1 + TG(1)2 i
√

RT
(
G(1)1 − G(1)2

)
i
√

RT
(
G(1)2 − G(1)1

)
TG(1)1 + RG(1)2

. (A30)

Comparing the elements of Ĝ(1)out to Equations (A19) and (A23), we can relate the excess
noise and the elements of the outgoing correlation matrix as follows:

P ex
αα′(ω) = e2

T0∫
0

dt
T0

∞∫
−∞

dτeiωτ

{∣∣∣vµG(1),o f f
out,αα′ (t + τ; t)

∣∣∣2 − ∣∣∣vµG(1)out,αα′(t + τ; t)
∣∣∣2}, (A31)

where the upper index o f f indicates that electronic sources are switched off.
Notice that in the above equation, the indices α and α′ number outgoing channels

only; therefore, α, α′ = 1, 2. While in Equations (A19) and (A23), the outgoing channels
were numbered together with incoming channels, thus the outgoing channels were 3 and 4,
respectively. Equation (A31) is applicable for any number of electronic sources and any
number of outgoing channels.

Equations (A30) and (A31) illustrate why the auto- and cross-correlation noise are
generally different. In particular, there is no cross-correlation noise in equilibrium (the
off-diagonal terms in Equation (A30) vanish), but autocorrelation noise is present (the
diagonal terms in Equation (A30) are not zero). Ultimately, this difference is due to the fact
that fermionic operators in different leads anti-commute, but do not anti-commute in one
lead.

Appendix C. Noise Caused by an Electron Injected from a Quantum Level Raising at a
Constant Rapidity at Zero Temperature

In this appendix, I derive Equation (28) starting from Equations (22a) and (22b).
First, I use the wave function ψ(c) from Equation (6) and calculate the excess correlation

function:

G(1)(t + τ; t) =
ei µ

h̄ τ

πΓτvµ

∞∫
0

dxe−xeix t+τ
Γτ e−ix2ζ

∞∫
0

dye−ye−iy t
Γτ eiy2ζ . (A32)

Here, I introduced the parameter of non-adiabaticity ζ = τD/Γτ . This parameter controls
the symmetry of the density profile of the injected wave packet [43]. With a symmetric
density profile, injection is classified as adiabatic, with an asymmetric density profile,
injection is non-adiabatic [46]. At ζ = 0, this source is identical to the source of levitons,
that is, ψc = ψL, see Equation (4) for ψL.
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At the next step, let us calculate separately two terms entering Equations (22a)
and (22b). I assume Γτ � T0 and, therefore, extend the limits of integration over t
to infinity.

Appendix C.1. The Term with −v2
µG(1)

1 G
(1)∗
0

I denote this term as Π1. Using Equation (20) for G(1)0 at zero temperature, I have

Π1(ω) = −
∞∫
−∞

dτeiωτ2Re
C(τ)
−2πiτ

,

C(τ) =
1

πΓτ

∞∫
−∞

dt
∞∫

0

dxe−xeix t+τ
Γτ e−ix2ζ

∞∫
0

dye−ye−iy t
Γτ eiy2ζ , (A33)

First, I evaluate coherence C(τ). For this, I integrate over t,

∞∫
−∞

dteix t
Γτ e−iy t

Γτ = 2πΓτδ(x− y).

This allows us to integrate, say, over y (the result is independent of the parameter of
non-adiabaticity ζ),

C(τ) = 2
∞∫

0

dxe−2xei x
Γτ

τ =
1

1− iτ/(2Γτ)
. (A34)

Substituting the above equation into Equation (A33), I calculate

Π1(ω) = e−|ω|2Γτ . (A35)

Note that namely this term determines the auto-correlation noise at R � 1: P ex
33 (ω) ≈

R
(
e2/T0

)
Π1(ω), see Equation (7).

Appendix C.2. The Term with v2
µ

∣∣∣G(1)
∣∣∣2

I denote this term as Π2,

Π2(ω) =

∞∫
−∞

dt
∞∫
−∞

dτeiωτ
∣∣∣ψ(c)(t + τ)

∣∣∣2∣∣∣ψ(c)(t)
∣∣∣2. (A36)

First, I shift τ + t → τ and represent the above equation as the square of the Fourier
transform of the wave packet density, Π2(ω) = |N (ω)|2, where

N (ω) = Γτ

∞∫
−∞

dzeiωΓτz
∣∣∣ψ(c)(Γτz)

∣∣∣2

=
1
π

∞∫
−∞

dzeiωΓτz
∞∫

0

dxe−xeixze−ix2ζ

∞∫
0

dye−ye−iyzeiy2ζ , (A37)

where z = τ/Γτ . The integration over z gives,
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∞∫
−∞

dzeiωΓτzeixze−iyz = 2πδ(ωΓτ + x− y).

Then, I integrate over y = x + ωΓτ (for positive ω),

N (ω) = 2ei(ωΓτ)
2ζ e−ωΓτ

∞∫
0

dxe−2xei2xωΓτζ = ei(ωΓτ)
2ζ e−ωΓτ

1− iωΓτζ
,

and obtain (for arbitrary ω),

Π2(ω) =
e−|ω|2Γτ

1 + (ωτD)
2 , (A38)

where τD = Γτζ. This term fully defines cross-correlation noise and partially auto-
correlation noise.

Appendix C.3. Excess Noise Power

By combining both terms together, I get

P ex
33 (ω) = R

e2

T0
Π1(ω)− R2 e2

T0
Π2(ω)

(A39)

P34(ω) = −RT
e2

T0
Π2(ω).

Using Equations (A35) and (A38) we arrive at Equation (28).
Note that at ω = 0, Π1(0) = Π2(0) and P ex

33 (0) + P34(0) = 0, in agreement with
Equation (A25).

Appendix D. Noise Caused by an Electron Injected from a Quantum Level Raising at a
Constant Rapidity at Non-Zero Temperature

In this appendix, I repeat the calculations presented in the previous Appendix, but at
non-zero temperatures, and compute the temperature-dependent factor η(ω, θ) from
Equation (29).

For this model, the correlation function of electrons injected at a nonzero temperature,
θ > 0, was expressed in terms of the correlation function at zero temperature in [60].

G(1)
1,θ (t + τ; t) =

∫
dε

(
−∂ f1

∂ε

)
ei ε

h̄ τG(1)
1,0

(
t + τ − ε

c
; t− ε

c

)
. (A40)

Here, the indices θ and 0 refer to non-zero and zero temperatures, respectively, f1 is the
Fermi distribution function for electrons with temperature θ in lead 1, which the additional
electron is injected into, G(1)

1,0 is given in Equation (A32), and the rapidity c = h̄/(2τDΓτ),
see ψ(c), Equation (6).

The above equation can be interpreted as the correlation function for a single-particle
mixed quantum state. Each component of this mixed state is characterized by the cor-
relation functions ei ε

h̄ τG(1)
1,0
(
t + τ − ε

c ; t− ε
c
)
. The components of this mixed state are dis-

tributed according to the thermal probability density p(ε) = −∂ f1(ε)/∂ε.
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Appendix D.1. The Term with −v2
µG(1)

1 G
(1)∗
0

Using Equations (20) and (A40), I calculate

Π1(ω) =
1
π

∞∫
−∞

dτeiωτ 1/τθ

sinh(τ/τθ )
Im
∫

dεei ε
h̄

(
−∂ f1

∂ε

)
C(τ),

C(τ) =

∞∫
−∞

dte−i µ
h̄ τvµG(1)

1,0

(
t− ε

c
+ τ; t− ε

c

)
. (A41)

As energy ε and time t enter G(1)
1,0 as a difference, t− ε/c, the correlation function calculated

at zero temperature and integrated over time, C(τ), becomes independent of ε. This
property allows us to integrate out ε,

Π1(ω) =

∞∫
−∞

dτeiωτ

(
τ/τθ

sinh(τ/τθ )

)2 Im[C(τ)]
πτ

. (A42)

With G(1)
1,0 from Equation (A32), I calculate C(τ) as described above in Appendix C.1

and find

Π1(ω) =
1

2πΓτ

∞∫
−∞

dτeiωτ

(
τ/τθ

sinh(τ/τθ )

)2 1

1 + τ2/(2Γτ)
2 . (A43)

Remind that the thermal coherence time τθ = h̄/(πkBθ1). At θ1 = 0, we recover
Equation (A35). Note that Π1(ω) obeys Equation (27).

Appendix D.2. The Term with v2
µ

∣∣∣G(1)
∣∣∣2

At non-zero temperature the corresponding term reads

Π2(ω) =
∫∫

dεdε′p(ε)p(ε′)|Nε−ε′(ω)|2. (A44)

Here, the thermal probability density p(ε) = −∂ f1(ε)/∂ε, and

Nε−ε′ (ω) =

∞∫
−∞

dz
π

ei
(

ω+ ε−ε′
h̄

)
Γτz

∞∫
0

dxe−xeix(z− ε
cΓτ )e−ix2ζ

∞∫
0

dye−ye−iy
(

z− ε′
cΓτ

)
eiy2ζ , (A45)

where z = τ/Γτ . Up to an irrelevant phase factor, Nε−ε′(ω) is the same as N
(

ω + ε−ε′
h̄

)
from Equation (A37). Therefore, we can write

Π2(ω) =
1

1 + (ωτD)
2

∫∫
dεdε′p(ε)p(ε′)e−

∣∣∣ω+ ε−ε′
h̄

∣∣∣2Γτ . (A46)

To bring the above equation into the form close to Π1, Equation (A43), let us represent the
exponential factor as follows,

e−
∣∣∣ω+ ε−ε′

h̄

∣∣∣2Γτ =
1

2πΓτ

∞∫
−∞

dτ
ei
(

ω+ ε−ε′
h̄

)
τ

1 + τ2/(2Γτ)
2 .

Then, we can integrate over ε and ε′ in Equation (A46) as follows,
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∫
dεp(ε)ei ε

h̄ τ =
τ/τθ

sinh(τ/τθ )
,

and find that

Π2(ω) =
1

1 + (ωτD)
2

∞∫
−∞

dτeiωτ

2πΓτ

(
τ/τθ

sinh(τ/τθ)

)2

1 + τ2/(2Γτ)
2 =

Π1(ω)

1 + (ωτD)
2 , (A47)

where Π1 is given in Equation (A43).
Notice that we cannot use the inverse Fourier transformation with respect to ω in

order to express Π2(ω) at temperature θ in terms of Π2(ω) at zero temperature. As a result,
the excess noise, Equation (A39), does not obey Equation (27).

Appendix D.3. Excess Noise Power

The relation between Π2(ω) and Π1(ω), Equation (A47), is independent on tem-
perature. Therefore, the effect of temperature on Π2(ω) is the same as on Π1(ω), see
Equation (A43). Then, we use Equations (A43) and (A47) in Equation (A39) and generalize
Equation (28) to the case of non-zero temperatures,

P ex
33 (ω) = R

e2

T0

T + (ωτD)
2

1 + (ωτD)
2 e−|ω|2Γτ η(ω, θ),

(A48)

P34(ω) = −R
e2

T0

T

1 + (ωτD)
2 e−|ω|2Γτ η(ω, θ),

where

η(ω, θ) = e|ω|2Γτ

∞∫
−∞

dτeiωτ

2πΓτ

(
τ/τθ

sinh(τ/τθ)

)2

1 + τ2/(2Γτ)
2 . (A49)

This factor is shown in Equation (29), where I introduced x = τ/(2Γτ).
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